1
|
Liu Z, Li R, Hou Y, Guo J, Li X, Li K, Liu Q. Durable PVA-based hydrogel sponge with cellulose whiskers embedded in the 3D interconnected channels for efficient oil/water separation. Carbohydr Polym 2025; 352:123251. [PMID: 39843131 DOI: 10.1016/j.carbpol.2025.123251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/04/2025] [Accepted: 01/07/2025] [Indexed: 01/24/2025]
Abstract
Superhydrophilic hydrogel was typically used as the membrane coating on various substrates for oil/water separation. Nevertheless, these coatings may suffer from such limitations as poor adhesion strength and abrasion-resistance. Thus, the facile construction of hydrogel sponge with 3D connecting channels would be an ideal choice. Herein, we reported a free-standing polyvinyl alcohol (PVA)/cellulose nanocrystal (CNC) hydrogel sponge for controllable oil/water separation. In the design, the salt/CNC hybrid crystals instead of conventional salt particles were employed as the sacrificial template, thus CNC was creatively integrated into the long and tortuous 3D interconnected channels via the solvent displacement combined template-leaching strategy. The resultant microstructure woven by CNC bundles in sponge channels could alleviate severe pore collapse in leaching process and oil intrusion. Moreover, it could serve as the superhydrophilic "sieve", promoting the separation efficiency significantly. The gravity-based separation efficiencies for PC5-HL hydrogel sponge in processing of diverse oil/water mixture and oil-in-water emulsions could achieve up to 99.7 and 99.4 %, respectively. In addition, this hydrogel sponge can be used for continuous oil/water separation without obvious decline upon several cycles. This work provides a different way to fabricate the eco-friendly, low-cost and energy-saving filtration hydrogel sponge, showing high potential in oily wastewater treatment.
Collapse
Affiliation(s)
- Zeqi Liu
- School of Chemistry and Chemical Engineering, North University of China, NO. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China
| | - Ran Li
- School of Chemistry and Chemical Engineering, North University of China, NO. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China
| | - Yarui Hou
- School of Chemistry and Chemical Engineering, North University of China, NO. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China
| | - Juan Guo
- School of Chemistry and Chemical Engineering, North University of China, NO. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China
| | - Xiaojun Li
- School of Chemistry and Chemical Engineering, North University of China, NO. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China
| | - Kai Li
- Faculty of Chemical Engineering, Kunming University of Science and Technology, 650500 Kunming, China
| | - Qingye Liu
- School of Chemistry and Chemical Engineering, North University of China, NO. 3 Xueyuan Road, Jiancaoping District, Taiyuan 030051, China.
| |
Collapse
|
2
|
Liu X, Lu M, Wang C, Xiao G, Wang B, Chen L. Research into the Influence of Filtration Media Microstructure on Oil-Water Separation Performance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:27690-27704. [PMID: 39703185 DOI: 10.1021/acs.langmuir.4c04749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Oil-water separation materials with specialized wettability have garnered significant attention in the field of oil-water separation due to the advantages of simple use and no secondary pollution. However, the adsorptive contamination of the filter surface by impurity phases and surfactants can cause a shift in the wettability of the filter surface. For efficient oil-water separation and improved resistance to adherent contamination on the oil-water separation membrane surface, herein, superwetted Cu nanofilms and smooth hydrophobic surfaces were prepared on SSM substrates by one-step electrodeposition and immersion methods, respectively. For water-in-oil/oil-in-water emulsions, nano-Cu has high separation efficiency. Experimentally, it was analyzed that the smaller spacing between the pores of the mesh membrane and the micro-nanostructures makes the separation effect better, but the flux will be reduced accordingly. By studying the separation images during the actual separation process through optical microscopy, it was found that the increase in the efficiency of the mesh membrane during the oil-water separation process and the decrease in the flux were due to the impurity phases aggregating and clogging the pores during the separation process to achieve a reduction in the pore size and the spacing of the micro-nanostructures. And further verification of the stability and mechanism correctness of the nano-Cu mesh film was conducted using cyclic experiments. The surface adhesion mechanism of filtration materials was analyzed by studying the phenomenon of water droplet adhesion on different mesh membranes and the ratio of adhesion. The research findings provide a comprehensive analysis of oil-water separation materials, focusing on both separation effectiveness and antiadhesion properties. This study offers new insights into the design of efficient oil-water separation materials and holds significant implications for advancing the practical application of oil-water separation membranes.
Collapse
Affiliation(s)
- Xiaoyan Liu
- College of New Energy & Materials, Northeast Petroleum University, Daqing 163318, China
| | - Min Lu
- College of New Energy & Materials, Northeast Petroleum University, Daqing 163318, China
| | - Caihua Wang
- College of New Energy & Materials, Northeast Petroleum University, Daqing 163318, China
| | - Guoqiang Xiao
- College of New Energy & Materials, Northeast Petroleum University, Daqing 163318, China
| | - Bao Wang
- College of New Energy & Materials, Northeast Petroleum University, Daqing 163318, China
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
- CISRI HIPEX TECHNOLOGY CO., LTD., Central Iron and Steel Research Institute, Beijing 100081, China
| | - Lei Chen
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
3
|
Pi P, Ren Z, Yang Y, Chen W, Lin Y. A review of various dimensional superwetting materials for oil-water separation. NANOSCALE 2024; 16:17248-17275. [PMID: 39225194 DOI: 10.1039/d4nr01473a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
In recent years, the application and fabrication technologies of superwetting materials in the field of oil-water separation have become a research hotspot, aiming to address challenges in marine oil spill response and oily wastewater treatment. Simultaneously, the fabrication technologies and related applications of superwetting materials have been increasingly diversified. This paper systematically reviews the sources and hazards of oily wastewater and oil-water emulsions, several traditional oil-water separation methods, and their limitations, thereby highlighting the advantages of superwetting materials. Additionally, this paper provides an overview of the fundamental theories of wetting and conducts a microanalysis of the penetration mechanism based on Laplace pressure at the gas-liquid-solid three-phase interface. Following this, the latest advances in superwetting oil-water separation materials are elucidated, focusing on five categories: (i) superhydrophobic-superoleophilic materials; (ii) superhydrophilic-underwater superoleophobic materials; (iii) superhydrophobic-superoleophobic materials; (iv) "special" superwetting materials; and (v) smart switchable superwetting materials. This paper innovatively discusses these materials from the perspectives of two-dimensional and three-dimensional materials, deeply studying the mechanisms of oil-water separation and using data to quantify the separation efficiency. Comparative discussions are conducted on the materials from various dimensions, including different substrates, innovations in existing technologies, and fabrication methods as discussed in various articles, followed by corresponding summaries. Finally, the existing shortcomings and challenges of current superwetting materials are summarized, and prospects are proposed. We firmly believe that developing low-cost, stable, environmentally friendly, and practical large-scale superwetting oil-water separation materials will have broad application prospects and potential in the future.
Collapse
Affiliation(s)
- Peng Pi
- School of Mechanical Engineering and Automation, Institute of Metal Rubber & Vibration Noise, Fuzhou University, Fuzhou 350116, People's Republic of China.
| | - Zhiying Ren
- School of Mechanical Engineering and Automation, Institute of Metal Rubber & Vibration Noise, Fuzhou University, Fuzhou 350116, People's Republic of China.
| | - Yu Yang
- School of Mechanical Engineering and Automation, Institute of Metal Rubber & Vibration Noise, Fuzhou University, Fuzhou 350116, People's Republic of China.
| | - Weiping Chen
- School of Mechanical Engineering and Automation, Institute of Metal Rubber & Vibration Noise, Fuzhou University, Fuzhou 350116, People's Republic of China.
| | - Youxi Lin
- School of Mechanical Engineering and Automation, Institute of Metal Rubber & Vibration Noise, Fuzhou University, Fuzhou 350116, People's Republic of China.
| |
Collapse
|
4
|
Ma Y, Shao T, Niu Q, Jilili Y, Zhen W. Superhydrophobic poly(lactic acid) membrane prepared with the induction of modified carbon dots for efficient separation of water-in-oil emulsions. Int J Biol Macromol 2024; 280:136001. [PMID: 39326624 DOI: 10.1016/j.ijbiomac.2024.136001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 09/16/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Superhydrophobic separation membranes are considered to be one of the most promising technologies for oil-water separation. However, the plastic waste generated from discarded membranes poses a challenge to the preparation of degraded superhydrophobic separation membranes for achieving eco-friendly separation. In this study, superhydrophobic poly(lactic acid) (PLA) membranes were fabricated using a non-solvent induced phase separation method assisted by l-cysteine modified carbon dots (Cys-CDs). The synergistic effect of Cys-CDs-induced crystallization behavior of PLA and the phase separation process results in the evolution of the surface of the PLA-based membrane from a pistil-like structure to a multi-level micro-nano structure composed of dense lamellar nanofibers and microspheres with an increase in Cys-CDs content. At a Cys-CDs content of 5 wt%, the surface roughness of PLA-based separation membrane reached its maximum, and the water contact angle was as high as 159°. Remarkably, the superhydrophobic Cys-CDs/PLA membrane exhibited promising performance in the separation of water-in-oil emulsions, with a rejection rate of 99.98% and a flux of 315.74 L·m-2·h-1·bar-1. Additionally, the superhydrophobic Cys-CDs/PLA separation membrane also demonstrates impressive properties such as acid-alkali resistance and rapid recycling into high-value chemicals. Consequently, this rapidly recoverable superhydrophobic porous Cys-CDs/PLA membrane shows great potential for practical applications in actual oil-water separation.
Collapse
Affiliation(s)
- Yumiao Ma
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China; College of Chemical and Environmental Engineering, Xinjiang Institute of Engineering, Urumqi 830023, Xinjiang, China
| | - Tengfei Shao
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China
| | - Qingqing Niu
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China
| | - Yikelamu Jilili
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China
| | - Weijun Zhen
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education and Xinjiang Uygur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China.
| |
Collapse
|
5
|
Wu W, Miao S, Gong X. Stable and Durable Superhydrophobic Cotton Fabrics Prepared via a Simple 1,4-Conjugate Addition Reaction for Ultrahigh Efficient Oil-Water Separation. Macromol Rapid Commun 2024; 45:e2400292. [PMID: 38837517 DOI: 10.1002/marc.202400292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Superhydrophobic materials used for oil-water separation have received wide attention. However, the simple and low-cost strategy for making durable superhydrophobic materials remains a major challenge. Here, this work reports that stable and durable superhydrophobic cotton fabrics can be prepared using a simple two-step impregnation process. Silica nanoparticles are surface modified by hydrolysis condensation of 3-aminopropyltrimethoxysilane (APTMS). 1,4-conjugate addition reaction between the acrylic group of cross-linking agent pentaerythritol triacrylate (PETA) and the amino group of octadecylamine (ODA) forms a covalent cross-linked rough network structure. The long hydrophobic chain of ODA makes the cotton fabric exhibit excellent superhydrophobic properties, and the water contact angle (WCA) of the fabric surface reaches 158°. The modified cotton fabric has good physical and chemical stability, self-cleaning, and anti-fouling. At the same time, the modified fabric shows excellent oil/water separation efficiency (98.16% after 20 cycles) and ultrahigh separation flux (15413.63 L m-2 h-1) due to its superhydrophobicity, superoleophilicity, and inherent porous structure. The method provides a broad prospect in the future diversification applications of oil/water separation and oil spill cleaning.
Collapse
Affiliation(s)
- Wanze Wu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Shiwei Miao
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiao Gong
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
- Hepu Research Center for Silicate Materials Industry Technology, 27 Huanzhu Avenue, Hepu county, Beihai, 536100, China
| |
Collapse
|
6
|
Yang Y, Zhang W, Zhang L, Guo M, Xiang C, Ren M, Han Y, Shi J, Li H, Xu X. The development of multifunctional materials for water pollution remediation using pollen and sporopollenin. Int J Biol Macromol 2024; 273:133051. [PMID: 38862057 DOI: 10.1016/j.ijbiomac.2024.133051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/06/2024] [Accepted: 06/07/2024] [Indexed: 06/13/2024]
Abstract
Pollen is a promising material for water treatment owing to its renewable nature, abundant sources, and vast reserves. The natural polymer sporopollenin, found within pollen exine, possesses a distinctive layered porous structure, mechanical strength, and stable chemical properties, which can be utilized to prepare sporopollenin exine capsules (SECs). Leveraging these attributes, pollen or SECs can be used to develop water pollution remediation materials. In this review, the structure of pollen is first introduced, followed by the categorization of various methods for extracting SECs. Then, the functional expansion of pollen adsorbents, with an emphasis on their recyclability, reusability, and visual sensing capabilities, as opposed to mere functional group modification, is discussed. Furthermore, the progress made in utilizing pollen as a biological template for synthesizing catalysts is summarized. Intriguingly, pollen can also be engineered into self-propelled micromotors, enhancing its potential application in adsorption and catalysis. Finally, the challenges associated with the application of pollen in water pollution treatment are discussed. These challenges include the selection of environmentally friendly, non-toxic reagents in synthesizing pollen water remediation products and the large-scale application after synthesis. Moreover, the multifunctional synthesis and application of different water remediation products are prospected.
Collapse
Affiliation(s)
- Ying Yang
- School of Quality and Technical Supervision, Hebei University, Baoding 071002, China; National&Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding 071002, China; Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding 071002, China
| | - Wenqi Zhang
- School of Quality and Technical Supervision, Hebei University, Baoding 071002, China; National&Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding 071002, China; Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding 071002, China
| | - Lu Zhang
- School of Quality and Technical Supervision, Hebei University, Baoding 071002, China; National&Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding 071002, China; Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding 071002, China
| | - Mengyao Guo
- College of Traditional Chinese Medicine, Hebei University, Baoding 071002, China
| | - Chengwen Xiang
- College of Traditional Chinese Medicine, Hebei University, Baoding 071002, China
| | - Mengyu Ren
- School of Quality and Technical Supervision, Hebei University, Baoding 071002, China; National&Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding 071002, China; Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding 071002, China
| | - Yue Han
- School of Quality and Technical Supervision, Hebei University, Baoding 071002, China; National&Local Joint Engineering Research Center of Metrology Instrument and System, Hebei University, Baoding 071002, China; Hebei Key Laboratory of Energy Metering and Safety Testing Technology, Hebei University, Baoding 071002, China
| | - Junling Shi
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hongliang Li
- College of Traditional Chinese Medicine, Hebei University, Baoding 071002, China.
| | - Xiaoguang Xu
- College of Traditional Chinese Medicine, Hebei University, Baoding 071002, China.
| |
Collapse
|
7
|
Lin J, Niu L, Jiang Y, Wang Y, Chu Z, Yang Z, Xie Z, Yang Y. Magnetic Hyperporous Elastic Material with Excellent Fatigue Resistance and Oil Retention for Oil-Water Separation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12078-12088. [PMID: 38805683 DOI: 10.1021/acs.langmuir.4c00871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Oily wastewater has caused serious threats to the environment; thus, high-performance absorbing materials for effective oil-water separation technology have attracted increasing attention. Herein, we develop a magnetic, hydrophobic, and lipophilic hyperporous elastic material (HEM) templated by high internal phase emulsions (HIPE), in which free-radical polymerization of butyl acrylate (BA) and divinylbenzene (DVB) is employed in the presence of poly(dimethylsiloxane) (PDMS), lecithin surfactant, and modified Fe3O4 nanoparticles. The adoption of the emulsion template with nanoparticles as both stabilizers and cross-linkers endows the HEM with biomimetic hierarchical open-cell micropores and elastic cross-linked networks, generating an oil absorbent with outstanding mechanical stability. Compressive fatigue resistance of the HEM is demonstrated to endure 2000 mechanical cycles without plastic deformation or strength degradation. By exploiting the synergistic effect of hierarchical structures and low-surface-energy components, the resulting HEM also possesses excellent and robust hydrophobicity (water contact angle of 164°) and good oil absorption capacity, in which Fe3O4 nanoparticles lead to convenient magnetically controlled oil recyclability as well. Notably, the unique biomimetic microporous structure demonstrates superior oil retention capacity (>95% at 1000 rpm and >60% at 10,000 rpm) over the state-of-the-art porous materials for a diverse variety of oils to reduce the risk of secondary oil leakage, along with good recoverability by squeezing owing to the excellent compression resilience. These excellent performances of our HEM provide broad prospects for practical applications in oil-water separation, energy conversion, and smart soft robotics.
Collapse
Affiliation(s)
- Jiamian Lin
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Liyong Niu
- Institute of Nanoscience and Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Yuanyuan Jiang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Yuting Wang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Zhuangzhuang Chu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Zhuohong Yang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| | - Zhuang Xie
- School of Materials Science and Engineering and Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Yu Yang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, P. R. China
| |
Collapse
|
8
|
Wang Z, Qu G, Ren Y, Chen X, Wang J, Lu P, Cheng M, Chu X, Yuan Y. Study on the Mechanism of Rapid Oil-Water Separation by a Fe 3 O 4 @PMMA@PDMS Intelligent Superhydrophobic Micro/Nanorobot. Chem Asian J 2024; 19:e202300863. [PMID: 37937970 DOI: 10.1002/asia.202300863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/09/2023]
Abstract
We prepared an environmentally friendly intelligent Fe3 O4 @PMMA@PDMS superhydrophobic oil-absorbing material with simple process and excellent performance, and investigated the effects of different particle sizes of Fe3 O4 , different concentrations of PDMS, and different heating times on the superhydrophobicity of the coating. The best performance of the coating was achieved at a particle size combination of 20/500 nm for Fe3 O4 , a PDMS to Fe3 O4 @PMMA mass ratio of 6 : 1, and a heating time of 2 min at 400 °C. H2-SPSS coating not only has excellent superhydrophobicity, abrasion resistance, self-cleaning property, and chemical corrosion, but also has good flux and efficiency for separating oil-water mixture, with fluxes of 40,540, 32,432, and 37,027 Lm-2 h-1 for trichloromethane, dichloromethane and bromoethane, respectively, and separation efficiencies of 99.78 %, 99.74 % and 99.73 %, respectively. In addition, we also prepared a superhydrophobic magnetic polyurethane (SPPU) sponge using Fe3 O4 @PMMA@PDMS, which not only has a good oil absorption capacity of 18-44 g/g for different oil substances, it can also move directionally by magnet attraction and absorb oil along a fixed path. Under the control of the magnet, SPPU completes the whole oil absorption process in only 4 s, showing excellent oil absorption and intelligence.
Collapse
Affiliation(s)
- Zuoliang Wang
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
- National Regional Engineering Research Center-NCW, Kunming, Yunnan, 650500, People's Republic of China
| | - Guangfei Qu
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
- National Regional Engineering Research Center-NCW, Kunming, Yunnan, 650500, People's Republic of China
| | - Yuanchuan Ren
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
- National Regional Engineering Research Center-NCW, Kunming, Yunnan, 650500, People's Republic of China
| | - Xiuping Chen
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
- National Regional Engineering Research Center-NCW, Kunming, Yunnan, 650500, People's Republic of China
| | - Jun Wang
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
- National Regional Engineering Research Center-NCW, Kunming, Yunnan, 650500, People's Republic of China
| | - Ping Lu
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
- National Regional Engineering Research Center-NCW, Kunming, Yunnan, 650500, People's Republic of China
| | - Minhua Cheng
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
- National Regional Engineering Research Center-NCW, Kunming, Yunnan, 650500, People's Republic of China
| | - Xiaomei Chu
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
- National Regional Engineering Research Center-NCW, Kunming, Yunnan, 650500, People's Republic of China
| | - Yongheng Yuan
- Faculty of environmental science and engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, People's Republic of China
- National Regional Engineering Research Center-NCW, Kunming, Yunnan, 650500, People's Republic of China
| |
Collapse
|
9
|
Dong T, Ye H, Wang W, Zhang Y, Han G, Peng F, Lou CW, Chi S, Liu Y, Liu C, Lin JH. A sustainable layered nanofiber/sheet aerogels enabling repeated life cycles for effective oil/water separation. JOURNAL OF HAZARDOUS MATERIALS 2023; 454:131474. [PMID: 37116327 DOI: 10.1016/j.jhazmat.2023.131474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/06/2023] [Accepted: 04/21/2023] [Indexed: 05/19/2023]
Abstract
Discarded oil-containing absorbents, which has been used in handling oil spills, are tricky to deal with and have rose global environmental concerns regarding release of microplastics. Herein, we developed a facile strategy to fabricate sustainable absorbents by a gas-inflating method, through which 2D electrospinning polycaprolactone nanofiber membranes were directly inflated into highly porous 3D nanofiber/sheet aerogels with layered long fiber structure. The membranes were inflated rapidly from a baseline porosity of 81.98% into 97.36-99.42% in 10-60 min. The obtained aerogels were further wrapped with -CH3 ended siloxane structures using CH3SiCl3. This hydrophobic absorbent (CA ≈ 145°) could rapidly trap oils from water with sorption range of 25.60-42.13 g/g and be recycled by simple squeeze due to its mechanical robustness. As-prepared aerogels also showed high separation efficiency to separate oils from both oil/water mixtures and oil-in-water emulsions (>96.4%). Interestingly, the oil-loaded absorbent after cleaning with absolute ethanol could be re-dissolved in selected solvents and promptly reconstituted by re-electrospinning and gas-inflation. The reconstituted aerogels were used as fire-new oil absorbents for repeated life cycles. The novel design, low cost and sustainability of the absorbent provides an efficient and environmentally-friendly solution for handling oil spills.
Collapse
Affiliation(s)
- Ting Dong
- College of Textile and Clothing, Qingdao University, 308 Ningxia Road, Qingdao, PR China; Advanced Medical Care and Protection Technology Research Center, Qingdao University, 308 Ningxia Road, Qingdao, PR China; Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, 308 Ningxia Road, Qingdao, PR China.
| | - Huabiao Ye
- College of Textile and Clothing, Qingdao University, 308 Ningxia Road, Qingdao, PR China; Advanced Medical Care and Protection Technology Research Center, Qingdao University, 308 Ningxia Road, Qingdao, PR China
| | - Wenhui Wang
- College of Textile and Clothing, Qingdao University, 308 Ningxia Road, Qingdao, PR China; Advanced Medical Care and Protection Technology Research Center, Qingdao University, 308 Ningxia Road, Qingdao, PR China
| | - Yuanming Zhang
- College of Textile and Clothing, Qingdao University, 308 Ningxia Road, Qingdao, PR China; Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, 308 Ningxia Road, Qingdao, PR China
| | - Guangting Han
- College of Textile and Clothing, Qingdao University, 308 Ningxia Road, Qingdao, PR China; Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, 308 Ningxia Road, Qingdao, PR China
| | - Fudi Peng
- Fujian Aton Advanced Materials Science and Technology Co., Ltd, Fujian 350304, PR China
| | - Ching-Wen Lou
- College of Textile and Clothing, Qingdao University, 308 Ningxia Road, Qingdao, PR China; Advanced Medical Care and Protection Technology Research Center, Qingdao University, 308 Ningxia Road, Qingdao, PR China; Department of Bioinformatics and Medical Engineering, Asia University, Taichung City 413305, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City 404333, Taiwan
| | - Shan Chi
- Bestee Material Co., Ltd., Qingdao, Shandong 266001, PR China
| | - Yanming Liu
- Sinotech Academy of Textile Co., Ltd., Qingdao, Shandong 266001, PR China
| | - Cui Liu
- Qingdao Byherb New Material Co., Ltd., Qingdao, Shandong 266001, PR China
| | - Jia-Horng Lin
- College of Textile and Clothing, Qingdao University, 308 Ningxia Road, Qingdao, PR China; Advanced Medical Care and Protection Technology Research Center, Qingdao University, 308 Ningxia Road, Qingdao, PR China; Advanced Medical Care and Protection Technology Research Center, Department of Fiber and Composite Materials, Feng Chia University, Taichung City 407102, Taiwan; School of Chinese Medicine, China Medical University, Taichung City 404333, Taiwan.
| |
Collapse
|
10
|
Xu L, Ding L, Sun Y, Zhang T, Zhu Y, Yan B, Yang M, Ramakrishna S, Zhang J, Long YZ. Stretchable, flexible and breathable polylactic acid/polyvinyl pyrrolidone bandage based on Kirigami for wounds monitoring and treatment. Int J Biol Macromol 2023; 237:124204. [PMID: 36990399 DOI: 10.1016/j.ijbiomac.2023.124204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/18/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023]
Abstract
Chronic wounds are slow to recover. During treatment, the dressing needs to be removed to check the recovery status, a process that often results in wound tears. Traditional dressings lack stretching and flexing properties and are not suitable using on wounds in joints, which require movement from time to time. In this study, we present a stretchable, flexible and breathable bandage consisting of three layers, including Mxene coating on the top, the polylactic acid/polyvinyl pyrrolidone (PLA/PVP) layer designed as Kirigami in the middle, and the f-sensor at the bottom. By the way, the f-sensor is in contact with the wound sensing real-time microenvironmental changes due to infection. When the infection intensifies, the Mxene coating at the top is utilized to enable anti-infection treatment. And Kirigami structure of PLA/PVP ensures that this bandage has stretchability, bendability, and breathability. The stretch of the smart bandage increases to 831 % compared to the original structure, and the modulus reduces to 0.04 %, which adapts extremely well to the movement of the joints and relieves the pressure on the wound. This monitoring-treatment closed-loop working mode, eliminating the need to remove dressings and avoid tissue tearing, shows a promising capability in the field of surgical wound care.
Collapse
Affiliation(s)
- Lei Xu
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, PR China
| | - Liqiang Ding
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, PR China
| | - Yuehua Sun
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, PR China
| | - Tong Zhang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, PR China
| | - Youfu Zhu
- The Affiliated Hospital of Qingdao University, Qingdao 266000, China
| | - Bingyu Yan
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, PR China
| | - Min Yang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, PR China; School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China
| | - Seeram Ramakrishna
- Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117574, Singapore
| | - Jun Zhang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, PR China.
| | - Yun-Ze Long
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
11
|
Divalent metal ion removal from simulated water using sustainable starch aerogels: Effect of crosslinking agent concentration and sorption conditions. Int J Biol Macromol 2023; 226:628-645. [PMID: 36464191 DOI: 10.1016/j.ijbiomac.2022.11.308] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022]
Abstract
This paper evaluates corn starch aerogels, studying different crosslinking agent (trisodium citrate) concentrations (1:1, 1:1.5, and 1:2) and sorption conditions (contact time, adsorbent weight, and initial concentration) regarding the potentially toxic elements (PTEs) [Cd(II) or Zn(II)] adsorption of the aqueous systems. Besides, other properties of aerogels, such as structural properties, specific surface area, and mechanical performance, were evaluated. For adsorption results, better values were observed in adsorption capacity and efficiency for the initial concentration of 100 ppm. In addition, an adsorption time of 12 h and an adsorbent weight of 3.0 g obtained better results due to the possible balance in this time and the high specific surface area available for Cd(II) adsorption. As for the type of adsorbent, the Aero 1:1.5 sample (intermediate crosslinking agent concentration) obtained better results, possibly due to the high porosity, smaller pore sizes, high pore density, and high specific surface area (198 m2·g-1). In addition, hydroxyl groups in the starch aerogel removed Cd(II) ions with 30 % adsorption efficiency. Lastly, Aero 1:1.5 obtained a high mechanical strength at compression and a satisfactory compressive modulus. In contrast, starch aerogels did not absorb the Zn(II) ion.
Collapse
|
12
|
Li Y, Fan T, Cui W, Wang X, Ramakrishna S, Long YZ. Harsh environment-tolerant and robust PTFE@ZIF-8 fibrous membrane for efficient photocatalytic organic pollutants degradation and oil/water separation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|