1
|
Wu H, Wang J, Du E, Liu T, Liu M, Guo H, Chu W. Concurrent redox reactions for perfluorocarboxylic acids decontamination via UV-activated tryptophan/carbon nanotubes. WATER RESEARCH 2025; 279:123499. [PMID: 40112736 DOI: 10.1016/j.watres.2025.123499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/25/2025] [Accepted: 03/13/2025] [Indexed: 03/22/2025]
Abstract
The contamination and persistence of Perfluorooctanoic Acid (PFOA) in aquatic environments have escalated environmental concerns, driving extensive research into effective decontamination strategies. To enhance the removal efficiency of PFOA via Advanced Reduction Processes (ARP) utilizing UV irradiation of tryptophan (Trp), carbon nanotubes (CNT) were incorporated, resulting in the development of a UV-Trp/CNT system. This novel process demonstrated a significant improvement in PFOA removal kinetics, as well as defluorination and Total Organic Carbon (TOC) reduction, and was effective across a broad spectrum of perfluoroalkyl carboxylic acids (PFCAs). In addition to the advanced reduction mechanism driven by hydrated electrons (eaq-), quenching experiments, material characterization, and chemical calculations indicated that CNTs facilitated the enrichment of Trp and PFOA, enabling electron transfer from PFOA to Trp via the CNT surface. This established a novel reaction pathway for PFOA oxidation coupled with ARP. The sequential defluorination of -CF₂- groups was facilitated by eaq-, while the electron transfer mechanism enabled oxidative decarboxylation, electron rearrangement, CC bond cleavage, and carbon chain shortening. These oxidative and reductive processes alternated systematically, advancing the development of a synergistic redox approach for the removal of PFCAs and inspiring further exploration into the use of carbon materials to construct confined domains and catalyze the degradation of PFASs.
Collapse
Affiliation(s)
- Han Wu
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, China
| | - Jingquan Wang
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Erdeng Du
- School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China
| | - Tao Liu
- Shimadzu (China) Co., Ltd., Chengdu 610023, China
| | - Min Liu
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Hongguang Guo
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering (Sichuan University), Ministry of Education, Chengdu 610065, China.
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
2
|
Xu P, Li N, Yao J, Ma J, Hou B. Periodate activation for tetracycline degradation with MoS 2/MnFe 2O 4 nanocomposite: Efficiency and Mechanistic insights. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 376:126358. [PMID: 40339881 DOI: 10.1016/j.envpol.2025.126358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 04/15/2025] [Accepted: 04/28/2025] [Indexed: 05/10/2025]
Abstract
In this study, a MoS2/MnFe2O4 nanocomposite was employed as a periodate (PI) activator for the first time, aiming to synergistically degrade tetracycline (TC). Three different ratios of MoS2/MnFe2O4 nanocomposites were synthesized using a solvothermal method, among which MoS2/MnFe2O4-3 (MMF-3) exhibited the highest efficiency in TC degradation. At pH 4.65, PI concentration of 0.2 mM and MMF-3 dosage of 0.2 g/L, the removal rate of TC was 80.74 %. The potential reaction mechanism of the MMF-3/PI system was revealed, identifying IO•3, 1O2, and •OH as the primary reactive oxygen species (ROS) responsible for TC removal. Furthermore, the Mo(IV)/Mo(VI) cycle within the MoS2/MnFe2O4 composite significantly enhanced the Fe(II)/Fe(III) redox cycle, promoting ROS regeneration and thereby enabling the efficient degradation of TC. Two potential pathways for TC degradation were proposed, and the biotoxicity of the degradation process was assessed, demonstrating that the MMF-3/PI system is environmentally friendly and does not produce highly toxic byproducts. Additionally, Cl- and NO3- showed negligible effects on TC removal, while H2PO4- significantly inhibited the process, and humic acid enhanced it. Cycling experiments revealed consistent TC removal rates exceeding 70 % across four cycles, highlighting the stability and reusability of the MMF-3 material. The removal efficiency of TC was largely unaffected by various natural water conditions, underscoring the substantial practical potential of the MMF-3/PI system. Overall, the MMF-3/PI system offers a promising approach to mitigating antibiotic contamination in water bodies.
Collapse
Affiliation(s)
- Peng Xu
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China.
| | - Na Li
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Jiafan Yao
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Jingwei Ma
- Hunan Engineering Research Center of Water Security Technology and Application, College of Civil Engineering, Hunan University, Changsha, 410082, PR China; Key Laboratory of Building Safety and Energy Efficiency, Ministry of Education, Hunan University, Changsha, 410082, PR China
| | - Baolin Hou
- School of Civil Engineering, Hunan University of Science and Technology, Xiangtan, 411201, PR China
| |
Collapse
|
3
|
Wang Y, Liu Y, Zhang H, Duan X, Ma J, Sun H, Tian W, Wang S. Carbonaceous materials in structural dimensions for advanced oxidation processes. Chem Soc Rev 2025; 54:2436-2482. [PMID: 39895415 DOI: 10.1039/d4cs00338a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Carbonaceous materials have attracted extensive research and application interests in water treatment owing to their advantageous structural and physicochemical properties. Despite the significant interest and ongoing debates on the mechanisms through which carbonaceous materials facilitate advanced oxidation processes (AOPs), a systematic summary of carbon materials across all dimensions (0D-3D nanocarbon to bulk carbon) in various AOP systems remains absent. Addressing this gap, the current review presents a comprehensive analysis of various carbon/oxidant systems, exploring carbon quantum dots (0D), nanodiamonds (0D), carbon nanotubes (1D), graphene derivatives (2D), nanoporous carbon (3D), and biochar (bulk 3D), across different oxidant systems: persulfates (peroxymonosulfate/peroxydisulfate), ozone, hydrogen peroxide, and high-valent metals (Mn(VII)/Fe(VI)). Our discussion is anchored on the identification of active sites and elucidation of catalytic mechanisms, spanning both radical and nonradical pathways. By dissecting catalysis-related factors such as sp2/sp3 C, defects, and surface functional groups that include heteroatoms and oxygen groups in different carbon configurations, this review aims to provide a holistic understanding of the catalytic nature of different dimensional carbonaceous materials in AOPs. Furthermore, we address current challenges and underscore the potential for optimizing and innovating water treatment methodologies through the strategic application of carbon-based catalysts. Finally, prospects for future investigations and the associated bottlenecks are proposed.
Collapse
Affiliation(s)
- Yunpeng Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Ya Liu
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Huayang Zhang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Hongqi Sun
- School of Molecular Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Wenjie Tian
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
4
|
Deng R, He Q, Yang D, Sun Y, Xie H, Chen Y. Efficient degradation of ciprofloxacin in water using nZVI/g-C 3N 4 enhanced dielectric barrier discharge plasma process. ENVIRONMENTAL RESEARCH 2025; 268:120833. [PMID: 39800290 DOI: 10.1016/j.envres.2025.120833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/02/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
Residual antibiotics in aquatic environments pose health and ecological risks due to their persistence and resistance to biodegradation. Thus, it is crucial to develop efficient technologies for the degradation of such antibiotics. This study presents a novel approach using a nano zero-valent iron/graphitic carbon nitride (nZVI/g-C3N4)-enhanced dielectric barrier discharge (DBD) plasma process for the degradation of ciprofloxacin (CIP). The combination of nZVI and g-C3N4 with DBD plasma significantly enhances CIP degradation efficiency, achieving an apparent first-order kinetic constant of 0.2849 min⁻1 at an input voltage of 12 kV, which is 5.22 times higher than standalone DBD treatment and 10.59 times higher than the ozonation treatment. The morphology, elemental valence states, and other properties of nZVI/g-C3N4 have been thoroughly characterized and demonstrate good reusability. Reactive species such as ·OH dominates CIP degradation. The Fe atoms in nZVI/g-C3N4 exhibit a strong tendency to donate electrons, generating reactive oxygen through the dissociation of adsorbed water. The cleavage of C-F bonds, hydroxylation and ring-opening oxidation of the piperazine group are the main pathways for CIP degradation, which helps to reduce biotoxicity after treatment. Overall, this study provides insights into the mechanism of reactive species in a DBD-nZVI/g-C3N4 system, a system that has the potential to become an efficient and environmentally friendly solution for the treatment of antibiotic wastewater.
Collapse
Affiliation(s)
- Ruoyu Deng
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China; CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Technology, University of Science and Technology of China, Hefei, 230026, China
| | - Qiang He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Dongxu Yang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Yi Sun
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd., Hangzhou, 310003, China
| | - Yi Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
5
|
Wang Z, Jia X, Wang J, Li C, Song H, Zhao Q, Li Y, Tian S. Phenolic acid-containing compounds enhanced Fe 3+/peroxides processes for efficient removal of sulfamethoxazole in surface waters. ENVIRONMENTAL RESEARCH 2025; 265:120407. [PMID: 39577721 DOI: 10.1016/j.envres.2024.120407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 10/17/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Sulfamethoxazole (SMX) in surface waters has raised widespread concerns due to its potential environmental and biological hazards. In this study, the performance, mechanism, and environmental application of phenolic acid-containing compounds (PACCs) enhanced Fe3+/peroxides processes for SMX degradation were investigated. PACCs with two Ar-OH groups exhibited the lowest toxicity and the best enhancement performance (65%-66% of PDS, 47%-58% of PMS and 61%-63% of H2O2), which were attributed to the excellent chelating and reducing ability towards Fe3+. Free radicals played the predominant role in PDS (37% of SO4-·, 34% of ·OH), PMS (37% of SO4-·, 35% of ·OH) and H2O2 (61% of ·OH) oxidation processes. FeIVO2+ play a non-negligible role in PDS and PMS processes (ŋ[PMSO2] = 52%-80% and ŋ[PMSO2] = 59%-72%). PDS and PMS processes were suitable for a pH range of 3.0-9.0, while the H2O2 process was 3.0-10.0. PDS and PMS processes exhibited stronger resistance to the common anions in surface waters. PMS process exhibited higher adaptability to surface waters quality (92%-98%). This study provides a novel approach for enhancing the degradation of SMX in natural surface waters.
Collapse
Affiliation(s)
- Zhenzhen Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, 650500, China
| | - Xiaolei Jia
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, 650500, China
| | - Jianfei Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, 650500, China
| | - Chen Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, 650500, China.
| | - Haoran Song
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, 650500, China.
| | - Qun Zhao
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, 650500, China
| | - Yingjie Li
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, 650500, China
| | - Senlin Tian
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, Yunnan Province, 650500, China
| |
Collapse
|
6
|
Zou XM, Zhang T, Dong YH, Hu C, Yin L, Zheng YL, Li M, Xiao XY, Hui W. Enhanced removal of sulfonamide antibiotics in water using high-performance S-nZVI/BC derived from rice straw. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123955. [PMID: 39756288 DOI: 10.1016/j.jenvman.2024.123955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/21/2024] [Accepted: 12/27/2024] [Indexed: 01/07/2025]
Abstract
Sulfonamide antibiotics (SAs) are widely used in the biomedical field but pose an environmental risk as ecotoxic pollutants. Developing eco-friendly methods to degrade SAs into harmless compounds is crucial. In this work, biochar (BC) was prepared from rice straw via pyrolysis and used to support S-nZVI, thereby forming the S-nZVI/BC composites. The results show high SAs removal efficiency (up to 98.3%) at optimal Fe/C and Fe/S molar ratios of 3:1 and 50:1, respectively, with strong tolerance to coexisting ions. Furthermore, the effectiveness of S-nZVI/BC(Fe3/C1, Fe50/S1) sample was validated using five real wastewaters, and the results showed consistent performance, stability and reusability. Mechanistic studies revealed that S-nZVI/BC synergized with persulfate to enhance the reactivity of sulfate-free radical (SO4-·) and Fe2+. The degradation pathways of SAs, involving electrophilic substitution and nucleophilic attack, were elucidated by density functional theory (DFT) calculations. These insights were instrumental in comprehending the degradation mechanism of SAs. Additionally, the degradation dynamics of ten SAs were further analyzed using quantitative structure-activity relationship (QSAR) models and principal component analysis (PCA). Hence, this work highlights the potential of S-nZVI/BC for industrial wastewater treatment, providing insights into the degradation mechanisms and pathways of SAs.
Collapse
Affiliation(s)
- Xiao-Ming Zou
- Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Tiao Zhang
- Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Yu-Hua Dong
- Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Cui Hu
- Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Li Yin
- Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Yu-Ling Zheng
- Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Mi Li
- Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, School of Life Science, Jinggangshan University, Ji'an, 343009, China
| | - Xiao-Yu Xiao
- Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, School of Life Science, Jinggangshan University, Ji'an, 343009, China.
| | - Wei Hui
- Key Laboratory of Jiangxi Province for Functional Biology and Pollution Control in Red Soil Regions, School of Life Science, Jinggangshan University, Ji'an, 343009, China.
| |
Collapse
|
7
|
Wang H, Cao Y, Shen L, Wu XL, Zhao DL, Li R, Lin H. Versatile electrospun cobalt-doped carbon films for rapid antibiotic degradation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123775. [PMID: 39731949 DOI: 10.1016/j.jenvman.2024.123775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/20/2024] [Accepted: 12/14/2024] [Indexed: 12/30/2024]
Abstract
This study presents a novel approach to water contamination remediation by developing cobalt-doped carbon nanofiber films using electrospun ZIF-67 precursors, aiming to degrade tetracycline hydrochloride (TCH) and other antibiotics. This method uniquely combines the advantages of metal-organic frameworks (MOFs) and electrospinning to enhance catalytic performance, demonstrating significant innovation in environmental catalysis. The research systematically evaluated the impact of various factors on the catalytic activity of carbonized PAN@ZIF-67 films (CPZF), including carbonization temperature, ZIF-67 content, and PMS dosage. Notably, the CPZF catalyst with 11% ZIF-67 content (named as CPZF-11%) achieved an impressive 99.7% degradation of TCH within just 10 min under visible light and PMS activation, highlighting its superior catalytic efficiency. The study revealed that CPZF-11% exhibited excellent stability and recyclability, maintaining near 100% degradation rates even after six cycles. This catalytic performance is attributed to the synergistic effect of photogenerated electrons and PMS activation, leading to the formation of reactive oxygen species (ROS) such as sulfate radicals and singlet oxygen. The research further elucidated the degradation pathways and intermediate products through quenching experiments and electron paramagnetic resonance (EPR) analysis. The findings demonstrate the broad applicability of CPZF/Vis/PMS in various water matrices, including tap water and wastewater, underscoring its potential for real-world applications in wastewater treatment. This innovative integration of MOFs and electrospinning offers a promising strategy for developing efficient, recyclable, and high-performance catalysts for environmental remediation.
Collapse
Affiliation(s)
- Hao Wang
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China.
| | - Yuzhen Cao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China.
| | - Liguo Shen
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China.
| | - Xi-Lin Wu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China.
| | - Die Ling Zhao
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China.
| | - Renjie Li
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China.
| | - Hongjun Lin
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua, 321004, China; Key Laboratory of Watershed Earth Surface Processes and Ecological Security, Zhejiang Normal University, Jinhua, Zhejiang, China.
| |
Collapse
|
8
|
Jiang W, Liu Y, Wang S, Yang H, Fan X. Combination of co-pyrolyzed biomass-sludge biochar and ultrasound for persulfate activation in antibiotic degradation: efficiency, synergistic effect, and reaction mechanism. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:3208-3225. [PMID: 39150421 DOI: 10.2166/wst.2024.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/10/2024] [Indexed: 08/17/2024]
Abstract
A carbon material Cu-corn straw-sludge biochar (Cu-CSBC) was prepared by hydrothermally modifying sewage sludge and corn stover. The composite coupled to ultrasound can effectively catalyze the activation of PS for organic pollutants degradation, and the removal rate of 20 mg/L TC reached 89.15% in 5 min in the presence of 0.5 g/L Cu-CSBC and 3 mM PS. The synergistic effect between the factors in the system, the reaction mechanism, and the efficient removal of TC in the aqueous environment were explored in a Cu-CSBC/US/PS system established for that purpose. Quenching experiments and electron paramagnetic resonance analysis both demonstrated the Cu-CSBC/US/PS system generated •OH, SO4-•, 1O2, and O2- •, which involved in the reaction. The Cu, carboxyl, and hydroxyl groups on the Cu-CSBC surface promoted the generation of radicals and non-radicals for the degradation process, which was dominated by both radical and non-radical pathways. The degradation pathway is proposed by measuring the intermediate products with LC-MS. Finally, the stability of the Cu-CSBC/US/PS system was tested under various reaction conditions. This study not only prepared a novel biochar composite material for the active degradation of organic pollutants by PS but also provided an effective method for the resource utilization of solid waste and sludge treatment.
Collapse
Affiliation(s)
- Wan Jiang
- Jiangsu Fangyang Construction Engineerineg Management Co., LTD, Lianyungang 222065, China
| | - Yiming Liu
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Shenpeng Wang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Haifeng Yang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China
| | - Xiulei Fan
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou 221018, China E-mail:
| |
Collapse
|
9
|
Li C, Shen C, Gao B, Liang W, Zhu Y, Shi W, Ai S, Xu H, Wu J, Sun Y. Degradation and mechanism of PFOA by peroxymonosulfate activated by nitrogen-doped carbon foam-anchored nZVI in aqueous solutions. CHEMOSPHERE 2024; 351:141209. [PMID: 38224751 DOI: 10.1016/j.chemosphere.2024.141209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/09/2023] [Accepted: 01/12/2024] [Indexed: 01/17/2024]
Abstract
Perfluorooctanoic acid (PFOA) is an emerging pollutant that is non-biodegradable and presents severe environmental and human health risks. In this study, we present an effective and mild approach for PFOA degradation that involves the use of nitrogen-doped carbon foam anchored with nanoscale zero-valent iron (nZVI@NCF) to activate low concentration peroxymonosulfate (PMS) for the treatment. The nZVI@NCF/PMS system efficiently removed 84.4% of PFOA (2.4 μM). The active sites of nZVI@NCF including Fe0 (110) and graphitic nitrogen played crucial roles in the degradation. Electrochemical analyses and density functional theory calculations revealed that nZVI@NCF acted as an electronic donor, transferring electrons to both PMS and PFOA during the reaction. By further analyzing the electron paramagnetic resonance and byproducts, it was determined that electron transfer and singlet oxygen were responsible for PFOA degradation. Three degradation pathways involving decarboxylation and surface reduction of PFOA in the nZVI@NCF/PMS system were determined. Finding from this study indicate that nZVI@NCF/PMS systems are effective in degrading PFOA and thus present a promising persulfate-advanced oxidation process technology for PFAS treatment.
Collapse
Affiliation(s)
- Changyu Li
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, China.
| | - Cong Shen
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Bin Gao
- Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Wenxu Liang
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Yifan Zhu
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Weijie Shi
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018, Shandong, China.
| | - Shiyun Ai
- College of Chemistry and Material Science, Shandong Agricultural University, Taian, 271018, Shandong, China
| | - Hongxia Xu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, China
| | - Jichun Wu
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, China
| | - Yuanyuan Sun
- State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Surficial Geochemistry, Ministry of Education, School of Earth Sciences and Engineering, Hydrosciences Department, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
10
|
Zamani W, Rastgar S, Hedayati A, Tajari M, Ghiasvand Z. Solvent-thermal approach of MIL-100(Fe)/Cygnea/Fe 3O 4/TiO 2 nanocomposite for the treatment of lead from oil refinery wastewater (ORW) under UVA light. Sci Rep 2024; 14:4476. [PMID: 38396129 PMCID: PMC10891111 DOI: 10.1038/s41598-024-54897-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 02/18/2024] [Indexed: 02/25/2024] Open
Abstract
The main purpose of this research endeavor is to reduce lead concentrations in the wastewater of an oil refinery through the utilization of a material composed of oyster shell waste (MIL-100(Fe)/Cygnea/Fe3O4/TiO2. Initially, iron oxide nanoparticles (Fe3O4) were synthesized via solvent-thermal synthesis. It was subsequently coated layer by layer with the organic-metallic framework MIL-100 (Fe) using the core-shell method. Additionally, the solvent-thermal method was utilized to integrate TiO2 nanoparticles into the magnetic organic-metallic framework's structure. Varieties of analytical analysis were utilized to investigate the physical and chemical properties of the synthetic final photocatalyst. Nitrogen adsorption and desorption technique (BET), scanning electron microscopy (SEM), scanning electron diffraction pattern (XRD), and transmission electron microscopy (TEM). Following the characterization of the final photocatalyst, the physical and chemical properties of the nanoparticles synthesized in each step, several primary factors that significantly affect the removal efficiency in the advanced oxidation system (AOPs) were examined. These variables consist of pH, photocatalyst dosage, lead concentration, and reaction temperature. The synthetic photocatalyst showed optimal performance in the removal of lead from petroleum wastewater under the following conditions: 35 °C temperature, pH of 3, 0.04 g/l photocatalyst dosage, and 100 mg/l wastewater concentration. Additionally, the photocatalyst maintained a significant level of reusability after undergoing five cycles. The findings of the study revealed that the photocatalyst dosage and pH were the most influential factors in the effectiveness of lead removal. According to optimal conditions, lead removal reached a maximum of 96%. The results of this investigation showed that the synthetic photocatalyst, when exposed to UVA light, exhibited an extraordinary capacity for lead removal.
Collapse
Affiliation(s)
- Wahid Zamani
- Department of Environmental Science, Faculty of Natural Resources, University of Kurdistan, Sanandaj, 15175-66177, Iran.
| | - Saeedeh Rastgar
- Department of Environmental Sciences, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgān, 49189-43464, Iran.
| | - Aliakbar Hedayati
- Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgān, 49189-43464, Iran
| | - Mohsen Tajari
- Department of Fisheries, Bandargaz Branch, Islamic Azad University, Bandargaz, 48731-97179, Iran
| | - Zahra Ghiasvand
- Department of Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, Halifax, Canada
| |
Collapse
|
11
|
Jiang X, Tan Z, Jiang G, Liu C, Gao G, Liu Z. Novel Magnetic MnFe 2O 4-Decorated Graphite-Like Porous Biochar as a Heterogeneous Catalyst for Activation of Peroxydisulfate Toward Degradation of Rhodamine B. ACS OMEGA 2024; 9:6455-6465. [PMID: 38371805 PMCID: PMC10870279 DOI: 10.1021/acsomega.3c06278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 02/20/2024]
Abstract
A magnetic MnFe2O4-modified graphite-like porous biochar composite (MnFe2O4/KFS800) was synthesized by the hydrothermal method, and its catalytic activity was evaluated in the activation of peroxydisulfate toward degradation of Rhodamine B. After characterization by SEM, XRD, and the BET method, the specific surface area and total pore volume of the MnFe2O4/KFS800 catalyst reached 121 m2/g and 0.263 m3/g, and exhibited plate-like morphology with good crystallinity. The degradation rate of Rhodamine B by the obtained composite was more than 91.1% when the initial concentration of RhB was 10 mg/L, the dosage of MnFe2O4/KFS800 was 0.2 g/L, and the initial pH was 6.7. Then the anti-interference ability of the obtained composite was studied, and it was found that there was a little effect on the degradation of Rhodamine B with the presence of humic acid. Finally, quenching test, EPR research, and XPS analysis were conducted to reveal the catalytic mechanism, and possible mechanism was a synergistic behavior of free radicals (SO4•-, •OH, O2•-) and nonfree radicals (1O2), and trace amounts of uncarbonized bagasse was also involved in the formation of free radicals.
Collapse
Affiliation(s)
- Xinde Jiang
- School of Civil Engineering
and Architecture, Nanchang Institute of
Technology, Nanchang 330099, China
| | - Zhuoru Tan
- School of Civil Engineering
and Architecture, Nanchang Institute of
Technology, Nanchang 330099, China
| | - Guixian Jiang
- School of Civil Engineering
and Architecture, Nanchang Institute of
Technology, Nanchang 330099, China
| | - Chang Liu
- School of Civil Engineering
and Architecture, Nanchang Institute of
Technology, Nanchang 330099, China
| | - Guiqing Gao
- School of Civil Engineering
and Architecture, Nanchang Institute of
Technology, Nanchang 330099, China
| | - Zhanmeng Liu
- School of Civil Engineering
and Architecture, Nanchang Institute of
Technology, Nanchang 330099, China
| |
Collapse
|
12
|
Moavenzadeh Ghaznavi S, Zimmerman C, Shea ME, MacRae JD, Peckenham JM, Noblet CL, Apul OG, Kopec AD. Management of per- and polyfluoroalkyl substances (PFAS)-laden wastewater sludge in Maine: Perspectives on a wicked problem. Biointerphases 2023; 18:041004. [PMID: 37602771 DOI: 10.1116/6.0002796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
This article discusses the challenges and potential solutions for managing wastewater sludge that contains per- and polyfluoroalkyl substances (PFAS), using the experience in Maine as a guide toward addressing the issue nationally. Traditional wastewater treatment, designed to remove excess organic waste and nutrients, does not eliminate persistent toxic pollutants like PFAS, instead partitioning the chemicals between discharged effluent and the remaining solids in sludge. PFAS chemistry, the molecular size, the alkyl chain length, fluorine saturation, the charge of the head group, and the composition of the surrounding matrix influence PFAS partitioning between soil and water. Land application of sludge, incineration, and storage in a landfill are the traditional management options. Land application of Class B sludge on agricultural fields in Maine peaked in the 1990s, totaling over 2 × 106 cu yd over a 40-year period and has contaminated certain food crops and animal forage, posing a threat to the food supply and the environment. Additional Class A EQ (Exceptional Quality) composted sludge was also applied to Maine farmland. The State of Maine banned the land application of wastewater sludge in August 2022. Most sludge was sent to the state-owned Juniper Ridge Landfill, which accepted 94 270 tons of dewatered sludge in 2022, a 14% increase over 2019. Between 2019 and 2022, the sum of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) concentrations in sludge sent to the landfill ranged from 1.2 to 104.9 ng/g dw. In 2022, the landfill generated 71.6 × 106 l of leachate. The concentration of sum of six PFAS in the leachate increased sixfold between 2021 and 2022, reaching 2 441 ng/l. The retention of PFAS within solid-waste landfills and the potential for long-term release of PFAS through liners into groundwater require ongoing monitoring. Thermal treatment, incineration, or pyrolysis can theoretically mineralize PFAS at high temperatures, yet the strong C-F bond and reactivity of fluorine require extreme temperatures for complete mineralization. Future alternatives may include interim options such as preconditioning PFAS with nonpolar solvents prior to immobilization in landfills, removing PFAS from leachate, and interrupting the cycle of PFAS moving from landfill, via leachate, to wastewater treatment, and then back to the landfill via sludge. Long-term solutions may involve destructive technologies such as electron beam irradiation, electrochemical advanced oxidation, or hydrothermal liquefaction. The article highlights the need for innovative and sustainable solutions for managing PFAS-contaminated wastewater sludge.
Collapse
Affiliation(s)
- Simin Moavenzadeh Ghaznavi
- Department of Civil and Environmental Engineering, University of Maine, 5711 Boardman Hall, Orono, Maine 04473
| | - Charity Zimmerman
- School of Economics, University of Maine, 5782 Winslow Hall, Orono, Maine 04473
| | - Molly E Shea
- School of Economics, University of Maine, 5782 Winslow Hall, Orono, Maine 04473
| | - Jean D MacRae
- Department of Civil and Environmental Engineering, University of Maine, 5711 Boardman Hall, Orono, Maine 04473
| | - John M Peckenham
- Senator George J. Mitchell Center for Sustainability Solutions, University of Maine, 5710 Norman Smith Hall, Orono, Maine 04473
| | - Caroline L Noblet
- School of Economics, University of Maine, 5782 Winslow Hall, Orono, Maine 04473
| | - Onur G Apul
- Department of Civil and Environmental Engineering, University of Maine, 5711 Boardman Hall, Orono, Maine 04473
| | - A Dianne Kopec
- Senator George J. Mitchell Center for Sustainability Solutions, University of Maine, 5710 Norman Smith Hall, Orono, Maine 04473
| |
Collapse
|
13
|
Cardoso IMF, Pinto da Silva L, Esteves da Silva JCG. Nanomaterial-Based Advanced Oxidation/Reduction Processes for the Degradation of PFAS. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101668. [PMID: 37242085 DOI: 10.3390/nano13101668] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023]
Abstract
This review focuses on a critical analysis of nanocatalysts for advanced reductive processes (ARPs) and oxidation processes (AOPs) designed for the degradation of poly/perfluoroalkyl substances (PFAS) in water. Ozone, ultraviolet and photocatalyzed ARPs and/or AOPs are the basic treatment technologies. Besides the review of the nanomaterials with greater potential as catalysts for advanced processes of PFAS in water, the perspectives for their future development, considering sustainability, are discussed. Moreover, a brief analysis of the current state of the art of ARPs and AOPs for the treatment of PFAS in water is presented.
Collapse
Affiliation(s)
- Inês M F Cardoso
- Chemistry Research Unit (CIQUP), Institute of Molecular Sciences (IMS), Department of Geosciences, Environment and Territorial Planning, Faculty of Sciences, University of Porto (FCUP), Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Luís Pinto da Silva
- Chemistry Research Unit (CIQUP), Institute of Molecular Sciences (IMS), Department of Geosciences, Environment and Territorial Planning, Faculty of Sciences, University of Porto (FCUP), Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Joaquim C G Esteves da Silva
- Chemistry Research Unit (CIQUP), Institute of Molecular Sciences (IMS), Department of Geosciences, Environment and Territorial Planning, Faculty of Sciences, University of Porto (FCUP), Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| |
Collapse
|
14
|
Wang H, Liu X, Wu D, Zhao Y, Li N, Li Y, Fan X, Xia Q, Zhang F, Peng W. Role variations of MnO x on monoclinic BiVO 4 (110)/(040) facets for enhanced Photo-Fenton reactions. J Colloid Interface Sci 2023; 646:219-227. [PMID: 37196495 DOI: 10.1016/j.jcis.2023.05.048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/25/2023] [Accepted: 05/07/2023] [Indexed: 05/19/2023]
Abstract
Compared with traditional Fenton reaction, peroxymonosulfate based advanced oxidation processes (PMS-AOPs) are more effective to remove the organic pollutants in wastewater in a wider pH range. Herein, selective loading of MnOx on monoclinic BiVO4 (110) or (040) facets were achieved by photo-deposition method with addition of different Mn precursors and electron/hole trapping agents. MnOx has good chemical catalysis activity for PMS activation, which can also enhance photogenerated charge separation, thus leading to enhanced activities than naked BiVO4. The BPA degradation reaction rate constants of MnOx(040)/BiVO4 and MnOx(110)/BiVO4 system are 0.245 min-1 and 0.116 min-1, which are 6.45 and 3.05 times larger than that of naked BiVO4, respectively. The roles of MnOx on different facets are different, which will promote OER process on (110) facets and utilize the dissolved O2 to produce O2•- and 1O2 more effectively on (040) facets. 1O2 is the dominated reactive oxidation species of MnOx(040)/BiVO4, while SO4•- and •OH play more important roles on MnOx(110)/BiVO4, which are proved by quenching experiments and chemical probe identifications, thus mechanism in MnOx/BiVO4-PMS-light system is proposed. The good degradation performance of MnOx(110)/BiVO4 and MnOx(040)/BiVO4 and mechanism theory may promote the application of photocatalysis in PMS based wastewater remediation.
Collapse
Affiliation(s)
- Haojie Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Xiaomei Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Di Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Yang Zhao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Ning Li
- School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, PR China
| | - Yang Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China; Zhejiang Institute of Tianjin University, Shaoxing, Zhejiang 312300, PR China
| | - Xiaobin Fan
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China; Zhejiang Institute of Tianjin University, Shaoxing, Zhejiang 312300, PR China
| | - Qing Xia
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Fengbao Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China
| | - Wenchao Peng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, PR China; Zhejiang Institute of Tianjin University, Shaoxing, Zhejiang 312300, PR China.
| |
Collapse
|
15
|
Zango ZU, Khoo KS, Garba A, Kadir HA, Usman F, Zango MU, Da Oh W, Lim JW. A review on superior advanced oxidation and photocatalytic degradation techniques for perfluorooctanoic acid (PFOA) elimination from wastewater. ENVIRONMENTAL RESEARCH 2023; 221:115326. [PMID: 36690243 DOI: 10.1016/j.envres.2023.115326] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/29/2022] [Accepted: 01/17/2023] [Indexed: 06/17/2023]
Abstract
Perfluorooctanoic acid (PFOA) has been identified as the most toxic specie of the family of perfluorinated carboxylic acids (PFCAs). It has been widely distributed and frequently detected in environmental wastewater. The compound's unique features such as inherent stability, rigidity, and resistance to harsh chemical and thermal conditions, due to its multiple and strong C-F bonds have resulted in its resistance to conventional wastewater remediations. Photolysis and bioremediation methods have been proven to be inefficient in their elimination, hence this article presents intensive literature studies and summarized findings reported on the application of advanced oxidation processes (AOPs) and photocatalytic degradation techniques as the best alternatives for the PFOA elimination from wastewater. Techniques of persulfate, photo-Fenton, electrochemical, photoelectrochemical and photocatalytic degradation have been explored and their mechanisms for the degradation and defluorination of the PFOA have been demonstrated. The major advantage of AOPs techniques has been centralized on the generation of active radicals such as sulfate (SO4•-) hydroxyl (•OH). While for the photocatalytic process, photogenerated species (electron (e) and holes (h + vb)) initiated the process. These active radicals and photogenerated species possessed potentiality to attack the PFOA molecule and caused the cleavage of the C-C and C-F bonds, resulting in its efficient degradation. Shorter-chain PFCAs have been identified as the major intermediates detected and the final stage entails its complete mineralization to carbon dioxide (CO2) and fluoride ion (F-). The prospects and challenges associated with the outlined techniques have been highlighted for better understanding of the subject matter for the PFOA elimination from real wastewaters.
Collapse
Affiliation(s)
- Zakariyya Uba Zango
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, 2137, Katsina, Nigeria; Institute of Semi-Arid Zone Studies, Al-Qalam University Katsina, 2137, Katsina, Nigeria.
| | - Kuan Shiong Khoo
- Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan, Taiwan
| | - Abdurrahman Garba
- Department of Chemistry, College of Natural and Applied Science, Al-Qalam University Katsina, 2137, Katsina, Nigeria
| | - Haliru Aivada Kadir
- Department of Quality Assurance and Control, Dangote Cement Plc, Kogi, Nigeria
| | - Fahad Usman
- Institute of Semi-Arid Zone Studies, Al-Qalam University Katsina, 2137, Katsina, Nigeria
| | - Muttaqa Uba Zango
- Department of Civil Engineering, Kano University of Science and Technology, Wudil, P.M.B. 3244, Kano, Nigeria
| | - Wen Da Oh
- School of Chemical Sciences, Universiti Sains Malaysia, 11800, Penang, Malaysia
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| |
Collapse
|