1
|
Xu XY, Wan L, Lin SY, Yao XH, Zhao WG, Chen T, Zhang DY. High-efficiency mass-transfer Marangoni cellulose hydrogel reactor for the degradation of pollutants. Int J Biol Macromol 2025; 302:140548. [PMID: 39894108 DOI: 10.1016/j.ijbiomac.2025.140548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/21/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
Noble metal nanoparticles have been widely used in catalysis, environmental studies, and other fields. However, the loading of noble metals is challenging because of their unfavorable mass transfer. Herein, a simple, green dual-template method was developed for the synthesis of a Marangoni cellulose hydrogel rotor catalytic reactor (MCR). The rotor had a two-component asymmetrical network structure, which was constructed via different crosslinking methods and enabled the MCR to achieve a fast (6190 r/h) and prolonged (25 min) rotation. In addition, we propose a new refueling method, which only requires 80uL solvent to continue to drive the rotor for over 13 min, effectively prolonging the rotation time of the rotor. During rotation, the speed of the catalyst was greater than that of the substrate, which is conducive for the entry of the substrate into the reactor channel. The spin-induced fluid disturbance promoted substrate replenishment around the catalyst, thereby improving the mass-transfer efficiency and increasing the primary kinetic constant to 16.5-fold of that of the stationary hydrogel while maintaining stability. Therefore, the MCR proposed in this study offers a novel approach for improving the catalytic mass-transfer efficiency of precious metals and exhibits potential application value in remediating environmental pollution and catalysis.
Collapse
Affiliation(s)
- Xiao-Yi Xu
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Lu Wan
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Shi-Yi Lin
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Xiao-Hui Yao
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Wei-Guo Zhao
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Tao Chen
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Dong-Yang Zhang
- Jiangsu Key Laboratory of Sericultural and Animal Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Scientific Research Center, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China.
| |
Collapse
|
2
|
Xia M, Ye Y, Li T, Li Y. Polythiourea-Immobilized Gold Nanoparticles on Filter Paper for Boosting Catalytic Conversion Efficiency and Stability. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:7080-7088. [PMID: 40035642 DOI: 10.1021/acs.langmuir.5c00135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Gold nanoparticles (AuNPs) have outstanding catalytic properties, whereas their broader application is hindered by limited charge transport and stability. In this work, we present a simple and rapid synthesis method for immobilizing AuNPs onto filters using polythiourea, aimed at facilitating charge transport and enhancing the catalytic conversion of 2-nitrophenol in aqueous solutions. The results show an obvious enhancement in the catalytic performance of the AuNPs when immobilized onto the filter paper with polythiourea, reducing the complete conversion time from 14 min to 150 s. The optimal addition amount of polythiourea is 5.0 mL. Additionally, the kinetics and recyclability of the system were investigated; it was observed that even after 15 cycles of testing, the catalytic complete conversion time of the AuNPs immobilized on the filter with polythiourea maintained consistently at 150 s. These findings suggest a promising strategy for extending the functional lifespan of AuNPs while offering a platform for catalytic reactions.
Collapse
Affiliation(s)
- Minqiang Xia
- School of Materials Science & Engineering, Shanghai University, Shanghai 200444, China
| | - Yulu Ye
- School of Materials Science & Engineering, Shanghai University, Shanghai 200444, China
| | - Tuo Li
- School of Materials Science & Engineering, Shanghai University, Shanghai 200444, China
| | - Yunbo Li
- School of Materials Science & Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
3
|
Li R, Yang T, Ding M, Zhang L, Xie H. Gold nanoparticles supported on aldehyde-functionalized chitin nanocrystals as efficient catalysts in environmental catalysis. Int J Biol Macromol 2025; 296:139769. [PMID: 39800037 DOI: 10.1016/j.ijbiomac.2025.139769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/10/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Gold nanoparticles (AuNPs) with ultra-small size anchored onto support materials is highly desired towards good catalytic performance. In this study, aldehyde-functionalized chitin nanocrystals (ChNCs-PVMA) are prepared by surface-initiated electron transfer atom transfer radical polymerization (SI-ARGET ATRP) with vanillin methacrylate (VMA) as a functional monomer, which are used as reductant, stabilizer and support for the fabrication of AuNPs through an environmentally friendly process that eliminates the need for any additional reducing agents. The abundant aldehyde groups of the prepared ChNCs-PVMA are crucial to achieve ultra-small AuNPs with average size of 5.3 nm. The obtained Au@ChNCs-PVMA nanohybrid catalysts were systematically characterized by FTIR, XPS, XRD and TEM. Finally, the catalytic activity of the Au@ChNCs-PVMA catalysts are investigated for reduction of 4-NP and discoloration of azo/non-azo dyes, demonstrating excellent catalytic performance and reusability. These findings provide significant insights into the development of bio-supported nanohybrid catalyst for various environmental catalysis.
Collapse
Affiliation(s)
- Rongli Li
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Tongjun Yang
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Mingtao Ding
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China
| | - Lihua Zhang
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China.
| | - Haibo Xie
- Department of Polymer Materials and Engineering, College of Materials and Metallurgy, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
4
|
Jiang ZF, Tian FM, Fang KM, Wang ZG, Zhang L, Feng JJ, Wang AJ. Atomically dispersed ternary FeCoNb active sites anchored on N-doped honeycomb-like mesoporous carbon for highly catalytic degradation of 4-nitrophenol. J Colloid Interface Sci 2025; 677:718-728. [PMID: 39121656 DOI: 10.1016/j.jcis.2024.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
In the last decades, 4-nitrophenol is regarded as one of highly toxic organic pollutants in industrial wastewater, which attracts great concern to earth sustainability. Herein, atomically dispersed ternary FeCoNb active sites were incorporated into nitrogen-doped honeycomb-like mesoporous carbon (termed FeCoNb/NHC) by a two-step pyrolysis strategy, whose morphology, structure and size were characterized by a set of techniques. Further, the catalytic activity and reusability of the as-prepared FeCoNb/NHC were rigorously examined by using 4-NP catalytic hydrogenation as a proof-of-concept model. The influence of the secondary pyrolysis temperature on the catalytic performance was investigated, combined by illuminating the catalytic mechanism. The resultant catalyst exhibited significantly enhanced catalytic features with a normalized rate constant (kapp) of 1.2 × 104 min-1g-1 and superior stability, surpassing the home-made catalysts in the control groups and earlier research. This study provides some constructive insights for preparation of high-efficiency and cost-effectiveness single-atom nanocatalysts in organic pollutants environmental remediation.
Collapse
Affiliation(s)
- Zuo-Feng Jiang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Fang-Min Tian
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Ke-Ming Fang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Zhi-Gang Wang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Lu Zhang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Jiu-Ju Feng
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, China
| | - Ai-Jun Wang
- College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, China.
| |
Collapse
|
5
|
Li X, Li Y, Yang S. Enhanced mineralization of nitrophenols by a novel C@ZVAl-PS based sequential reduction-oxidation process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175288. [PMID: 39111419 DOI: 10.1016/j.scitotenv.2024.175288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/03/2024] [Accepted: 08/02/2024] [Indexed: 08/11/2024]
Abstract
Widely employed nitrophenols (NPs) are refractory and antioxidant due to their strong electron-withdrawing group (-NO2). Actually, NPs are readily reduced to aminophenols (APs). However, APs remain toxic and necessitate further treatment. Herein, we utilized a novel sequential reduction-oxidation system of carbon-modified zero-valent aluminum (C@ZVAl) combined with persulfate (PS) for the thorough removal of both NPs and APs. The results demonstrated that p-nitrophenol (PNP, up to 1000 mg/L) exhibited complete reduction to p-aminophenol (PAP), and then over 98.0 % of PAP could be effectively oxidized, in the meantime the removal rate of chemical oxygen demand (COD) was as high as 95.9 %. Based on the SEM and XPS characterizations, we found that C@ZVAl has exceptionally high reactivity that generates massive electrons and reduces PNP to PAP through accelerated electron transfer. In the subsequent oxidation step, PS can be rapidly activated by C@ZVAl to generate SO4- radicals for PAP oxidization. Meanwhile, the mineralization of COD proceeds. The temporal binding of reduction and oxidation can be regulated by varying the PS dosing time. Namely, the appropriate delay in PS dosing facilitates sufficient reduction to provide enough reactants for oxidation, favoring the mineralization of PNP and COD. More crucially, dinitrodiazophenol (DDNP) in an actual explosive wastewater without any pretreatment can be effectively mineralized by this sequential reduction-oxidation system, affirming the excellent performance of this process in practical applications. In conclusion, the C@ZVAl-PS based sequential reduction-oxidation looks very promising for enhanced mineralization of nitro-substituted organic contaminants.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yang Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shiying Yang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
6
|
Fang H, Yu Q, Jiang Y, Cai Y, Sun J, Chen B, Huang H, Li X, Dai S, Shi S, Wu Y, Cheng F. A high-flux, photocatalytic wood-derived filter for high-efficiency water purification. Int J Biol Macromol 2024; 279:135490. [PMID: 39255882 DOI: 10.1016/j.ijbiomac.2024.135490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/27/2024] [Accepted: 09/07/2024] [Indexed: 09/12/2024]
Abstract
Wastewater purification has evolved into a global problem in the face of increasing scarcity of freshwater resources. Photocatalysis technology possesses prominent advantages in treating pollutants in water because of its low cost and mild reaction conditions, which provides an effective way to treat multiple pollutants and reduce membrane fouling. Herein, we combine photocatalysis technology with filtration technology via in situ reduction Bi0 with Bi2SiO5 strategy incorporating a carbonized wood filter to synthesize carbon/Bi2SiO5@Bi bi-functional composite. Thus, simultaneous filtration and photocatalytic degradation of Rhodamine B and tetracycline were achieved. After filtrating for 30 min, the degradation rate of RhB and TC were 94.23 % and 81.39 %, respectively. Especially, the flux of RhB and TC were up to 2162.16 L m-2 h-1 and 1811.32 L m-2 h-1. In addition, the composite filter also has good recyclability and reusability, after 5 cycles, the degradation efficiency of RhB remains at 91 %. This study utilized photocatalytic technology combined with membrane filtration technology to successfully solve the contradiction between catalytic efficiency and water flux, which realized rapid and dynamic removal of organic pollutants from water. Besides, the use of carbonized wood-based materials provides a potential biomass technology for the preparation of bifunctional photocatalytic filters.
Collapse
Affiliation(s)
- Haohang Fang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Qianqian Yu
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, College of Chemistry and Bioengineering, Hechi University, Hechi 546300, China
| | - Yuheng Jiang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Yiyan Cai
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Jianping Sun
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Boxi Chen
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Houkai Huang
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Xin Li
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, College of Chemistry and Bioengineering, Hechi University, Hechi 546300, China
| | - Siyang Dai
- Guangxi Key Laboratory of Sericulture Ecology and Applied Intelligent Technology, College of Chemistry and Bioengineering, Hechi University, Hechi 546300, China
| | - Shaohong Shi
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| | - Yiqiang Wu
- College of Material Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China.
| | - Fangchao Cheng
- State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| |
Collapse
|
7
|
Ke Y, Fan Z, Mao J. In situ confined encapsulation of ultrafine Fe 2O 3 nanoclusters in N/S co-doped graphene-based membranes for continuous chemical conversion. RSC Adv 2024; 14:29464-29471. [PMID: 39297047 PMCID: PMC11409228 DOI: 10.1039/d4ra05273k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/10/2024] [Indexed: 09/21/2024] Open
Abstract
Membranes with catalytic function can provide an effective approach for simultaneously transforming reactants to industrial chemicals and separation. However, rational design of stable and high-quality catalytic membranes with controlled structure remains a big challenge. We report a strategy for in situ confined encapsulation of ultrafine Fe2O3 nanoclusters in nitrogen and sulfur co-doped graphene-based membranes for continuous chemical conversion. By manipulation of the active ferric catalytic center and surrounding coordination atoms in doped rGO nanosheets, multiple coordination structures were provided to achieve improved catalytic properties. Angstrom-level confined interlayer structure (∼8 Å) was constructed by external pressurization of Fe/NS-rGO nanosheets on membrane substrate, and the adsorption energy of 4-nitrophenol (4-NP) molecule between Fe/NS-rGO layers was much stronger than that in traditional nanometer-level confined space due to extra interactions, achieving the catalytic efficiency with a high Turnover Frequency (TOF) value (1596.0 h-1). The prepared ultrathin Fe/NS-rGO catalytic membrane also exhibited excellent water flux and rejection rate for small dye molecules, as well as long-term separation activity toward naphthol green B (NgB) for at least 130 h. The progress offers a viable route to the rational design of high-quality catalytic membranes with tailored structures and properties for wide applications.
Collapse
Affiliation(s)
- Yude Ke
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology Hangzhou 310014 China
| | - Zixuan Fan
- Key Laboratory of Bioinorganic and Synthetic Chemistry of Ministry of Education, School of Chemistry, Sun Yat-Sen University Guangzhou 510000 P. R. China
| | - Jingwen Mao
- Institute of Oceanic and Environmental Chemical Engineering, State Key Lab Breeding Base of Green Chemical Synthesis Technology, Zhejiang University of Technology Hangzhou 310014 China
| |
Collapse
|
8
|
Yang X, He Z, Jin L, Chen H, Li Q, Wu L, Huang Z, Wang M. Highly Efficient Electrospun Silver Decorated Graphene Oxide Nanocomposites on Poly(vinylidene fluoride) (PVDF@GO-Ag) Hybrid Membrane for Reduction of 4-Nitrophenol. Molecules 2024; 29:3930. [PMID: 39203008 PMCID: PMC11357165 DOI: 10.3390/molecules29163930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/14/2024] [Accepted: 08/19/2024] [Indexed: 09/03/2024] Open
Abstract
Graphene oxide-silver poly(vinylidene fluoride) membranes (PVDF@GO-Ag) were successfully synthesized by the electrospinning method, which exhibited a high catalytic activity using the hydrogenation of 4-nitrophenol (4-NP) as a model reaction in a batch reaction study. The hybrid membranes doped with 1 wt% GO and 2 wt% Ag (PVDF-1-2) exhibited the most desired performance for the catalytic reduction of 4-NP. Importantly, PVDF-1-2 exhibited excellent cycling stability in 10 catalytic cycle tests and was highly amenable to separation. This property effectively addresses the significant challenges associated with the practical application of nanocatalysts. Furthermore, density-functional theory (DFT) calculations have demonstrated that the GO-Ag nanocomposites exhibit the strongest adsorption capacity for 4-NP- when a specific ratio of GO and Ag is achieved, accompanied by the loading of Ag nanoclusters onto GO. Additionally, the study demonstrated that an increase in temperature significantly accelerated the reaction rate, in line with the van't Hoff rule. This study provides an effective and environmentally friendly solution for the treatment of 4-NP in wastewater.
Collapse
Affiliation(s)
- Xiaoben Yang
- Key Laboratory of Biomass-Based Materials for Environment and Energy in Petroleum & Chemical Industries, School of Chemical Engineering and Pharmacy, School of Chemical and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (X.Y.); (Z.H.); (L.J.); (H.C.)
| | - Zhen He
- Key Laboratory of Biomass-Based Materials for Environment and Energy in Petroleum & Chemical Industries, School of Chemical Engineering and Pharmacy, School of Chemical and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (X.Y.); (Z.H.); (L.J.); (H.C.)
| | - Lei Jin
- Key Laboratory of Biomass-Based Materials for Environment and Energy in Petroleum & Chemical Industries, School of Chemical Engineering and Pharmacy, School of Chemical and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (X.Y.); (Z.H.); (L.J.); (H.C.)
| | - Huiyang Chen
- Key Laboratory of Biomass-Based Materials for Environment and Energy in Petroleum & Chemical Industries, School of Chemical Engineering and Pharmacy, School of Chemical and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (X.Y.); (Z.H.); (L.J.); (H.C.)
| | - Qianglin Li
- Department of Material and Environmental Engineering, Chengdu Technological University, Chengdu 611730, China
| | - Ling Wu
- Hubei Province Key Laboratory of Coal Conversion and New Carbon Materials, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China;
| | - Zhenghong Huang
- Key Laboratory of Advanced Materials Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China;
| | - Mingxi Wang
- Key Laboratory of Biomass-Based Materials for Environment and Energy in Petroleum & Chemical Industries, School of Chemical Engineering and Pharmacy, School of Chemical and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China; (X.Y.); (Z.H.); (L.J.); (H.C.)
| |
Collapse
|
9
|
Zhou S, Luo X, Zhang Y, Zhang Y, Wang D, Liu G, Gu P, Li Z. Quaternization of a Triphenylamine-Based Conjugated Porous Organic Polymer to Immobilize PtCl 62- for the Photocatalytic Reduction of 4-Nitrophenol. Inorg Chem 2024; 63:15024-15033. [PMID: 39083718 DOI: 10.1021/acs.inorgchem.4c01789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Photocatalytic reduction of 4-nitrophenol (4-NP) for converting it to nontoxic 4-aminophenol (4-AP) is one of the most efficient approaches for removing toxic 4-NP. Using porous organic polymers (POPs) as the support to immobilize noble metal catalysts has exhibited remarkable reduction performance but is rarely reported. Herein, a cationic triphenylamine-based POP was synthesized by quaternization to immobilize PtCl62- to prepare an efficient photocatalyst named DCM-TPA-Pt for the reduction of 4-NP to 4-AP in the presence of NaBH4. Different from reported methods which realize immobilization by doping or complexing, the support and PtCl62- are combined through electrostatic interaction with milder reaction conditions to produce a photocatalyst in this work. DCM-TPA-Pt shows excellent photocatalytic reduction performance, reaching 99.9% conversion within 3 min, and its pseudo-first-order constant is 0.0305 s-1, surpassing most of the reported photocatalysts. Moreover, DCM-TPA-Pt also exhibits equal reduction efficiency after five continuous cycles, which highlights its potential utilization in practical applications.
Collapse
Affiliation(s)
- Shiyuan Zhou
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Xiaobo Luo
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yan Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Yuzhe Zhang
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Danfeng Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Guangfeng Liu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Peiyang Gu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Zhongyu Li
- School of Environmental Science and Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
10
|
Hamza A, Ho KC, Chan MK. Recent development of substrates for immobilization of bimetallic nanoparticles for wastewater treatment: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:40873-40902. [PMID: 38839740 DOI: 10.1007/s11356-024-33798-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/20/2024] [Indexed: 06/07/2024]
Abstract
Bimetallic nanoparticles (BMNPs) have gained considerable attention due to their remarkable catalytic properties, making them invaluable in wastewater treatment applications. One of these challenges lies in the propensity of BMNPs to aggregate due to Van der Waals interactions, which can reduce their overall performance. Additionally, retrieving exhausted NPs from the treated solution for subsequent reuse remains a significant hurdle. Moreover, the leaching of NPs into the discharged wastewater can have harmful effects on humans as well as aquatic life. To overcome these issues, various substrates have been researched to maximize the efficiency and stability of the NPs. This review paper delves into the pivotal role of various substrates in immobilizing BMNPs, providing a comprehensive analysis of their performances, advantages, and drawbacks. The substrates encompass a diverse range of materials, including organic, inorganic, organic-inorganic, beads, fibers, and membranes. Each substrate type offers unique attributes, influencing the stability, efficiency, and recyclability of BMNPs. This review paper aims to provide an up-to-date and detailed analysis and comparison of the substrates used for the immobilization of BMNPs. This work further reviews the underlying mechanisms of the composites involved in treating pollutants from wastewater and how these mechanisms are enhanced by the synergistic effects produced by the substrate and BMNPs. Furthermore, the reusability and sustainability of these composites are discussed. Also, high-performing substrates are highlighted to give direction to future research focusing on the immobilization of BMNPs in the application of wastewater treatment.
Collapse
Affiliation(s)
- Ali Hamza
- Centre for Water Research, Faculty of Engineering and the Built Environment, SEGi University, Jalan Teknologi, Kota Damansara, 47810, Petaling Jaya, Selangor, Malaysia
| | - Kah Chun Ho
- School of Engineering, Faculty of Innovation and Technology, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia.
- Clean Technology Impact Lab, Taylor's University, 47500, Subang Jaya, Selangor, Malaysia.
| | - Mieow Kee Chan
- Centre for Water Research, Faculty of Engineering and the Built Environment, SEGi University, Jalan Teknologi, Kota Damansara, 47810, Petaling Jaya, Selangor, Malaysia
| |
Collapse
|
11
|
Jiang L, Zhu Y, Wei J, Ren H, Zhai H. Solubilization and structural changes of lignin in naked oat stems during subcritical water autohydrolysis. Int J Biol Macromol 2024; 265:130911. [PMID: 38492693 DOI: 10.1016/j.ijbiomac.2024.130911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 03/18/2024]
Abstract
In this study, the solubilization and structural changes of lignin in naked oat stems were investigated under subcritical water autohydrolysis systems (170-210 °C, 0.68-1.85 MPa). In this system, Hemicellulose was preferentially hydrolyzed in the liquid water at elevated temperatures, leading to the production of acetic acid and glucuronic acid, which acidified the reaction system. Under acidic and high-temperature conditions, lignin primarily underwent degradation and condensation reactions. At autohydrolysis temperatures below 190 °C and autohydrolysis pressures below 1.22 MPa, lignin degradation was predominant, realizing a maximum lignin removal of 47.8 % and breakage of numerous β-O-4 bonds from lignin. At autohydrolysis temperatures above 190 °C and autohydrolysis pressures above 1.22 MPa, lignin condensation dominated, with an increase in the amount of organic acids generated upon hemicellulose degradation, leading to condensation reactions with the degraded low-molecular-weight lignin. The degree of lignin condensation was positively correlated with the temperature of the reaction system. This study provides essential insights into the dynamic changes in the structure of lignin in both the hydrolysis residue and hydrolysis solution during subcritical water autohydrolysis.
Collapse
Affiliation(s)
- Long Jiang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Yanchen Zhu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Jiahui Wei
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Hao Ren
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China.
| | - Huamin Zhai
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
12
|
Pan Z, Liu X, Zhang Z, Xu F, Zhang X. Low-temperature pretreatment by AlCl 3-catalyzed 1,4-butanediol solution for producing 'ideal' lignin with super-high content of β-O-4 linkages. Int J Biol Macromol 2023; 253:127306. [PMID: 37813212 DOI: 10.1016/j.ijbiomac.2023.127306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/26/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
High contents of internal β-O-4 linkages in lignin are critical for high-yield production of high-value aromatic monomers by depolymerization. However, it remains great challenge due to lack of suitable protection strategy. In this work, a very effective lignin-first strategy was developed to produce ideal lignin with a super high content of β-O-4 linkages (up to 72 %) from poplar, in which the pretreatment was undertaken at low temperatures of 90-130 °C with the use of AlCl3-catalyzed 1, 4-butanediol solution. 2D-HSQC NMR spectra revealed that lignin β-O-4 linkages were protected from etherification of the OH group by 1, 4-butanediol at the α position of lignin aliphatic chains. Besides, the OH groups at the γ position of lignin was also etherified, leading the formation of a structure of Ph-CH=CHCH2O(CH2)4OH. Interestingly, structure protection facilitated the formation of lignin nanoparticles via self-assembly (<100 nm). In addition, it was observed from pyrolysis results that addition of 1, 4-butanediol remarkably protected the structure of lignin by avoiding condensation, promoting the production of aromatics. The cellulose-rich fraction possessed a high cellulose digestibility of 91.64 % by enzymatic hydrolysis at a cellulase dosage of 15 FPU/g cellulose, approximately 6-fold untreated poplar (15.91 %). This low-temperature lignin-first strategy was of great importance for multi-products biorefining lignocellulose because it leads to the production of both lignin with super high content of β-O-4 linkages for depolymerization and highly digestible cellulose for sugar production.
Collapse
Affiliation(s)
- Zhenying Pan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Xinyue Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Zhanying Zhang
- Centre for Agriculture and the Bioeconomy, Faculty of Science, School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, 2 George St, Brisbane, Qld 4000, Australia
| | - Feng Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China
| | - Xueming Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China; Engineering Research Center of Forestry Biomass Materials and Energy, Ministry of Education, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
13
|
Brown HK, El Haskouri J, Marcos MD, Ros-Lis JV, Amorós P, Úbeda Picot MÁ, Pérez-Pla F. Synthesis and Catalytic Activity for 2, 3, and 4-Nitrophenol Reduction of Green Catalysts Based on Cu, Ag and Au Nanoparticles Deposited on Polydopamine-Magnetite Porous Supports. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2162. [PMID: 37570480 PMCID: PMC10421209 DOI: 10.3390/nano13152162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/20/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023]
Abstract
This work reports on the synthesis of nine materials containing Cu, Ag, Au, and Ag/Cu nanoparticles (NPs) deposited on magnetite particles coated with polydopamine (PDA). Ag NPs were deposited on two PDA@Fe3O4 supports differing in the thickness of the PDA film. The film thickness was adjusted to impart a textural porosity to the material. During synthesis, Ag(I) was reduced with ascorbic acid (HA), photochemically, or with NaBH4, whereas Au(III), with HA, with the PDA cathecol groups, or NaBH4. For the material characterization, TGA, XRD, SEM, EDX, TEM, STEM-HAADF, and DLS were used. The catalytic activity towards reduction of 4-, 3- and 2-nitrophenol was tested and correlated with the synthesis method, film thickness, metal particle size and NO2 group position. An evaluation of the recyclability of the materials was carried out. In general, the catalysts prepared by using soft reducing agents and/or thin PDA films were the most active, while the materials reduced with NaBH4 remained unchanged longer in the reactor. The activity varied in the direction Au > Ag > Cu. However, the Ag-based materials showed a higher recyclability than those based on gold. It is worth noting that the Cu-containing catalyst, the most environmentally friendly, was as active as the best Ag-based catalyst.
Collapse
Affiliation(s)
- Helen K Brown
- Institut de Ciència dels Materials (ICMUV), c/Catedrático José Beltrán 2, Paterna, 46980 Valencia, Spain
| | - Jamal El Haskouri
- Institut de Ciència dels Materials (ICMUV), c/Catedrático José Beltrán 2, Paterna, 46980 Valencia, Spain
| | - María D Marcos
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de València-Universitat de València, Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
| | - José Vicente Ros-Lis
- Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Unidad Mixta Universitat Politècnica de València-Universitat de València, Universitat de València, Dr. Moliner 50, 46100 Burjassot, Spain
| | - Pedro Amorós
- Institut de Ciència dels Materials (ICMUV), c/Catedrático José Beltrán 2, Paterna, 46980 Valencia, Spain
| | - M Ángeles Úbeda Picot
- Departamento de Química Inorgànica, Universitat de València, Dr. Moliner 50, Burjassot, 46100 València, Spain
| | - Francisco Pérez-Pla
- Institut de Ciència dels Materials (ICMUV), c/Catedrático José Beltrán 2, Paterna, 46980 Valencia, Spain
| |
Collapse
|
14
|
Li Y, Bao X, Yang S, Li Q, Fan D, Wang H, Zhao D. Application potential of zero-valent aluminum in nitrophenols wastewater decontamination: Enhanced reactivity, electron selectivity and anti-passivation capability. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131313. [PMID: 36996543 DOI: 10.1016/j.jhazmat.2023.131313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/12/2023] [Accepted: 03/26/2023] [Indexed: 06/19/2023]
Abstract
Nitrophenols (NPs) are highly toxic and easy to accumulate to high concentrations (> 500 mg/L) in real wastewater. The nitro group contained in NPs is an electron-absorbing group that is easy to reduce and difficult to oxidize, so there is an urgent need to develop reduction removal technology. Zero-valent aluminum (ZVAl) is an excellent electron donor that can reductively transform various refractory pollutants. However, ZVAl is prone to rapid deactivation due to non-selective reactions with water, ions, etc. To overcome this critical limitation, we prepared a new type of carbon nanotubes (CNTs) modified microscale ZVAl, CNTs@mZVAl, through a facile mechanochemical ball milling method. CNTs@mZVAl had outstanding high reactivity in degrading p-nitrophenol even 1000 mg/L and showed up to 95.50% electron utilization efficiency. Moreover, CNTs@mZVAl was highly resistant to the passivation by dissolved oxygen, ions and natural organic matters coexisting in water matrix, and remained highly reactive after aging in the air for 10 days. Furthermore, CNTs@mZVAl could effectively remove dinitrodiazophenol from real explosive wastewater. The excellent performance of CNTs@mZVAl is due to the combination of selective adsorption of NPs and CNTs-mediated e-transfer. CNTs@mZVAl looks promising for the efficient and selective degradation of NPs, with broader prospects for real wastewater treatment.
Collapse
Affiliation(s)
- Yang Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiaojuan Bao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shiying Yang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering (MEGE), Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Qingdao 266100, China.
| | - Qianfeng Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Danyang Fan
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Hanchen Wang
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Dongye Zhao
- Department of Civil, Construction and Environmental Engineering, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA
| |
Collapse
|
15
|
Ran J, Wang X, Liu Y, Yin S, Li S, Zhang L. Microreactor-based micro/nanomaterials: fabrication, advances, and outlook. MATERIALS HORIZONS 2023. [PMID: 37139613 DOI: 10.1039/d3mh00329a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Micro/nanomaterials are widely used in optoelectronics, environmental materials, bioimaging, agricultural industries, and drug delivery owing to their marvelous features, such as quantum tunneling, size, surface and boundary, and Coulomb blockade effects. Recently, microreactor technology has opened up broad prospects for green and sustainable chemical synthesis as a powerful tool for process intensification and microscale manipulation. This review focuses on recent progress in the microreactor synthesis of micro/nanomaterials. First, the fabrication and design principles of existing microreactors for producing micro/nanomaterials are summarized and classified. Afterwards, typical examples are shown to demonstrate the fabrication of micro/nanomaterials, including metal nanoparticles, inorganic nonmetallic nanoparticles, organic nanoparticles, Janus particles, and MOFs. Finally, the future research prospects and key issues of microreactor-based micro/nanomaterials are discussed. In short, microreactors provide new ideas and methods for the synthesis of micro/nanomaterials, which have huge potential and inestimable possibilities in large-scale production and scientific research.
Collapse
Affiliation(s)
- Jianfeng Ran
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Xuxu Wang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Yuanhong Liu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Shaohua Yin
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Shiwei Li
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| | - Libo Zhang
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China.
- State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization, Kunming University of Science and Technology, Kunming, Yunnan 650093, China
- Key Laboratory of Unconventional Metallurgy, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
| |
Collapse
|
16
|
Han F, Wang W, Li D, Xu S, Sun Y, Lin L, Ma L, Li J, Li L. Green preparation of silver nanocluster composite AgNCs@CF- g-PAA and its application: 4-NP catalytic reduction and hydrogen production. RSC Adv 2023; 13:11807-11816. [PMID: 37077991 PMCID: PMC10106973 DOI: 10.1039/d3ra01245j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/22/2023] [Indexed: 04/21/2023] Open
Abstract
4-Nitrophenol (4-NP) is a serious organic environmental pollutant. Conversion of 4-nitrophenol to 4-aminophenol (4-AP) by catalytic hydrogenation is an effective solution. In this work, a catalyst (AgNCs@CF-g-PAA) loaded with silver nanoclusters (AgNCs) was prepared by radiation technique. Firstly, the template polyacrylic acid (PAA) was grafted onto the cotton fiber (CF) by radiation grafting technique to obtain a solid template (CF-g-PAA). After that, AgNCs were synthesized in situ on CF-g-PAA by radiation reduction, and the composite material AgNCs@CF-g-PAA was obtained directly. AgNCs@CF-g-PAA has an obvious photoluminescence phenomenon, which is attributed to the stable AgNCs binding to the carboxyl on the PAA molecular chain. Due to the extremely small size of AgNCs, AgNCs@CF-g-PAA has good catalytic characteristics. The prepared AgNCs@CF-g-PAA catalyst has a very high catalytic rate for the hydrogenation of 4-NP. Even at high concentrations of 4-NP, AgNCs@CF-g-PAA can still maintain a high catalytic rate. At the same time, the AgNCs@CF-g-PAA catalyst can also be used to catalyze the rapid hydrolysis of sodium borohydride, which is conducive to hydrogen production. In summary, we have prepared a practical catalyst AgNCs@CF-g-PAA with high catalytic performance based on cheap raw materials and a simple synthesis route, which provides a catalyst candidate for the treatment of water contaminant 4-NP and the production of hydrogen from sodium borohydride.
Collapse
Affiliation(s)
- Fei Han
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Wenrui Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Danyi Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Siyi Xu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Ying Sun
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lin Lin
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Lin Ma
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Jihao Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Wuwei Institute of New Energy Gansu 733000 China
| | - Linfan Li
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences Shanghai 201800 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Wuwei Institute of New Energy Gansu 733000 China
| |
Collapse
|