1
|
Yang Y, Yao T, Balasubramanian R, Chen JP. In situ H 2O 2 production from self-sufficient heterogeneous Fenton reaction over Fe 0/MoS 2-x for potential environmental remediation applications. J Colloid Interface Sci 2025; 683:496-506. [PMID: 39740566 DOI: 10.1016/j.jcis.2024.12.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/16/2024] [Accepted: 12/18/2024] [Indexed: 01/02/2025]
Abstract
Fenton reaction technology has worked well in water and wastewater treatment; however it is often limited by such problems as continuous external supply of H2O2, slow Fe3+/Fe2+ cycle rate, high energy requirements, and maintenance of low pH during operation. Herein, a novel self-sufficient heterogeneous Fenton system based on Fe0/MoS2-x was designed, fabricated, and optimized to effectively address these problems. The combined presence of Fe0 and sulfur vacancies sites in MoS2-x played a pivotal role in the generation of H2O2via two-step single-electron reduction process without any energy consumption. The existence of dual active sites resulted in a considerable increase in the H2O2 yield (up to 0.6 mM/g/h) in a pH-neutral aqueous solution. Furthermore, the Fe3+/Fe2+ cycle rate was accelerated by Mo6+/Mo4+/Moδ+ sites. The factors collectively contributed to the impressive performance of the reaction in degrading complex pollutants (e.g., polyethylene, a model plastic matter) under pH-neutral conditions. In addition to its outstanding catalytic performance, Fe0/MoS2-x exhibited superior reusability and stability. Notably, the catalyst reactivity was well sustained in the presence of common competitive factors such as inorganic anions and dissolved organic pollutants, and for other polymer types. This study demonstrates that Fe0/MoS2-x with impressive self-sufficient Fenton reaction capacity has greater potentials for water and wastewater treatment.
Collapse
Affiliation(s)
- Yang Yang
- Department of Civil and Environmental Engineering, National University of Singapore, 10 Kent Ridge, Singapore; State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, PR China
| | - Tongjie Yao
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, PR China.
| | - Rajasekhar Balasubramanian
- Department of Civil and Environmental Engineering, National University of Singapore, 10 Kent Ridge, Singapore.
| | - J Paul Chen
- Department of Civil and Environmental Engineering, National University of Singapore, 10 Kent Ridge, Singapore.
| |
Collapse
|
2
|
Li Y, Piao Z, Ge X, Feng J, Sun D, Zhang J. Environmental pollutants and rectal cancer: The impact of water contamination. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118072. [PMID: 40127547 DOI: 10.1016/j.ecoenv.2025.118072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/14/2025] [Accepted: 03/14/2025] [Indexed: 03/26/2025]
Abstract
BACKGROUND Water is a fundamental resource for life, and exposure to water contamination has far-reaching implications for an increased risk of tumor diseases. METHODS Studies of rectal and colorectal cancer related to water contamination were identified from the published literature in the PUBMED databases from 2010 to 2024. RESULTS This review provides a critical analysis of the current evidence, summarizing the association of water contamination, including industrial waste, pesticides, heavy metals, with rectal and colorectal cancer. It highlights their impact on rectal and colorectal cancer progression by underlying processes of DNA damage, chronic inflammation, and microbial contamination. CONCLUSION Rectal cancer is a significant global health concern with a strong association between environmental pollutants in water sources and increased incidence of rectal cancer. It is vital to identify how waster pollutants influence the development and progression of rectal cancer and formulate targeted preventive approaches and social interventions to decrease the disease's impact.
Collapse
Affiliation(s)
- Yezhou Li
- Department of Vascular Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Zhe Piao
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xinbin Ge
- Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Jinbao Feng
- Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China
| | - Denghua Sun
- Department of Breast Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China.
| | - Jiayu Zhang
- Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, China.
| |
Collapse
|
3
|
Zyoud AH. Photodegradation of aqueous tetracycline using CuS@TiO₂ composite under solar-simulated light: Complete mineralization, catalyst efficiency, and reusability. Heliyon 2025; 11:e41662. [PMID: 39877609 PMCID: PMC11773078 DOI: 10.1016/j.heliyon.2025.e41662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 12/07/2024] [Accepted: 01/02/2025] [Indexed: 01/31/2025] Open
Abstract
While CuS/TiO₂ has been previously synthesized and employed in a limited number of photodegradation studies, the current study investigated its effectiveness for TC degradation under UV-visible light irradiation. CuS is known to be a nontoxic, environmentally friendly material; hence, it has great potential as an alternative to CdS and CdSe, which are used conventionally as sensitizers. In this work, the CuS/TiO₂ photocatalysts achieved a maximum 95 % removal of TC at an initial concentration of 20 ppm, confirming the good utilization of active sites. Even though the efficiency decreased for higher TC concentrations due to the saturation of the active sites, the values of the quantum yield showed that photon utilization was still effective. Consequently, the photocatalyst showed an optimum yield at 0.20 g, and its further addition increased the efficiency rather insignificantly. In addition to the near-complete mineralization of TC by the CuS/TiO₂ composite with few byproducts, its reusability was excellent because it showed almost consistent performance in successive cycles. These results further confirm the continuous relevance and potential of CuS/TiO₂ as a practical, sustainable solution for organic pollutant degradation, reinforcing its value in environmental remediation applications.
Collapse
Affiliation(s)
- Ahed H. Zyoud
- Department of Chemistry, An-Najah National University, Nablus, Palestine
- Center of Excellence in Materials Science and Nanotechnology (CEMSANT), An-Najah National University, Nablus, Palestine
| |
Collapse
|
4
|
Zhu J, Dong Y, Wang Q, Han J, Li Z, Xu D, Fischer L, Ulbricht M, Ren Z. Advancements in magnetic catalysts: Preparation, modification, and applications in photocatalytic and environmental remediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177595. [PMID: 39571808 DOI: 10.1016/j.scitotenv.2024.177595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 12/06/2024]
Abstract
Owing to their widely available source materials, simple magnetic separation, and low cost, magnetic catalysts have demonstrated considerable application potential in modern photocatalysis technologies and environmental remediation. This review summarizes the synthesis and modification methods of magnetic catalysts and describes recent advances using different synthesis methods. Several key problems still need to be solved in the existing progress, such as the fact that the catalytic activity of magnetic catalysts decreases over time. Under an external magnetic field, magnetic catalysts exhibit satisfactory energy bandgaps and charge transfer rates for photocatalysis, enabling wide and comprehensive photocatalytic applications. In addition, they are strong candidate materials for wastewater treatment and new-energy applications. In summary, the review provides future directions for the development of novel magnetic catalysts, contaminant removal, and even large-scale practical applications.
Collapse
Affiliation(s)
- Jinyu Zhu
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yilin Dong
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Qiuwen Wang
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Jinlong Han
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Zexun Li
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Dongyu Xu
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Lukas Fischer
- Lehrstuhl für Technische Chemie II and Center for Envirommental Research (ZWU), Universität Duisburg-Essen, 45117 Essen, Germany
| | - Mathias Ulbricht
- Lehrstuhl für Technische Chemie II and Center for Envirommental Research (ZWU), Universität Duisburg-Essen, 45117 Essen, Germany
| | - Zhijun Ren
- Tianjin Key Laboratory of Clean Energy and Pollutant Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; School of Chemical Engineering and Technology, Xinjiang University, Xinjiang 830017, China.
| |
Collapse
|
5
|
Gu S, Qu F, Qu D, Yan Z, Meng Y, Liang Y, Chang H, Liang H. Improving membrane distillation performance by Fe(II) activated sodium percarbonate oxidation during the treatment of shale gas produced water. WATER RESEARCH 2024; 262:122139. [PMID: 39068730 DOI: 10.1016/j.watres.2024.122139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 07/30/2024]
Abstract
Membrane distillation (MD) offers promise for recycling shale gas produced water (SGPW), while membrane fouling is still a major obstacle in standalone MD. Herein, sodium percarbonate (SPC) oxidation was proposed as MD pretreatment, and the performance of the single MD, SPC-MD hybrid process and Fe(II)/SPC-MD hybrid process for SGPW treatment were systematically evaluated. Results showed that compared to raw SGPW, the application of SPC and Fe(II)/SPC led to the decrease of the fluorescent organics by 28.54 % and 54.52 %, respectively. The hydrophobic fraction decreased from 52.75 % in raw SGPW to 37.70 % and 27.20 % for SPC and Fe(II)/SPC, respectively, and the MD normalized flux increased from 0.19 in treating raw SGPW to 0.65 and 0.81, respectively. The superiority of SPC oxidation in reducing the deposited membrane foulants and restoring membrane properties was further confirmed through scanning electron microscopy observation, attenuated total reflection fourier transform infrared, water contact angle and surface tension analyses of fouled membranes. Correlation analysis revealed that hydrophobic/hydrophilic matters and fluorescent organics in SGPW took a crucial role in MD fouling. The mechanism of MD fouling mitigation by Fe(II)/SPC oxidation was attributed to the decrease in concentrations and hydrophobicity of organic by synergistic oxidation, coagulation and adsorption.
Collapse
Affiliation(s)
- Suhua Gu
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu 610065, China
| | - Fangshu Qu
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Guangzhou University, Guangzhou 510006, China
| | - Dan Qu
- Beijing Key Laboratory for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Zhongsen Yan
- College of Civil Engineering, Fuzhou University, Fuzhou 350116, China
| | - Yuchuan Meng
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resources and Hydropower, Sichuan University, Chengdu 610065, China
| | - Ying Liang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China
| | - Haiqing Chang
- MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610207, China; State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu 610065, China.
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
6
|
Li L, Niu X, Zhang D, Ye X, Zhang Z, Liu Q, Ding L, Chen K, Chen Y, Chen K, Shi Z, Lin Z. A systematic review on percarbonate-based advanced oxidation processes in wastewater remediation: From theoretical understandings to practical applications. WATER RESEARCH 2024; 259:121842. [PMID: 38820735 DOI: 10.1016/j.watres.2024.121842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/23/2024] [Accepted: 05/25/2024] [Indexed: 06/02/2024]
Abstract
Percarbonate encompasses sodium percarbonate (SPC) and composite in-situ generated peroxymonocarbonate (PMC). SPC emerges as a promising alternative to hydrogen peroxide (H2O2), hailed for its superior transportation safety, stability, cost-effectiveness, and eco-friendliness, thereby becoming a staple in advanced oxidation processes for mitigating water pollution. Yet, scholarly literature scarcely explores the deployment of percarbonate-AOPs in eradicating organic contaminants from aquatic systems. Consequently, this review endeavors to demystify the formation mechanisms and challenges associated with reactive oxygen species (ROS) in percarbonate-AOPs, alongside highlighting directions for future inquiry and development. The genesis of ROS encompasses the in situ chemical oxidation of activated SPC (including iron-based activation, discharge plasma, ozone activation, photon activation, and metal-free materials activation) and composite in situ chemical oxidation via PMC (namely, H2O2/NaHCO3/Na2CO3, peroxymonosulfate/NaHCO3/Na2CO3 systems). Moreover, the ROS generated by percarbonate-AOPs, such as •OH, O2•-, CO3•-, HO2•-, 1O2, and HCO4-, can work individually or synergistically to disintegrate target pollutants. Concurrently, this review systematically addresses conceivable obstacles posing percarbonate-AOPs in real-world application from the angle of environmental conditions (pH, temperature, coexisting substances), and potential ecological toxicity. Considering the outlined challenges and advantages, we posit future research directions to amplify the applicability and efficacy of percarbonate-AOPs in tangible settings. It is anticipated that the insights provided in this review will catalyze the progression of percarbonate-AOPs in water purification endeavors and bridge the existing knowledge void.
Collapse
Affiliation(s)
- Ling Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xiaojun Niu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou Higher Education Mega Centre, South China University of Technology, Guangzhou 510006, PR China.
| | - Dongqing Zhang
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China.
| | - Xinyao Ye
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Zhilin Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Qiang Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Lei Ding
- School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan 243032, China
| | - Kun Chen
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China
| | - Yang Chen
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China
| | - Kunyang Chen
- School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, PR China
| | - Zhaocai Shi
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Zhang Lin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
7
|
Medici A, Siciliano A, Libralato G, Saviano L, Guida M, Pedatella S, Luongo G, Di Fabio G, Zarrelli A. Percarbonate mediated advanced oxidation of irbesartan: A suitable alternative to chlorination? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174730. [PMID: 39002581 DOI: 10.1016/j.scitotenv.2024.174730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
This study aims to investigate the environmental fate of irbesartan when subjected to activated percarbonate treatment. The investigation delves into the formation of disinfection byproducts (DBPs) and evaluates their toxicity, and it seeks to draw comparisons with outcomes from treatment with sodium hypochlorite, already characterized in previous findings. The proposed treatment indicates the formation of at least 11 DBPs - eight identified for the first time - which have been isolated by various chromatographic techniques, identified by Nuclear Magnetic Resonance and Mass Spectrometry studies and for which a mechanism has been proposed to elucidate their formation. To evaluate irbesartan's biological impact during treatment with sodium percarbonate (SPC), a toxicity study of the DBPs was conducted using Daphnia magna, Aliivibrio fischeri, and Raphidocelis subcapitata, three model organisms. The ecotoxicity was evaluated using the Ecological Structure-Activity Relationships (ECOSAR) computer program and compared with experimental results. Compared to chlorination treatment, a lower mineralization percentage (-43 %) and amount of DBPs at least twice higher were observed. Toxicity assessment highlighted that DBPs formed during SPC treatment were more toxic than those from chlorination. ECOSAR predicted toxicity aligned with experimental findings. Additionally, the DBPs exhibited varying levels of toxicity, primarily attributable to the presence of aromatic and hydroxyl groups in their chemical structure, indicating that SPC treatment is not suitable for treatment of irbesartan polluted waters.
Collapse
Affiliation(s)
- Antonio Medici
- Department of Chemical Sciences, University of Naples Federico II, Via Vicinale Cupa Cintia 26, 80126 Naples, Italy.
| | - Antonietta Siciliano
- Department of Biology, University of Naples Federico II, Via Vicinale Cupa Cintia 21, 80126 Naples, Italy.
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, Via Vicinale Cupa Cintia 21, 80126 Naples, Italy.
| | - Lorenzo Saviano
- Department of Biology, University of Naples Federico II, Via Vicinale Cupa Cintia 21, 80126 Naples, Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Via Vicinale Cupa Cintia 21, 80126 Naples, Italy.
| | - Silvana Pedatella
- Department of Chemical Sciences, University of Naples Federico II, Via Vicinale Cupa Cintia 26, 80126 Naples, Italy.
| | - Giovanni Luongo
- Associazione Italiana per la Promozione delle Ricerche su Ambiente e Salute umana, Via Campellone 50, 82030 Dugenta, BN, Italy.
| | - Giovanni Di Fabio
- Department of Chemical Sciences, University of Naples Federico II, Via Vicinale Cupa Cintia 26, 80126 Naples, Italy.
| | - Armando Zarrelli
- Department of Chemical Sciences, University of Naples Federico II, Via Vicinale Cupa Cintia 26, 80126 Naples, Italy.
| |
Collapse
|
8
|
Aouni SI, Ghodbane H, Merouani S, Lakikza I, Boublia A, Yadav KK, Djelloul C, Albakri GS, Elboughdiri N, Benguerba Y. Removal enhancement of persistent basic fuchsin dye from wastewater using an eco-friendly, cost-effective Fenton process with sodium percarbonate and waste iron catalyst. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43673-43686. [PMID: 38904874 DOI: 10.1007/s11356-024-33845-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 05/24/2024] [Indexed: 06/22/2024]
Abstract
In this comprehensive investigation, we evaluate the efficacy of the Fenton process in degrading basic fuchsin (BF), a resistant dye. Our primary focus is on the utilization of readily available, environmentally benign, and cost-effective reagents for the degradation process. Furthermore, we delve into various operational parameters, including the quantity of sodium percarbonate (SPC), pH levels, and the dimensions of waste iron bars, to optimize the treatment efficiency. In the course of our research, we employed an initial SPC concentration of 0.5 mM, a pH level of 3, a waste iron bar measuring 3.5 cm in length and 0.4 cm in diameter, and a processing time of 10 min. Our findings reveal the successful elimination of the BF dye, even when subjected to treatment with diverse salts and surfactants under elevated temperatures and acidic conditions (pH below 3). This underscores the robustness of the Fenton process in purifying wastewater contaminated with dye compounds. The outcomes of our study not only demonstrate the efficiency of the Fenton process but highlight its adaptability to address dye contamination challenges across various industries. Critically, this research pioneers the application of waste iron bars as a source of iron in the Fenton reaction, introducing a novel, sustainable approach that enhances the environmental and economic viability of the process. This innovative use of recycled materials as catalysts represents a significant advancement in sustainable chemical engineering practices.
Collapse
Affiliation(s)
- Saoussen Imene Aouni
- Laboratory of Physics for Matter and Radiation, Mohamed Cherif Messadia-Souk Ahras University, P.O. Box 1553, 41000, Souk Ahras, Algeria
| | - Houria Ghodbane
- Laboratory of Physics for Matter and Radiation, Mohamed Cherif Messadia-Souk Ahras University, P.O. Box 1553, 41000, Souk Ahras, Algeria
| | - Slimane Merouani
- Laboratory of Environmental Process Engineering, Department of Chemical Engineering, Faculty of Process Engineering, University Salah Boubnider-Constantine 3, P.O. Box 72, 25000, Constantine, Algeria
| | - Imane Lakikza
- Laboratory of Physics for Matter and Radiation, Mohamed Cherif Messadia-Souk Ahras University, P.O. Box 1553, 41000, Souk Ahras, Algeria
| | - Abir Boublia
- Laboratoire de Physico-Chimie des Hauts Polymères (LPCHP), Département de Génie des Procédés, Faculté de Technologie, Université Ferhat ABBAS Sétif-1, 19000, Sétif, Algeria
| | - Krishna Kumar Yadav
- Faculty of Science and Technology, Madhyanchal Professional University, Ratibad, Bhopal, 462044, India
- Environmental and Atmospheric Sciences Research Group, Scientific Research Center, Al-Ayen University, Thi-Qar, Nasiriyah, 64001, Iraq
| | - Chawki Djelloul
- Laboratory of Reaction Engineering, Faculty of Mechanical Engineering and Process Engineering, USTHB, Algiers, Algeria
| | - Ghadah Shukri Albakri
- Department of Teaching and Learning, College of Education and Human Development, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh, 11671, Saudi Arabia
| | - Noureddine Elboughdiri
- Chemical Engineering Department, College of Engineering, University of Ha'il, Ha'il, 81441, Saudi Arabia
- Chemical Engineering Process Department, National School of Engineers Gabes, University of Gabes, 6029, Gabes, Tunisia
| | - Yacine Benguerba
- Laboratoire de Biopharmacie Et Pharmacotechnie (LBPT), Ferhat Abbas Setif 1 University, Setif, Algeria.
| |
Collapse
|
9
|
Salgado P, Rubilar O, Salazar C, Márquez K, Vidal G. In Situ Synthesis of Cu 2O Nanoparticles Using Eucalyptus globulus Extract to Remove a Dye via Advanced Oxidation. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1087. [PMID: 38998692 PMCID: PMC11243407 DOI: 10.3390/nano14131087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024]
Abstract
Water pollution, particularly from organic contaminants like dyes, is a pressing issue, prompting exploration into advanced oxidation processes (AOPs) as potential solutions. This study focuses on synthesizing Cu2O on cellulose-based fabric using Eucalyptus globulus leaf extracts. The resulting catalysts effectively degraded methylene blue through photocatalysis under LED visible light and heterogeneous Fenton-like reactions with H2O2, demonstrating reusability. Mechanistic insights were gained through analyses of the extracts before and after Cu2O synthesis, revealing the role of phenolic compounds and reducing sugars in nanoparticle formation. Cu2O nanoparticles on cellulose-based fabric were characterized in terms of their morphology, structure, and bandgap via SEM-EDS, XRD, Raman, FTIR, UV-Vis DRS, and TGA. The degradation of methylene blue was pH-dependent; photocatalysis was more efficient at neutral pH due to hydroxyl and superoxide radical production, while Fenton-like reactions showed greater efficiency at acidic pH, primarily generating hydroxyl radicals. Cu2O used in Fenton-like reactions exhibited lower reusability compared to photocatalysis, suggesting deterioration. This research not only advances understanding of catalytic processes but also holds promise for sustainable water treatment solutions, contributing to environmental protection and resource conservation.
Collapse
Affiliation(s)
- Pablo Salgado
- Departamento de Ingeniería Civil, Facultad de Ingeniería, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile
| | - Olga Rubilar
- Centro de Excelencia en Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA-BIOREN), Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
- Departamento de Ingeniería Química, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
| | - Claudio Salazar
- Centro de Investigación de Polímeros Avanzados (CIPA), Concepción 4051381, Chile
| | - Katherine Márquez
- Centro de Estudios en Alimentos Procesados (CEAP), Campus Lircay, Talca 3460000, Chile
| | - Gladys Vidal
- Grupo de Ingeniería y Biotecnología Ambiental (GIBA-UDEC), Facultad de Ciencias Ambientales, Universidad de Concepción, Concepción 4070386, Chile
- Water Research Center for Agriculture and Mining (CRHIAM), ANID Fondap Center, Victoria 1295, Concepción 4070411, Chile
| |
Collapse
|
10
|
Song T, Wang Z, Jiang Y, Yang S, Deng Q. Research Progress on the Degradation of Organic Pollutants in Wastewater via Ultrasound/Periodate Systems: A Review. Molecules 2024; 29:2562. [PMID: 38893438 PMCID: PMC11173537 DOI: 10.3390/molecules29112562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
In recent years, the efficient removal of organic pollutants from wastewater has emerged as a critical area of global research interest. Against this backdrop, an array of innovative technologies for wastewater treatment has been developed. Among numerous advanced oxidation processes (AOPs), periodate (PI), an emerging oxidizing agent in AOPs, has garnered significant attention from researchers. Particularly, the integration of ultrasound (US)-activated PI systems has been recognized as an exceptionally promising approach for the synergistic degradation of organic pollutants in wastewater. In this paper, we conducted a thorough analysis of the mechanisms underlying the degradation of organic pollutants using the US/PI system. Furthermore, we comprehensively delineated the effects of ultrasonic power, periodate concentration, temperature, pH, coexisting inorganic ions, and dissolved organic matter on the removal efficiency of organic pollutants and summarized application cases of the US/PI system for the degradation of different pollutants. Finally, we also offered prospective discussions on the future trajectories of US/PI technology development.
Collapse
Affiliation(s)
- Tiehong Song
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (Z.W.)
| | | | | | | | | |
Collapse
|
11
|
Li C, Zhang Y, Ren J, Mo Z, Liang J, Ye M, Ou W, Sun S, Zhu S. In-situ generation of iron activated percarbonate for sustainable sludge dewatering. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171235. [PMID: 38417502 DOI: 10.1016/j.scitotenv.2024.171235] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
Effective dewatering of sewage sludge could potentially address the issues of high energy consumption and large carbon footprint inherent in the sludge treatment process, advancing toward carbon neutrality in environmental remediation. Yet, the surface hydrophilic characteristics and water-holding interfacial affinity in sludge led to dwindled sludge-water separation performance. Here, the integration of in-situ generation of iron from zero-valent scrap iron (ZVSI) and sodium percarbonate (SPC) was attempted to attenuate the water-retaining interfacial affinity within sludge, thus achieving superior sludge dewatering performance. Results showed that under the optimal conditions, the ZVSI + SPC system led to a remarkable decline of 76.09 % in the specific resistance to filtration of the sludge, accompanied by a notable decline of 34.96 % in the water content. Moreover, the utilization of ZVSI + SPC system could be a viable alternative to the traditional strategies in terms of enhanced sludge dewaterability, offering application potential with stable operating performance, economic feasibility, and reduced carbon emissions. Investigation into dewatering mechanism revealed that ZVSI could maintain the Fe3+/Fe2+ in a stable dynamic cycle and continuously in-situ generate Fe2+, thereby efficaciously fostering the SPC activation for the ceaseless yield of reactive oxygen species. The predominant •OH and 1O2 efficiently decomposed the hydrophilic biopolymers, therefore minimizing the hydrophilic protein secondary structures, along with the hydrogen and disulfide bonds within proteins. Subsequently, the water-holding interfacial affinity was profoundly diminished, leading to intensified hydrophobicity, self-flocculation, and dewaterability. These findings have important implications for the advancement of efficacious ZVSI + SPC conditioning techniques toward sustainable energy and low-carbon prospects.
Collapse
Affiliation(s)
- Chengjian Li
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Yu Zhang
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Jingsai Ren
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Zhihua Mo
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Jialin Liang
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China.
| | - Maoyou Ye
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Wenzhi Ou
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Shuiyu Sun
- School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Suiyi Zhu
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| |
Collapse
|
12
|
Chen J, Yang Z, Li W, Yang Y, Zhu F, Huo Z, Zhou Q. MXene-supported MIL-88A(Fe) as persulfate activator for removal of tetracycline. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:25273-25286. [PMID: 38467998 DOI: 10.1007/s11356-024-32677-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/23/2024] [Indexed: 03/13/2024]
Abstract
The poor conductivity, poor stability, and agglomeration of iron-based metal organic framework MIL-88A(Fe) limit its application as persulfate (PS) activator in water purification. Herein, MXene-supported MIL-88A(Fe) composites (M88A/MX) were synthesized to enhance its adsorption and catalytic capability for tetracycline (TC) removal. Scanning electron microscope (SEM), X-ray diffractometer (XRD), Fourier transform infrared spectrometer (FT-IR), and X-ray photoelectron spectroscopy (XPS) were used to characterize prepared materials, confirming the successful attachment of MIL-88A(Fe) to the surface of MXene. M88A/MX-0.2 composites, prepared with 0.2 g MXene addition, exhibit optimal degradation efficiency, reaching 98% under conditions of 0.2 g/L M88A/MX-0.2, 1.0 mM PS, 20 ppm TC, and pH 5. The degradation rate constants of M88A/MX-0.2 were 0.03217 min-1, which was much higher than that of MIL-88A(Fe) (0.00159 min-1) and MXene (0.00626 min-1). The removal effects of reaction parameters, such as dosage of M88A/MX-0.2 and PS; initial solution pH; and the presence of the common co-existing constituents (humic acid and the inorganic anions) were investigated in detail. Additionally, the reuse of M88A/MX-0.2 showed that the composites had good cycling stability by recurrent experiments. The results of electron paramagnetic resonance (EPR) and quenching experiments indicated that ·OH, ·SO4-, and ·O2- were involved in the M88A/MX-0.2/PS system where persulfate oxidation process was activated with prepared M88A/MX-0.2. In addition, the intermediates of photocatalytic degradation were determined by HPLC-MS, and the possible degradation pathways of the target molecules were inferred. This study offered a new avenue for sulfate-based degradation of Fe-based metal organic framework.
Collapse
Affiliation(s)
- Junxia Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Zhenzhen Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Weigang Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Yuying Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Feng Zhu
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Zongli Huo
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, 210009, China
| | - Qing Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
13
|
Chen Y, Tian L, Liu W, Mei Y, Xing QJ, Mu Y, Zheng LL, Fu Q, Zou JP, Wu D. Controllable Pyridine N-Oxidation-Nucleophilic Dechlorination Process for Enhanced Dechlorination of Chloropyridines: The Cooperation of HCO 4- and HO 2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4438-4449. [PMID: 38330552 DOI: 10.1021/acs.est.3c09878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Dechlorination of chloropyridines can eliminate their detrimental environmental effects. However, traditional dechlorination technology cannot efficiently break the C-Cl bond of chloropyridines, which is restricted by the uncontrollable nonselective species. Hence, we propose the carbonate species-activated hydrogen peroxide (carbonate species/H2O2) process wherein the selective oxidant (peroxymonocarbonate ion, HCO4-) and selective reductant (hydroperoxide anion, HO2-) controllably coexist by manipulation of reaction pH. Taking 2-chloropyridine (Cl-Py) as an example, HCO4- first induces Cl-Py into pyridine N-oxidation intermediates, which then suffer from the nucleophilic dechlorination by HO2-. The obtained dechlorination efficiencies in the carbonate species/H2O2 process (32.5-84.5%) based on the cooperation of HCO4- and HO2- are significantly higher than those in the HO2--mediated sodium hydroxide/hydrogen peroxide process (0-43.8%). Theoretical calculations confirm that pyridine N-oxidation of Cl-Py can effectively lower the energy barrier of the dechlorination process. Moreover, the carbonate species/H2O2 process exhibits superior anti-interference performance and low electric energy consumption. Furthermore, Cl-Py is completely detoxified via the carbonate species/H2O2 process. More importantly, the carbonate species/H2O2 process is applicable for efficient dehalogenation of halogenated pyridines and pyrazines. This work offers a simple and useful strategy to enhance the dehalogenation efficiency of halogenated organics and sheds new insights into the application of the carbonate species/H2O2 process in practical environmental remediation.
Collapse
Affiliation(s)
- Ying Chen
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, P. R. China
| | - Lei Tian
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, P. R. China
| | - Yi Mei
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Qiu-Ju Xing
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Yi Mu
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Ling-Ling Zheng
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Qian Fu
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China
| | - Jian-Ping Zou
- National-Local Joint Engineering Research Center of Heavy Metals Pollutants Control and Resource Utilization, School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, P. R. China
| | - Daishe Wu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Resources & Environment, Nanchang University, Nanchang 330031, P. R. China
- School of Materials and Chemical Engineering, Pingxiang University, Pingxiang 337000, P. R. China
| |
Collapse
|
14
|
Wang Q, Chen M, Min Y, Shi P. Aging of polystyrene microplastics by UV/Sodium percarbonate oxidation: Organic release, mechanism, and disinfection by-product formation. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132934. [PMID: 37976854 DOI: 10.1016/j.jhazmat.2023.132934] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/15/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
The occurrence and transformation of microplastics (MPs) in environment has attracted considerable attention. However, the release characteristics of MP-derived dissolved organic matter (MP-DOM) under oxidation conditions and the effect of DOM on subsequent chlorination disinfection by-product (DBP) still lacks relevant information. This study focused on the conversion of polystyrene microplastics (PSMPs) in the advanced oxidation of ultraviolet-activated sodium percarbonate (UV/SPC-AOP) and the release characteristics of MP-DOM. The DBP formation potential of MP-DOM was also investigated. As a result, UV/SPC significantly enhanced the aging and fragmentation of PSMPs. Under UV irradiation, the fluorescence peak intensity and position of humus-like and protein-like components of MP-DOM were correlated with SPC concentration. The aging MP suspension was analyzed by gas chromatography-mass spectrometry (GC-MS), and various alkyl-cleavage and oxidation products were identified. Quenching experiments and electron paramagnetic resonance (EPR) detection confirmed that carbonate and hydroxyl radicals jointly dominated the conversion of PSMPs. The formation of DBP was related to the components of MP-DOM. Overall, these results help to understand the aging behavior of MPs in AOP. Moreover, MP-DOM released by MPs after AOP oxidation may be a precursor of DBPs, which deserved more attention.
Collapse
Affiliation(s)
- Qiaoyan Wang
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, PR China
| | - Muxin Chen
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, PR China
| | - Yulin Min
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200090, PR China
| | - Penghui Shi
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai 200090, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200090, PR China.
| |
Collapse
|
15
|
Liu S, Liu S, Chen H, Xing Y, Wang W, Wang L, Liang Y, Fu J, Zhang C. Catalytic activation of percarbonate with synthesized carrollite for efficient decomposition of bisphenol S: Performance, degradation mechanism and toxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132719. [PMID: 37866148 DOI: 10.1016/j.jhazmat.2023.132719] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/10/2023] [Accepted: 10/03/2023] [Indexed: 10/24/2023]
Abstract
This study demonstrates the novel application of carrollite (CuCo2S4) for the activation of sodium percarbonate (SPC) towards bisphenol S (BPS) degradation. The effect of several crucial factors like BPS concentration, CuCo2S4 dosage, SPC concentration, reaction temperature, water matrices, inorganic anions, and pH value were investigated. Experimental results demonstrated that BPS could be efficiently degraded by CuCo2S4-activated SPC system (88.52% at pH = 6.9). The mechanism of BPS degradation by CuCo2S4-activated SPC system was uncovered by quenching and electron spin resonance experiments, discovering that a multiple reactive oxygen species process was involved in BPS degradation by hydroxyl radical (•OH), superoxide radical (•O2-), singlet oxygen superoxide (1O2) and carbonate radical (•CO3-). Furthermore, the S(-II) species facilitated rapid redox cycles between Cu(I)/Cu(II) and Co(II)/Co(III). •CO3- was found to not only directly react with BPS molecules, but also act as a bridge to promote •O2- and 1O2 generation, thereby accelerating BPS degradation. Finally, the combination of UHPLC/Q-TOF-MS test with density functional theory (DFT) method was employed to detect major degradation intermediates and thereby elucidate possible reaction pathways of BPS degradation. This study provides a novel strategy by integrating transition metal sulfides with percarbonate for the elimination of organic pollutants in water.
Collapse
Affiliation(s)
- Shicheng Liu
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, PR China; College of Life and Environmental Science, Minzu University of China, Beijing 100081, PR China
| | - Sitong Liu
- Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China
| | - Huabin Chen
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, PR China; College of Life and Environmental Science, Minzu University of China, Beijing 100081, PR China
| | - Yujin Xing
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, PR China; College of Life and Environmental Science, Minzu University of China, Beijing 100081, PR China
| | - Wenzhong Wang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, PR China; College of Life and Environmental Science, Minzu University of China, Beijing 100081, PR China; School of Science, Minzu University of China, Beijing 100081, PR China.
| | - Lijuan Wang
- School of Science, Minzu University of China, Beijing 100081, PR China
| | - Yujie Liang
- School of Science, Minzu University of China, Beijing 100081, PR China
| | - Junli Fu
- School of Science, Minzu University of China, Beijing 100081, PR China
| | - Chen Zhang
- College of Life and Environmental Science, Minzu University of China, Beijing 100081, PR China
| |
Collapse
|
16
|
Odehnalová K, Přibilová P, Maršálková E, Zezulka Š, Pochylý F, Rudolf P, Maršálek B. Hydrodynamic cavitation-enhanced activation of sodium percarbonate for estrogen removal. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:2905-2916. [PMID: 38096077 PMCID: wst_2023_382 DOI: 10.2166/wst.2023.382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The present paper investigated the potential of hydrodynamic cavitation (HC) as an effective tool for activating sodium percarbonate (SPC). The method's efficiency was demonstrated by effectively removing estrogens, which are pollutants that have adverse impacts on aquatic ecosystems. The effects of the SPC concentration, temperature of solution, and cavitation time were evaluated. After SPC/HC treatment, the removal of estrogens was monitored by liquid chromatography-tandem mass spectrometry (LC -MS/MS). Already after 4 s of treatment and 24 h of reaction time, more than 97% of estrogens (initial concentration of 300 ng/L) were removed. The effect of post-treatment time is not considered in several papers, even though it seems to be crucial and is discussed here. The results were supported by the values of degradation rate constants, which fit the pseudo-first-order kinetic model. We also verified that HC alone was not effective for estrogen removal under the selected conditions. The sustainability of the SPC/HC system was evaluated based on electric energy per order calculation. The combination of SPC and HC is a promising approach for rapidly degrading micropollutants such as estrogenic compounds without the need for additional technological steps, such as pH or temperature adjustment.
Collapse
Affiliation(s)
- Klára Odehnalová
- Institute of Botany, Czech Academy of Sciences, Lidická 25/27, Brno 60200, Czech Republic E-mail:
| | - Petra Přibilová
- Institute of Botany, Czech Academy of Sciences, Lidická 25/27, Brno 60200, Czech Republic
| | - Eliška Maršálková
- Institute of Botany, Czech Academy of Sciences, Lidická 25/27, Brno 60200, Czech Republic
| | - Štěpán Zezulka
- Institute of Botany, Czech Academy of Sciences, Lidická 25/27, Brno 60200, Czech Republic
| | - František Pochylý
- Brno University of Technology, Faculty of Mechanical Engineering, V. Kaplan Department of Fluid Engineering, Technická 2896/2, Brno 61669, Czech Republic
| | - Pavel Rudolf
- Brno University of Technology, Faculty of Mechanical Engineering, V. Kaplan Department of Fluid Engineering, Technická 2896/2, Brno 61669, Czech Republic
| | - Blahoslav Maršálek
- Institute of Botany, Czech Academy of Sciences, Lidická 25/27, Brno 60200, Czech Republic
| |
Collapse
|
17
|
Li J, Chen A, Meng Q, Xue H, Yuan B. A Novel Spectrophotometric Method for Determination of Percarbonate by Using N, N-Diethyl-P-Phenylenediamine as an Indicator and Its Application in Activated Percarbonate Degradation of Ibuprofen. Molecules 2023; 28:7732. [PMID: 38067463 PMCID: PMC10708432 DOI: 10.3390/molecules28237732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
Sodium percarbonate (SPC) concentration can be determined spectrophotometrically by using N, N-diethyl-p-phenylenediamine (DPD) as an indicator for the first time. The ultraviolet-visible spectrophotometry absorbance of DPD•+ measured at 551 nm was used to indicate SPC concentration. The method had good linearity (R2 = 0.9995) under the optimized experimental conditions (pH value = 3.50, DPD = 4 mM, Fe2+ = 0.5 mM, and t = 4 min) when the concentration of SPC was in the range of 0-50 μM. The blank spiked recovery of SPC was 95-105%. The detection limit and quantitative limit were 0.7-1.0 μM and 2.5-3.3 μM, respectively. The absorbance values of DPD•+ remained stable within 4-20 min. The method was tolerant to natural water matrix and low concentration of hydroxylamine (<0.8 mM). The reaction stoichiometric efficiency of SPC-based advanced oxidation processes in the degradation of ibuprofen was assessed by the utilization rate of SPC. The DPD and the wastewater from the reaction were non-toxic to Escherichia coli. Therefore, the novel Fe2+/SPC-DPD spectrophotometry proposed in this work can be used for accurate and safe measurement of SPC in water.
Collapse
Affiliation(s)
| | | | | | - Honghai Xue
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China; (J.L.); (A.C.); (Q.M.); (B.Y.)
| | | |
Collapse
|
18
|
Che M, Xiao J, Shan C, Chen S, Huang R, Zhou Y, Cui M, Qi W, Su R. Efficient removal of chloroform from groundwater using activated percarbonate by cellulose nanofiber-supported Fe/Cu nanocomposites. WATER RESEARCH 2023; 243:120420. [PMID: 37523925 DOI: 10.1016/j.watres.2023.120420] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/14/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023]
Abstract
Chloroform (CF) is a recalcitrant halogenated methane (HM) that has received widespread attention due to its frequent detection in groundwater and its potential carcinogenic risk. In this study, TEMPO-oxidized cellulose nanofiber-supported iron/copper bimetallic nanoparticles (TOCNF-Fe/Cu), a novel composite catalyst, was synthesized to activate sodium percarbonate (SPC) for the removal of CF from groundwater. The results showed that over 96.3% of CF could be removed in a neutral reaction medium (pH 6.5-9) within 180 min using 0.66 g L-1 of TOCNF (0.32)-Fe/Cu (1) and 1 mM of SPC, which outperforms typical advanced oxidation processes. The reaction mechanism of the TOCNF-Fe/Cu-SPC system for the CF removal was elucidated. As demonstrated through electron paramagnetic resonance and quenching experiments, the TOCNF-Fe/Cu-SPC system was found to include •OH and O2•-, where the latter played a dominant role in the CF removal. DFT calculations indicated that TOCNF improved the electron transport capability of Fe/Cu and reduced the transition state energy. The Fe species on the surface of TOCNF-Fe/Cu were identified as the primary active sites for SPC activation, whereas the Cu species were beneficial to the regeneration of the Fe species. Additionally, TOCNF-Fe/Cu was found to have good recyclability and stability. The feasibility of the TOCNF-Fe/Cu-SPC system was further confirmed by applying it for the efficient removal of composite HMs from actually contaminated groundwater. Overall, the TOCNF-Fe/Cu-SPC system is an attractive candidate for the treatment of HM-contaminated groundwater.
Collapse
Affiliation(s)
- Mingda Che
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Jingzhe Xiao
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Cancan Shan
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Shaohuang Chen
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Renliang Huang
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, PR China; Tianjin Key Laboratory for Marine Environmental Research and Service, School of Marine Science and Technology, Tianjin University, Tianjin 300072, PR China.
| | - Yitong Zhou
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China
| | - Mei Cui
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, Tianjin Key Laboratory of Membrane Science and Desalination Technology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, PR China; Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, PR China.
| |
Collapse
|
19
|
Elkenawy NM, Gomaa OM. Sequential electron beam and bioflocculation for treatment of textile nanodyes. RSC Adv 2023; 13:21558-21569. [PMID: 37476035 PMCID: PMC10354619 DOI: 10.1039/d3ra03895e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/06/2023] [Indexed: 07/22/2023] Open
Abstract
Nanodyes are a new class of hazardous materials that are used in textile coloring. Their small size, color, stability and high dispersion characteristics pose a huge threat if they are released in open water systems. The aim of the present study is to test electron beam irradiation, bioflocculation and their sequential use for nanodye removal. The nanodye was obtained from a factory and was characterized using UV-visible spectroscopy, Fourier transform infra-red (FTIR) spectroscopy, dynamic light scattering, zeta potential and energy dispersive X-ray (EDX). The obtained results show that applying 7.5 kGy electron beam irradiation results in complete color removal in 10 min for 50 and 100 ppm nanodye, while at 200 and 400 ppm concentrations, the decolorization reaches 90% but leaving a residual brownish color. Adding 5 mg mL-1 of Serratia marcescens N2 biosurfactant resulted in agglomeration of 80% dye removal for 400 ppm nanodye after 24 h. On the other hand, the use of sequential electron beam and bioflocculation led to an initial removal of 80% in 1 h. The residual dyes were tested for toxicity on normal dermal HFB4 cells. The toxicity result was 1.19% after electron beam treatment, while those for sequential treatment and bioflocculation were 6.28 and 6.9%, respectively. It can be concluded that electron beam technology provides fast and highly efficient nanodye removal, while biosurfactants offer a low-cost, eco-friendly approach with a chance for dye retrieval.
Collapse
Affiliation(s)
- Nora M Elkenawy
- Drug Radiation Research Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
| | - Ola M Gomaa
- Radiation Microbiology Department, National Center for Radiation Research and Technology (NCRRT), Egyptian Atomic Energy Authority (EAEA) Cairo Egypt
| |
Collapse
|
20
|
Wang ZW, Xiao MY, Tang JF, Li MQ, Yin XY, Wang T, Zhu YZ, Pang DW, Wang HF. Surface engineering of Al 2O 3 nanotubes by ureasolysis method for activating persulfate degradation of antibiotics. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131844. [PMID: 37327612 DOI: 10.1016/j.jhazmat.2023.131844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/03/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Though ecofriendly, pure Al2O3 has never been used for activation of peroxodisulfate (PDS) to degrade pollutants. We report the fabrication of Al2O3 nanotubes by ureasolysis method for efficient activating PDS degradation of antibiotics. The fast ureasolysis in aqueous AlCl3 solution produces NH4Al(OH)2CO3 nanotubes, which are calcined to porous Al2O3 nanotubes, and the release of ammonia and carbon dioxide engineers the surface features of large surface area, numerous acidic-basic sites and suitable Zeta potentials. The synergy of these features facilitates the adsorption of the typical antibiotics ciprofloxacin and PDS activation, which is proved by experiment results and density functional theory simulation. The proposed Al2O3 nanotubes can catalyze 92-96% degradation of 10 ppm ciprofloxacin within 40 min, with chemical oxygen demand removal of 65-66% in aqueous, and 40-47% in whole including aqueous and catalysts. Ciprofloxacin at high concentration, other fluoroquinolones and tetracycline can also be effectively degraded. These data demonstrate the Al2O3 nanotubes prepared by the nature-inspired ureasolysis method has unique features and great potentials for antibiotics degradation.
Collapse
Affiliation(s)
- Zheng-Wu Wang
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Mei-Yun Xiao
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jun-Feng Tang
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ming-Qian Li
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xia-Yin Yin
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ting Wang
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yi-Zhou Zhu
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Tianjin 300071, China; State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, China.
| | - Dai-Wen Pang
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China; Tianjin Key Laboratory of Biosensing and Molecular Recognition, Tianjin 300071, China
| | - He-Fang Wang
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, China; Tianjin Key Laboratory of Biosensing and Molecular Recognition, Tianjin 300071, China.
| |
Collapse
|
21
|
Vaidyanathan VK, Alanazi AK, Senthil Kumar P, Rajendran DS, Chidambaram A, Venkataraman S, Kumar VV, Rangasamy G, Cabana H, Abo-Dief HM. Cost-effective, scalable production of glucose oxidase using Casuarina equisetifolia biomass and its application in the bio-Fenton oxidation process for the removal of trace organic contaminants from wastewater. BIORESOURCE TECHNOLOGY 2023; 377:128958. [PMID: 36965584 DOI: 10.1016/j.biortech.2023.128958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/19/2023] [Accepted: 03/22/2023] [Indexed: 06/18/2023]
Abstract
This study focuses on using Casuarina equisetifolia biomass for pilot-scale glucose oxidase production from Aspergillus niger and its application in the removal of trace organic contaminants (TrOCs) from municipal wastewater through the bio-Fenton oxidation. The cost of glucose oxidase was 0.005 $/U, including the optimum production parameters, 10% biomass, 7% sucrose, 1% peptone, and 3% CaCO3 at 96 h with an enzyme activity of 670 U/mL. Optimized conditions for H2O2 were 1 M glucose, 100 U/mL glucose oxidase, and 120 mins of incubation, resulting in 544.3 mg/L H2O2. Thus, H2O2 produced under these conditions lead to bio-Fenton oxidation resulting in the removal of 36-92% of nine TrOCs in municipal wastewater at pH 7.0 in 360 mins. Therefore, this work establishes the cost-effective glucose oxidase-producing H2O2 as an attractive bioremediating agent to enhance the removal of TrOCs in wastewater at neutral pH.
Collapse
Affiliation(s)
- Vinoth Kumar Vaidyanathan
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, Tamil Nadu 603203, India; Environmental Engineering Laboratory, Faculty of Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Quebec J1K 2R1, Canada
| | - Abdullah K Alanazi
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - P Senthil Kumar
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia; Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603 110, Tamil Nadu, India.
| | - Devi Sri Rajendran
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, Tamil Nadu 603203, India
| | - Ashok Chidambaram
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, Tamil Nadu 603203, India
| | - Swethaa Venkataraman
- Integrated Bioprocessing Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Chennai, Tamil Nadu 603203, India
| | - Vaithyanathan Vasanth Kumar
- Environmental Engineering Laboratory, Faculty of Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Quebec J1K 2R1, Canada; Department of Electronics and Communication Engineering, Hindustan Institute of Technology and Science, Chennai, India
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab 140413, India
| | - Hubert Cabana
- Environmental Engineering Laboratory, Faculty of Engineering, Université de Sherbrooke, 2500 boul. de l'Université, Sherbrooke, Quebec J1K 2R1, Canada
| | - Hala M Abo-Dief
- Department of Science and Technology, University College-Ranyah, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
22
|
Jiao J, Li Y, Song Q, Wang L, Luo T, Gao C, Liu L, Yang S. Removal of Pharmaceuticals and Personal Care Products (PPCPs) by Free Radicals in Advanced Oxidation Processes. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8152. [PMID: 36431636 PMCID: PMC9695708 DOI: 10.3390/ma15228152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/05/2022] [Accepted: 11/15/2022] [Indexed: 06/16/2023]
Abstract
As emerging pollutants, pharmaceutical and personal care products (PPCPs) have received extensive attention due to their high detection frequency (with concentrations ranging from ng/L to μg/L) and potential risk to aqueous environments and human health. Advanced oxidation processes (AOPs) are effective techniques for the removal of PPCPs from water environments. In AOPs, different types of free radicals (HO·, SO4·-, O2·-, etc.) are generated to decompose PPCPs into non-toxic and small-molecule compounds, finally leading to the decomposition of PPCPs. This review systematically summarizes the features of various AOPs and the removal of PPCPs by different free radicals. The operation conditions and comprehensive performance of different types of free radicals are summarized, and the reaction mechanisms are further revealed. This review will provide a quick understanding of AOPs for later researchers.
Collapse
Affiliation(s)
- Jiao Jiao
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Yihua Li
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Qi Song
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| | - Liujin Wang
- State of Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Tianlie Luo
- State of Environmental Protection Key Laboratory of Synergetic Control and Joint Remediation for Soil & Water Pollution, College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, China
| | - Changfei Gao
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Lifen Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China
| | - Shengtao Yang
- Key Laboratory of Pollution Control Chemistry and Environmental Functional Materials for Qinghai-Tibet Plateau of the National Ethnic Affairs Commission, School of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, China
| |
Collapse
|