1
|
Zhu Y, Zhao S, Qi S, Zhang H, Zhang X, Li S, Wang X, Gu J, Zhang T, Xi H, Liu X. Effects of energetic compounds on soil microbial communities and functional genes at a typical ammunition demolition site. CHEMOSPHERE 2025; 370:143913. [PMID: 39647796 DOI: 10.1016/j.chemosphere.2024.143913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 10/30/2024] [Accepted: 12/06/2024] [Indexed: 12/10/2024]
Abstract
High concentrations of energetic compounds such as 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), and octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) in military-contaminated sites pose a serious threat to human health and ecosystems. Better understanding about their effects on microbial diversity and functional genes in soil of ammunition demolition sites is required. In this study, the information of soil microbial community composition was obtained by metagenomic sequencing, and the impacts of energetic compounds on microbial community structure at the level of functional genes and enzymes based on Nr (Non-Redundant Protein Sequence Database), KEGG (Kyoto Encyclopedia of Genes and Genomes), CAZy (Carbohydrate-Active enZymes Database) and other databases were discussed. The results showed that soil microbial diversity and functional gene abundance decreased significantly with the increase of the concentrations of energetic compounds. Conversely, the relative abundance of Proteobacteria increased significantly, reaching over 80% in the heavily TNT-contaminated area near explosive-wastewater pool. Furthermore, functional gene analysis indicated that Proteobacteria had an advantage in degrading energetic compounds, and thus had the potential to improve the soil quality at ammunition demolition sites. This study provides a scientific basis for the future remediation and management of contaminated soils at ammunition demolition sites, as well as for the selection of efficient degraders of energetic compounds.
Collapse
Affiliation(s)
- Yongbing Zhu
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China; State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Sanping Zhao
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Shuo Qi
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Huijun Zhang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Xinru Zhang
- Center Environmental Protection Technology Co., Ltd, Beijing, 100176, China
| | - Shangyi Li
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaohui Wang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jing Gu
- Center Environmental Protection Technology Co., Ltd, Beijing, 100176, China
| | - Tingting Zhang
- Department of Environmental Science and Engineering, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Hailing Xi
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Xiaodong Liu
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
2
|
Zhou Y, Wang C, Nie Y, Wu L, Xu A. 2,4,6-trinitrotoluene causes mitochondrial toxicity in Caenorhabditis elegans by affecting electron transport. ENVIRONMENTAL RESEARCH 2024; 252:118820. [PMID: 38555093 DOI: 10.1016/j.envres.2024.118820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/12/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
As a typical energetic compound widely used in military activities, 2,4,6-trinitrotoluene (TNT) has attracted great attention in recent years due to its heavy pollution and wide distribution in and around the training facilities, firing ranges, and demolition sites. However, the subcellular targets and the underlying toxic mechanism of TNT remain largely unknown. In this study, we explored the toxic effects of TNT biological reduction on the mitochondrial function and homeostasis in Caenorhabditis elegans (C. elegans). With short-term exposure of L4 larvae, 10-1000 ng/mL TNT reduced mitochondrial membrane potential and adenosine triphosphate (ATP) content, which was associated with decreased expression of specific mitochondrial complex involving gas-1 and mev-1 genes. Using fluorescence-labeled transgenic nematodes, we found that fluorescence expression of sod-3 (muls84) and gst-4 (dvls19) was increased, suggesting that TNT disrupted the mitochondrial antioxidant defense system. Furthermore, 10 ng/mL TNT exposure increased the expression of the autophagy-related gene pink-1 and activated mitochondrial unfolded protein response (mt UPR), which was indicated by the increased expression of mitochondrial stress activated transcription factor atfs-1, ubiquitin-like protein ubl-5, and homeobox protein dve-1. Our findings demonstrated that TNT biological reduction caused mitochondrial dysfunction and the development of mt UPR protective stress responses, and provided a basis for determining the potential risks of energetic compounds to living organisms.
Collapse
Affiliation(s)
- Yanping Zhou
- Center of Free Electron Laser & High Magnetic Field, Anhui University, Hefei, 230601, PR China
| | - Chunyan Wang
- Center of Free Electron Laser & High Magnetic Field, Anhui University, Hefei, 230601, PR China
| | - Yaguang Nie
- Center of Free Electron Laser & High Magnetic Field, Anhui University, Hefei, 230601, PR China.
| | - Lijun Wu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, PR China
| | - An Xu
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230601, PR China; Anhui Province Key Laboratory of Environmental Toxicology and Pollution Control Technology, High Magnetic Field Laboratory, HFIPS, Chinese Academy of Science, Anhui, Hefei, 230031, PR China.
| |
Collapse
|
3
|
Yang X, Yin ML, Huan ZL, Zhu YB, Zhao SP, Xi HL. Microecological characteristics of water bodies/sediments and microbial remediation strategies after 50 years of pollution exposure in ammunition destruction sites in China. ENVIRONMENTAL RESEARCH 2024; 251:118640. [PMID: 38479720 DOI: 10.1016/j.envres.2024.118640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 02/26/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
The effects of long-term ammunition pollution on microecological characteristics were analyzed to formulate microbial remediation strategies. Specifically, the response of enzyme systems, N/O stable isotopes, ion networks, and microbial community structure/function levels were analyzed in long-term (50 years) ammunition-contaminated water/sediments from a contamination site, and a compound bacterial agent capable of efficiently degrading trinitrotoluene (TNT) while tolerating many heavy metals was selected to remediate the ammunition-contaminated soil. The basic physical and chemical properties of the water/sediment (pH (up: 0.57-0.64), nitrate (up: 1.31-4.28 times), nitrite (up: 1.51-5.03 times), and ammonium (up: 7.06-70.93 times)) were changed significantly, and the significant differences in stable isotope ratios of N and O (nitrate nitrogen) confirmed the degradability of TNT by indigenous microorganisms exposed to long-term pollution. Heavy metals, such as Pb, Zn, Cu, Cd, Cs, and Sb, have synergistic toxic effects in ammunition-contaminated sites, and significantly decreased the microbial diversity and richness in the core pollution area. However, long-term exposure in the edge pollution area induced microorganisms to use TNT as a carbon and nitrogen sources for life activities and growth and development. The Bacteroidales microbial group was significantly inhibited by ammunition contamination, whereas microorganisms such as Proteobacteria, Acidobacteriota, and Comamonadaceae gradually adapted to this environmental stress by regulating their development and stress responses. Ammunition pollution significantly affected DNA replication and gene regulation in the microecological genetic networks and increased the risk to human health. Mg and K were significantly involved in the internal mechanism of microbial transport, enrichment, and metabolism of TNT. Nine strains of TNT-utilizing microbes were screened for efficient TNT degradation and tolerance to typical heavy metals (copper, zinc and lead) found in contaminated sites, and a compound bacterial agent prepared for effective repair of ammunition-contaminated soil significantly improved the soil ecological environment.
Collapse
Affiliation(s)
- Xu Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Mao-Ling Yin
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Zheng-Lai Huan
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Yong-Bing Zhu
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - San-Ping Zhao
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China
| | - Hai-Ling Xi
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, China.
| |
Collapse
|
4
|
Fang M, Sun Y, Zhu Y, Chen Q, Chen Q, Liu Y, Zhang B, Chen T, Jin J, Yang T, Zhuang L. The potential of ferrihydrite-synthetic humic-like acid composite as a soil amendment for metal-contaminated agricultural soil: Immobilization mechanisms by combining abiotic and biotic perspectives. ENVIRONMENTAL RESEARCH 2024; 250:118470. [PMID: 38373548 DOI: 10.1016/j.envres.2024.118470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/02/2024] [Accepted: 02/10/2024] [Indexed: 02/21/2024]
Abstract
In-situ passivation technique has attracted increasing attention for metal-contaminated agricultural soil remediation. However, metal immobilization mechanisms are mostly illustrated based on metal speciation changes and alterations in soil physicochemical properties from a macroscopic and abiotic perspective. In this study, a ferrihydrite-synthetic humic-like acid composite (FH-SHLA) was fabricated and applied as a passivator for a 90-day soil incubation. The heavy metals immobilization mechanisms of FH-SHLA were investigated by combining both abiotic and biotic perspectives. Effects of FH-SHLA application on soil micro-ecology were also evaluated. The results showed that the 5%FH-SHLA treatment significantly decreased the DTPA-extractable Pb, Cd and Zn by 80.75%, 46.82% and 63.63% after 90 days of incubation (P < 0.05), respectively. Besides, 5% FH-SHLA addition significantly increased soil pH, soil organic matter content and cation exchange capacity (P < 0.05). The SEM, FTIR, and XPS characterizations revealed that the abiotic metal immobilization mechanisms by FH-SHLA included surface complexation, precipitation, electrostatic attraction, and cation-π interactions. For biotic perspective, in-situ microorganisms synergistically participated in the immobilization process via sulfide precipitation and Fe mineral production. FH-SHLA significantly altered the diversity and composition of the soil microbial community, and enhanced the intensity and complexity of the microbial co-occurrence network. Both metal bioavailability and soil physiochemical parameters played a vital role in shaping microbial communities, while the former contributed more. Overall, this study provides new insight into the heavy metal passivation mechanism and demonstrates that FH-SHLA is a promising and environmentally friendly amendment for metal-contaminated soil remediation.
Collapse
Affiliation(s)
- Mingzhi Fang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yucan Sun
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yi Zhu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Qi Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Qianhui Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yifei Liu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, China
| | - Bing Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Tan Chen
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Jun Jin
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Ting Yang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China.
| | - Linlan Zhuang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, China
| |
Collapse
|
5
|
Wang JF, Huang JW, Cai ZX, Li QS, Sun YY, Zhou HZ, Zhu H, Song XS, Wu HM. Differential Nitrous oxide emission and microbiota succession in constructed wetlands induced by nitrogen forms. ENVIRONMENT INTERNATIONAL 2024; 183:108369. [PMID: 38070437 DOI: 10.1016/j.envint.2023.108369] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/26/2023] [Accepted: 12/03/2023] [Indexed: 01/25/2024]
Abstract
Nitrous oxide (N2O) emission during the sewage treatment process is a serious environmental issue that requires attention. However, the N2O emission in constructed wetlands (CWs) as affected by different nitrogen forms in influents remain largely unknown. This study investigated the N2O emission profiles driven by microorganisms in CWs when exposed to two typical nitrogen sources (NH4+-N or NO3--N) along with different carbon source supply (COD/N ratios: 3, 6, and 9). The results showed that CWs receiving NO3--N caused a slight increase in total nitrogen removal (by up to 11.8 %). This increase was accomplished by an enrichment of key bacteria groups, including denitrifiers, dissimilatory nitrate reducers, and assimilatory nitrate reducers, which enhanced the stability of microbial interaction. Additionally, it led to a greater abundance of denitrification genes (e.g., nirK, norB, norC, and nosZ) as inferred from the database. Consequently, this led to a gradual increase in N2O emission from 66.51 to 486.77 ug-N/(m2·h) as the COD/N ratio increased in CWs. Conversely, in CWs receiving NH4+-N, an increasing influent COD/N ratio had a negative impact on nitrogen biotransformation. This resulted in fluctuating trend of N2O emissions, which decreased initially, followed by an increase at later stage (with values of 122.87, 44.00, and 148.59 ug-N/(m2·h)). Furthermore, NH4+-N in the aquatic improved the nitrogen uptake by plants and promoted the production of more root exudates. As a result, it adjusted the nitrogen-transforming function, ultimately reducing N2O emissions in CWs. This study highlights the divergence in microbiota succession and nitrogen transformation in CWs induced by nitrogen form and COD/N ratio, contributing to a better understanding of the microbial mechanisms of N2O emission in CWs with NH4+-N or NO3--N at different COD/N ratios.
Collapse
Affiliation(s)
- Jun-Feng Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Jia-Wei Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Ze-Xiang Cai
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Qu-Sheng Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Yun-Yun Sun
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Huan-Zhan Zhou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Hui Zhu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Xin-Shan Song
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201600, China
| | - Hai-Ming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
6
|
Zhao K, Yang Y, Hou J, Liu H, Zhang Y, Wang Q, Christie P, Qi P, Liu W. Depth and contaminant-shaped bacterial community structure and assembly at an aged chlorinated aliphatic hydrocarbon-contaminated site. JOURNAL OF HAZARDOUS MATERIALS 2023; 452:131220. [PMID: 37003001 DOI: 10.1016/j.jhazmat.2023.131220] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/04/2023] [Accepted: 03/14/2023] [Indexed: 05/03/2023]
Abstract
Chlorinated aliphatic hydrocarbons (CAHs) are potentially toxic substances that have been detected in various contaminated environments. Biological elimination is the main technique of detoxifying CAHs in the contaminated sites, but the soil bacterial community at CAH-contaminated sites have been little investigated. Here, high-throughput sequencing analysis of soil samples from different depths (to 6 m depth) at an aged CAH-contaminated site has been conducted to investigate the community composition, function, and assembly of soil bacteria. The alpha diversity of the bacterial community significantly increased with increasing depth and bacterial community also became more convergent with increasing depth. Organohalide-respiring bacteria (OHRB) is considered keystone taxa to reduce the environmental stress of CAHs by reductive dechlorinate CAHs into nontoxic products, increases the alpha diversity of bacterial community and improves the stability of bacterial co-occurrence network. The high concentration of CAHs in deep soil and the stable anaerobic environment make deterministic processes dominate bacterial community assembly, while the topsoil is dominated by dispersal limitation. In general, CAHs at contaminated sites have a great impact on bacterial community, but the CAHs metabolic community acclimated in deep soil can reduce the environmental stress of CAHs, which provides foundation for the monitored natural attenuation technology in CAHs-contaminated sites.
Collapse
Affiliation(s)
- Ke Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210018, China
| | - Yuying Yang
- Jiangsu Chengran Environmental Restoration Engineering Co., Ltd, Nantong 226000, China
| | - Jinyu Hou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210018, China
| | - Haozhe Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210018, China
| | - Yun Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210018, China
| | - Qingling Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210018, China
| | - Peter Christie
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210018, China
| | - Peishi Qi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Wuxing Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210018, China.
| |
Collapse
|
7
|
Zhang H, Zhu Y, Wang S, Zhao S, Nie Y, Ji C, Wang Q, Liao X, Cao H, Liu X. Spatial-vertical variations of energetic compounds and microbial community response in soils from an ammunition demolition site in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 875:162553. [PMID: 36898332 DOI: 10.1016/j.scitotenv.2023.162553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/21/2023] [Accepted: 02/25/2023] [Indexed: 06/18/2023]
Abstract
Ammunition-related activities have caused severe energetic compound (EC) contamination and pose serious risks to ecosystems. However, little is known regarding the spatial-vertical variations of ECs or their migration in soils at ammunition demolition sites. Although the toxic effect of some ECs to microorganisms have been reported through laboratory simulations, the responses of indigenous microbial communities to ammunition demolition activities are unclear. In this study, the spatial-vertical variations of ECs in 117 topsoil samples and three soil profiles from a typical ammunition demolition site in China were studied. Heavy contamination of ECs was concentrated in the top soils of the work platforms, and ECs were also detected in the surrounding area and nearby farmland. ECs showed different migration characteristics in the 0-100 cm soil layer of the different soil profiles. Demolition activities and surface runoff play critical roles in the spatial-vertical variations and migration of ECs. These findings suggest that ECs are able to migrate from the topsoil to the subsoil and from the core demolition area to further ecosystems. The work platforms exhibited lower microbial diversity and different microbiota compositions compared to the surrounding areas and farmlands. Using the random forest analysis, pH and 1,3,5-trinitrobenzene (TNB) were characterized as the most important factors affecting microbial diversity. Network analysis revealed that Desulfosporosinus was highly sensitive to ECs and may be a unique indicator of EC contamination. These findings provide key information in understanding EC migration characteristics in soils and the potential threats to indigenous soil microorganisms in ammunition demolition sites.
Collapse
Affiliation(s)
- Huijun Zhang
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yongbing Zhu
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Shiyu Wang
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Sanping Zhao
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Yaguang Nie
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Chao Ji
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qing Wang
- State Key Laboratory of NBC Protection for Civilian, Beijing 102205, China
| | - Xiaoyong Liao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Hongying Cao
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaodong Liu
- Anhui Province Key Laboratory of Polar Environment and Global Change, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China; CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
8
|
Yao K, Cai A, Han J, Che R, Hao J, Wang F, Ye M, Jiang X. The characteristics and metabolic potentials of the soil bacterial community of two typical military demolition ranges in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162562. [PMID: 36871728 DOI: 10.1016/j.scitotenv.2023.162562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/25/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
The response mechanism of soil microbiota in military polluted sites can effectively indicate the biotoxicity of ammunition. In this study, two military demolition ranges polluted soils of grenades and bullet were collected. According to high-throughput sequencing, after grenade explosion, the dominant bacteria in Site 1 (S1) are Proteobacteria (97.29 %) and Actinobacteria (1.05 %). The dominant bacterium in Site 2 (S2) is Proteobacteria (32.95 %), followed by Actinobacteria (31.17 %). After the military exercise, the soil bacterial diversity index declined significantly, and the bacterial communities interacted more closely. The indigenous bacteria in S1 were influenced more compared to those in S2. According to the environmental factor analysis, the bacteria composition can easily be influenced by heavy metals and organic pollutants, including Cu, Pb, Cr and Trinitrotoluene (TNT). About 269 metabolic pathways annotated in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database were detected in bacterial communities, including nutrition metabolism (C, 4.09 %; N, 1.14 %; S, 0.82 %), external pollutant metabolism (2.52 %) and heavy metal detoxication (2.12 %), respectively. The explosion of ammunition changes the basic metabolism of indigenous bacteria, and heavy metal stress inhibits the TNT degradation ability of bacterial communities. The pollution degree and community structure influence the metal detoxication strategy at the contaminated sites together. Heavy metal ions in S1 are mainly discharged through membrane transporters, while heavy metal ions in S2 are mainly degraded through lipid metabolism and biosynthesis of secondary metabolites. The results obtained in this study can provide deep insight into the response mechanism of the soil bacterial community in military demolition ranges with composite pollutions of heavy metals and organic substances. CAPSULE: Heavy metal stress changed the composition, interaction and metabolism of indigenous communities in military demolition ranges, especially the TNT degradation process.
Collapse
Affiliation(s)
- Keyu Yao
- National Engineering Laboratory of Soil Nutrients Management, Pollution Control and Remediation Technologies, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Anjuan Cai
- Jiangsu Environmental Engineering Technology Co., Ltd, 210019, China
| | - Jin Han
- Jiangsu Environmental Engineering Technology Co., Ltd, 210019, China
| | - Ruijie Che
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Jiarong Hao
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Fenghe Wang
- Key Laboratory for Soft Chemistry and Functional Materials of Ministry of Education, Nanjing University of Science and Technology, Nanjing 210094, China; Jiangsu Province Engineering Research Center of Environmental Risk Prevention and Emergency Response Technology, School of Environment, Nanjing Normal University, Nanjing 210023, China.
| | - Mao Ye
- National Engineering Laboratory of Soil Nutrients Management, Pollution Control and Remediation Technologies, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Xin Jiang
- National Engineering Laboratory of Soil Nutrients Management, Pollution Control and Remediation Technologies, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|