1
|
Zeng S, Xia X, Zeng L, Fang Z, Zhang J, Li K, Sang D, Wang Y. Mechanical chemical pretreatment boosts K-N self-templating doping in lignocellulosic biomass pyrolysis biochar for efficient tetracycline removal. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125238. [PMID: 40203708 DOI: 10.1016/j.jenvman.2025.125238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/18/2025] [Accepted: 04/01/2025] [Indexed: 04/11/2025]
Abstract
Converting biomass resources into highly-active non-metallic biochar catalysts for efficient catalytic degradation of antibiotics provides a sustainable approach to biomass high-value utilization and organic pollution treatment. During biochar pyrolysis, endogenous minerals and nitrogen-rich components disperse uniformly. This promotes the formation of high-activity sites, thus enhancing the catalytic performance for persulfate (PS). However, the inherent properties and limitations of these two components pose obstacles to the precise synthesis of biochar. Herein, N-doped biochar catalysts were prepared using peanut-hull as a lignocellulosic carbon source with KHCO3 and melamine as external modifiers. Interestingly, through an easy and green mechanochemical milling pretreatment, exogenous modifiers are uniformly grafted into the inner layers of lignocellulose. This pretreatment enables potassium and nitrogen to exhibit self-templating and self-doping synergies during pyrolysis, and leads to an effect similar to annealing. As a result, the produced biochar has abundant disordered edge defects of graphene layers (DEG), graphitic-N, and a high surface area (2223.9 m2·g-1). In the PS system, the prepared biochar (PBC-KN) can remove up to 99% of 100 mg·L-1 tetracycline (TC) within 3 min, and it is endowed with good environmental adaptability and potential for practical application. Electrochemical experiments and density functional theory (DFT) calculations show that DEG and graphite-N polarize the electron distribution on biochar surface. This promotes the formation of metastable complexes and enables efficient degradation of TC via electron transfer pathways. This finding presents a novel green synthetic strategy for high-value conversion of biomass into antibiotic remediation materials with high active uniform nitrogen-doped sites.
Collapse
Affiliation(s)
- Shaoyi Zeng
- College of Engineering, Nanjing Agricultural University, Nanjing, 210031, PR China
| | - Xu Xia
- College of Engineering, Nanjing Agricultural University, Nanjing, 210031, PR China
| | - Lingru Zeng
- College of Engineering, Nanjing Agricultural University, Nanjing, 210031, PR China
| | - Zhenkai Fang
- College of Engineering, Nanjing Agricultural University, Nanjing, 210031, PR China
| | - Jiayong Zhang
- College of Engineering, Nanjing Agricultural University, Nanjing, 210031, PR China
| | - Kunquan Li
- College of Engineering, Nanjing Agricultural University, Nanjing, 210031, PR China.
| | - Dazhi Sang
- College of Engineering, Nanjing Agricultural University, Nanjing, 210031, PR China
| | - Yanjin Wang
- College of Environment Economics, Henan Finance University, Zhengzhou, 450046, PR China.
| |
Collapse
|
2
|
Di X, Zeng X, Zhang X, Tang T, Zhao Z, Wang W, Liu Z, Jin L, Ji X, Shao X. Nitrogen-phosphorus codoped biochar prepared from tannic acid for degradation of trace antibiotics in wastewater. ENVIRONMENTAL RESEARCH 2025; 266:120589. [PMID: 39672491 DOI: 10.1016/j.envres.2024.120589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/15/2024]
Abstract
This study was designed to develop a one-step pyrolysis process that could efficiently activate peroxymonosulfate (PMS) and degrade tetracycline hydrochloride (TCH) by producing N, and P codoped carbon materials (NPTC3-800). Furthermore, it exhibited a high specific surface area (658 cm2 g-1), a larger pore volume (0.3 cm3 g-1), and a certain content of heteroatoms (nitrogen and phosphorus). PMS-activated NPTC3-800 attained a TCH removal efficiency of over 90% within 40 min, with an observed rate constant (kobs) of 0.0307 min-1. Similarly, the materials exhibited strong resistance to ionic interferences and showed broad applicability across various water bodies. Mobility experiments were conducted to further assess the stability of catalyst (92%, 40 h). Non-radical oxidation pathways, particularly including the singlet oxygen (1O2), were evidenced to play dominant roles in TCH degradation, as demonstrated by electron paramagnetic resonance (EPR) observations and experiments with free radical quenching. Theoretical calculations demonstrated that the N and P codoped domains substantially improve TCH removal compared to pure biochar. Finally, the proposed degradation pathways for TCH were identified, and the resulting degradation products demonstrated reduced biological toxicity.
Collapse
Affiliation(s)
- Xixi Di
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, PR China
| | - Xia Zeng
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, PR China
| | - Xiaoyu Zhang
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, PR China
| | - Tian Tang
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, PR China
| | - Zuoping Zhao
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, PR China
| | - Wei Wang
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, PR China
| | - Zhifeng Liu
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, PR China
| | - Lingxia Jin
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, PR China.
| | - Xiaohui Ji
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, PR China
| | - Xianzhao Shao
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, PR China.
| |
Collapse
|
3
|
Zhang Y, Li M, Shi Y, Zhang H, Deng H, Xia D. Efficient activation of peroxymonosulfate by N-doped waste herb senna obtusifolia biochar for degrading NPX: Synergistic effect of carbonyl and nitrogen sites. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123207. [PMID: 39509981 DOI: 10.1016/j.jenvman.2024.123207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/26/2024] [Accepted: 11/01/2024] [Indexed: 11/15/2024]
Abstract
In this work, waste herb senna obtusifolia was utilized as the biochar precursor, and a N-doped biochar (NSOBC-6) was prepared to activate peroxymonosulfate (PMS) for degrading Naproxen (NPX). NSOBC-6 exhibited superior catalytic performance in activating PMS, which could degrade NPX completely within 60 min. The NSOBC-6/PMS system also had good reusability and effectiveness under a wide range of pH values and high salinity conditions. The significant contribution of singlet oxygen (1O2) and superoxide radicals (O2•-) in NPX degradation was revealed. The results of XPS and DFT calculations indicated C=O, pyridinic-N and graphitic-N participated as catalytic sites in the degradation of NPX. The differences in electron density and the ELUMO-EHOMO (ΔELUMO-HOMO) gap were induced by N doping, enhancing the PMS activation capacity of NSOBC-6. This work presented a strategy to convert waste herbal into functional biochar materials, which was of great significance for the development of green and efficient catalysts.
Collapse
Affiliation(s)
- Yaqi Zhang
- Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, PR China
| | - Meng Li
- Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, PR China; Textile Pollution Controlling Engineering Centre of Ministry of Ecology and Environment, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Yintao Shi
- Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, PR China; School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, PR China.
| | - Hao Zhang
- Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, PR China
| | - Huiyuan Deng
- Hubei Provincial Spatial Planning Research Institute, Wuhan, 430064, PR China
| | - Dongsheng Xia
- Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, PR China.
| |
Collapse
|
4
|
Jiao M, Shi Y, Li M, Zhang H, Li S, Deng H, Xia D. The surface functional groups-driven fast and catalytic degradation of naproxen on sludge biochar enhanced by citric acid. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124857. [PMID: 39214447 DOI: 10.1016/j.envpol.2024.124857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/22/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
In this work, a sludge biochar (CA-SBC-300) with efficient activation of peroxymonosulfate (PMS) was prepared by citric acid modification. CA-SBC-300 achieved efficient degradation of naproxen (NPX) (95.5%) within 10 min by activating PMS. This system was highly resilient to common disruptive factors such as inorganic anions, humic acid (HA) and solution pH. The results of XPS and Raman showed that the content of oxygenated functional groups (OFGs) and the degree of defects on the sludge biochar increased after citric acid modification, which may be an important reason for the enhanced catalytic performance of SBC. In the CA-SBC-300/PMS system, 1O2 and O2•- made the main contributions to the degradation of NPX. XPS analysis and DFT calculations demonstrated that C=O/C-O and pyridine N on CA-SBC-300 were the crucial active sites for PMS activation. According to the results of UPLC-MS analysis, three possible pathways for NPX degradation were inferred. This study provided a feasible strategy for sludge resource utilization combined with efficient catalytic degradation of toxic organic contaminants in wastewater.
Collapse
Affiliation(s)
- Min Jiao
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, PR China; Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, PR China
| | - Yintao Shi
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, PR China; Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, PR China.
| | - Meng Li
- Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, PR China; Textile Pollution Controlling Engineering Centre of Ministry of Ecology and Environment, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, PR China
| | - Hao Zhang
- Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, PR China
| | - Shasha Li
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, PR China
| | - Huiyuan Deng
- Hubei Provincial Spatial Planning Research Institute, Wuhan, 430064, PR China
| | - Dongsheng Xia
- Engineering Research Center Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, PR China.
| |
Collapse
|
5
|
Zhao Y, Qiao L, Zhang M, Xiao Y, Tao Y, Yang F, Lin Q, Zhang Y. Roles of BOCu sites and graphite nitrogen on persulfate non-radical activation for tetracycline degradation. J Colloid Interface Sci 2024; 673:178-189. [PMID: 38871625 DOI: 10.1016/j.jcis.2024.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/24/2024] [Accepted: 06/04/2024] [Indexed: 06/15/2024]
Abstract
The activation of peroxymonosulfate (PMS) by carbon-based catalysts is deemed to be a promising method for the degradation of refractory organic contaminants in wastewater. Herein, a Cu-doping strategy in B and N co-doped carbon nanotubes with highly dispersed BOCu sites and graphite nitrogen were successfully synthesized for activating PMS to degradate tetracycline. The best removal rate of tetracycline within 60 min (97.63 %) was obtained by the 1.5 % Cu-BNC and the degradation rate was increased by 17.9 times. The enhanced catalyst activity was attributed to the promoting the cycle of the Cu(I)/Cu(II) redox pair by the formed BOCu sites, and the accelerating the electron transfer process by the adsorption of graphitic N for PMS. The non-free radical pathway including 1O2 and electron transfer played a dominant role in the 1.5 % Cu-BNC/PMS system. The degradation intermediates of TC were identified and three possible degradation pathways were proposed. Further toxicity analysis of the intermediates showed that the 1.5 % Cu-BNC/PMS system had a significant effect on weakening and reducing the biological toxicity and mutagenicity of TC. Moreover, it presented an excellent degradation performance in raw natural water. In general, the proposed regulation of carbon-based catalysts via the coordination-driven effect provides ideas for efficient wastewater treatment.
Collapse
Affiliation(s)
- Yue Zhao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China
| | - Lu Qiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China
| | - Mingjuan Zhang
- School of Earth and Environment, Anhui University of Science and Technology, Huainan 232001, China
| | - Yao Xiao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China
| | - Yani Tao
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China
| | - Furong Yang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China
| | - Qian Lin
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China
| | - Yi Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha, Hunan 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha, Hunan 410082, China.
| |
Collapse
|
6
|
Deng Z, Ma Y, Zhu J, Zeng C, Mu R, Zhang Z. Ferrate (VI) oxidation of sulfamethoxazole enhanced by magnetized sludge-based biochar: Active sites regulation and degradation mechanism analysis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124681. [PMID: 39134167 DOI: 10.1016/j.envpol.2024.124681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/29/2024] [Accepted: 08/04/2024] [Indexed: 08/24/2024]
Abstract
Developing non radical systems for antibiotic degradation is crucial for addressing the inefficiency of conventional radical systems. In this study, novel magnetic-modified sludge biochar (MASBC) was synthesized to significantly enhance the oxidative degradation of sulfamethoxazole (SMX) by ferrate (Fe (VI)). In the Fe (VI)/MASBC system, 90.46% of SMX at a concentration of 10 μM and 49.34% of the total organic carbon (TOC) could be removed under optimal conditions of 100 μM of Fe (VI) and 0.40 g/L of MASBC within 10 min. Furthermore, the Fe (VI)/MASBC system was demonstrated with broad-spectrum removal capability towards sulfonamides in single or mixture. Quenching experiments, EPR analyses, and electrochemical experiments revealed that direct electron transfer (DET) and •O2- were mainly responsible for the removal of SMX, with functional groups (e.g., -OH, C=O) and Fe-O (redox of Fe (III)/Fe (II)) acting as the active sites, while the probe experiments showed that Fe (IV)/Fe (V) made a minor contribution to the degradation of SMX. Benefiting from the DET, the Fe (VI)/MASBC system exhibited a wide pH adaptation range (e.g., from 5.0 to 10.0) and strong anti-interference ability. The N atoms and their neighboring atoms in SMX were the prior degradation sites, with the cleavage of bond and ring opening. The degradation products showed low or non-toxicity according to ECOSAR program assessment. The removal of SMX remained within a reasonable range of 71.33%-90.46% over five consecutive cycles. Also, the Fe (VI)/MASBC system was demonstrated to be effectively applied for successful SMX removal in various water matrices, including ultrapure water, tap water, lake water, Yangtze River water, and wastewater. Therefore, this study offered new insights into the mechanism of Fe (VI) oxidation and would contribute to the efficient treatment of organic pollutants.
Collapse
Affiliation(s)
- Zhikang Deng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yongfei Ma
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China; Xianghu Laboratory, Hangzhou, 311231, China
| | - Jinyao Zhu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Chenyu Zeng
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China; Xianghu Laboratory, Hangzhou, 311231, China
| | - Rui Mu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK.
| |
Collapse
|
7
|
Pan M, He Z, Yang X. Functional biochar accelerates peroxymonosulfate activation for organic contaminant degradation via the specific B-C-N configuration. CHEMOSPHERE 2024; 365:143202. [PMID: 39218261 DOI: 10.1016/j.chemosphere.2024.143202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Functional biochar designed with heteroatom doping facilitates the activation of peroxymonosulfate (PMS), triggering both radical and non-radical systems and thus augmenting pollutant degradation efficiency. A sequence of functional biochar, derived from hyperaccumulator (Sedum alfredii) residues, was synthesized via sequential doping with boron and nitrogen. The SABC-B@N-2 exhibited outstanding catalytic effectiveness in activating PMS to degrade the model pollutant, acid orange 7 (Kobs = 0.0655 min-1), which was 6.75 times more active than the pristine biochar and achieved notable mineralization efficiency (71.98%) at reduced PMS concentration (0.1 mM). Relative contribution evaluations, using steady-state concentrations combined with electrochemical and in situ Raman analyses, reveal that co-doping with boron and nitrogen alters the reaction pathway, transitioning from PMS activation through multiple reactive oxygen species (ROSs) to a predominantly non-radical process facilitated by electron transfer. Moreover, the previously misunderstood concept that singlet oxygen (1O2) plays a central role in the degradation of AO7 has been clarified. Correlation analysis and density functional theory calculations indicate that the distinct BCN configuration, featuring the BC2O group and pyridinic-N, is fundamental to the active site. This research substantially advances the sustainability of phytoremediation by offering a viable methodology to synthesize highly catalytic functional biochar utilizing hyperaccumulator residues.
Collapse
Affiliation(s)
- Minghui Pan
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Zhenli He
- Indian River Research and Education Center, Institute of Food and Agricultural Science, University of Florida, Fort Pierce, FL, 34945, USA
| | - Xiaoe Yang
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, 310058, Hangzhou, China.
| |
Collapse
|
8
|
Li R, Huang D, Tao J, Wei Z, Wang G, Zhou W, Xu W, Huang H, Li S, Tang L. In-Depth Investigation of Role of -BCO 2 in the Degradation of Sulfamethazine by Metal-Free Biochar/Persulfate: The Mechanism of Occurrence of Nonradical Process. ACS APPLIED MATERIALS & INTERFACES 2024; 16:44850-44862. [PMID: 39159305 DOI: 10.1021/acsami.4c08749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
The remediation of organic wastewater through advanced oxidation processes (AOPs) based on metal-free biochar/persulfate systems has been extensively researched. In this work, boron-doped alkali lignin biochar (BKC1:3) was utilized to activate peroxymonosulfate (PMS) for the removal of sulfamethazine (SMZ). The porous structure and substantial specific surface area of BKC1:3 facilitated the adsorption and thus degradation of SMZ. The XPS characterization and density functional theory (DFT) calculations demonstrated that -BCO2 was the main active site of BKC1:3, which dominated the occurrence of nonradical pathways. Neither quenching experiments nor EPR characterization revealed the generation of free radical signals. Compared with KC, BKC1:3 possessed more electron-rich regions. The narrow energy gap (ΔEgap = 1.87 eV) of BKC (-BCO2) promoted the electron transfer to the substable complex (BKC@PMS*) on SMZ, driving the electron transfer mechanism. In addition, the adsorption energy of BKC(-BCO2)@PMS was lower (-0.75 eV → -5.12 eV), implying a more spontaneous adsorption process. The O-O (PMS) bond length in BKC(-BCO2)@PMS increased significantly (1.412 Å → 1.481 Å), which led to the easier decomposition of PMS during adsorption and facilitated the generation of 1O2. More importantly, a combination of Gaussian and LC-MS techniques was hypothesized regarding the attack sites and degradation intermediates of the active species in this system. The synergistic T.E.S.T software and toxicity tests predicted low or even no toxicity of the intermediates. Overall, this study proposed a strategy for the preparation of metal-free biochar, aiming to inspire ideas for the treatment of organic-polluted wastewater through advanced oxidation processes (AOPs).
Collapse
Affiliation(s)
- Ruijin Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Danlian Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Jiaxi Tao
- ShenZhen Water (Group) Co., LTD, ShenZhen 518000, PR China
| | - Zhen Wei
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Guangfu Wang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Wei Zhou
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Wenbo Xu
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Hai Huang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Sai Li
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Lin Tang
- College of Environmental Science and Engineering, Hunan University, Changsha, 410082, PR China
- Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
9
|
Zhang R, Ding A, Cai X, Bai L, Li G, Liang H, Tang CY. Enhancement of waterborne pathogen removal by functionalized biochar with ε-polylysine ″dynamic arms″: Potential application in ultrafiltration system. WATER RESEARCH 2024; 259:121834. [PMID: 38820729 DOI: 10.1016/j.watres.2024.121834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/16/2024] [Accepted: 05/23/2024] [Indexed: 06/02/2024]
Abstract
Widespread outbreaks of threatening infections caused by unknown pathogens and water transmission have spawned the development of adsorption methods for pathogen elimination. We proposed a biochar functionalization strategy involving ε-polylysine (PLL), a bio-macromolecular poly(amino acid)s with variable folding conformations, as a "pathogen gripper" on biochar. PLL was successfully bridged onto biochar via polydopamine (PDA) crosslinking. The extension of electropositive side chains within PLL enables the capture of both nanoscale viruses and micrometer-scale bacteria in water, achieving excellent removal performances. This functionalized biochar was tentatively incorporated into ultrafiltration (UF) system, to achieve effective and controllable adsorption and retention of pathogens, and to realize the transfer of pathogens from membrane surface/pore to biochar surface as well as flushing water. The biochar-amended UF systems presents complete retention (∼7 LRV) and hydraulic elution of pathogens into membrane flushing water. Improvements in removal of organics and anti-fouling capability were observed, indicating the broken trade-off in UF pathogen removal dependent on irreversible fouling. Chemical characterizations revealed adsorption mechanisms encompassing electrostatic/hydrophobic interactions, pore filling, electron transfer, chemical bonding and secondary structure transitions. Microscopic and mechanical analyses validated the mechanisms for rapid adsorption and pathogen lysis. Low-concentration alkaline solution for used biochar regeneration, facilitated the deprotonation and transformation of PLL side chain to folded structures (α-helix/β-sheet). Biochar regeneration process also promoted the effective detachment/inactivation of pathogens and protection of functional groups on biochar, corroborated by physicochemical inspection and molecular dynamics simulation. The foldability of poly(amino acid)s acting like dynamic arms, significantly contributed to pathogen capture/desorption/inactivation and biochar regeneration. This study also inspires future investigation for performances of UF systems amended by poly(amino acid)s-functionalized biochar under diverse pressure, temperature, reactive oxygen species of feeds and chemical cleaning solutions, with far-reaching implications for public health, environmental applications of biochar, and UF process improvement.
Collapse
Affiliation(s)
- Rourou Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District 150090, Harbin, PR China
| | - An Ding
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District 150090, Harbin, PR China.
| | - Xuejun Cai
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, Guangzhou Medical University, Guangzhou, PR China
| | - Langming Bai
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District 150090, Harbin, PR China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District 150090, Harbin, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, 73 Huanghe Road, Nangang District 150090, Harbin, PR China
| | - Chuyang Y Tang
- Department of Civil Engineering, The University of Hong Kong, Pokfulam, Hong Kong SAR 999077, PR China
| |
Collapse
|
10
|
Jiang X, Meng S, Nan Z. Singlet Oxygen Formation Mechanism for the H 2O 2-Based Fenton-like Reaction Catalyzed by the Carbon Nitride Homojunction. Inorg Chem 2024; 63:6701-6713. [PMID: 38563144 DOI: 10.1021/acs.inorgchem.3c04626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The singlet oxygen (1O2) oxidation process activated by metal-free catalysts has recently attracted considerable attention for organic pollutant degradation; however, the 1O2 formation remains controversial. Simultaneously, the catalytic activity of the metal-free catalyst limits the practical application. In this study, carbon nitride (HCCN) containing an intramolecular homojunction, a kind of metal-free catalyst, exhibits excellent activity compared to g-C3N4 (CN) and crystalline carbon nitride (HCN) for tetracycline hydrochloride degradation through the H2O2-based Fenton-like reaction. The rate constant for HCCN increased about 16.1 and 8.9 times than that of CN and HCN, respectively. The activity of HCCN was enhanced, and the dominant reactive oxygen species (ROS) changed from hydroxyl radicals (•OH) to 1O2 with an increase in pH from 4.5 to 11.5. A novel formation pathway of 1O2 was revealed. This result is different from the normal reference, in which •OH is always the primary ROS in the H2O2-based Fenton-like reaction. This study may provide a possible strategy for the investigation on the nonradical oxidation process in the Fenton-like reaction.
Collapse
Affiliation(s)
- Xuan Jiang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Suhang Meng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Zhaodong Nan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
11
|
Yao C, Wang B, Zhang J, Faheem M, Feng Q, Hassan M, Zhang X, Lee X, Wang S. Formation mechanisms and degradation methods of polycyclic aromatic hydrocarbons in biochar: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120610. [PMID: 38581889 DOI: 10.1016/j.jenvman.2024.120610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/22/2024] [Accepted: 03/10/2024] [Indexed: 04/08/2024]
Abstract
Biochar has been widely used in soil amendment and environmental remediation. Polycyclic aromatic hydrocarbons (PAHs) could be produced in preparation of biochar, which may pose potential risks to the environment and human health. At present, most studies focus on the ecotoxicity potential of biochar, while there are few systematic reviews on the formation mechanisms and mitigation strategies of PAHs in biochar. Therefore, a systematical understanding of the distribution, formation mechanisms, risk assessment, and degradation approaches of PAHs in biochar is highly needed. In this paper, the distribution and content of the total and bioavailable PAHs in biochar are reviewed. Then the formation mechanisms, influencing factors, and potential risk assessment of PAHs in biochar are systematically explored. After that, the effective strategies to alleviate PAHs in biochar are summarized. Finally, suggestions and perspectives for future studies are proposed. This review provides a guide for reducing the formation of biochar-associated PAHs and their toxicity, which is beneficial for the development and large-scale safe use of environmentally friendly biochar.
Collapse
Affiliation(s)
- Canxu Yao
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China; Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China.
| | - Jian Zhang
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guiyang, Guizhou, 550025, China
| | - Muhammad Faheem
- Department of Civil Infrastructure and Environment Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi, United Arab Emirates
| | - Qianwei Feng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Masud Hassan
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou, 550025, China
| | - Xueyang Zhang
- School of Environmental Engineering, Xuzhou University of Technology, Xuzhou, Jiangsu, 221018, China
| | - Xinqing Lee
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, 550081, China
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu, 225127, China
| |
Collapse
|
12
|
Brillas E, Peralta-Hernández JM. Antibiotic removal from synthetic and real aqueous matrices by peroxymonosulfate-based advanced oxidation processes. A review of recent development. CHEMOSPHERE 2024; 351:141153. [PMID: 38219991 DOI: 10.1016/j.chemosphere.2024.141153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/27/2023] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
The widespread use of antibiotics for the treatment of bacteriological diseases causes their accumulation at low concentrations in natural waters. This gives health risks to animals and humans since it can increase the damage of the beneficial bacteria, the control of infectious diseases, and the resistance to bacterial infection. Potent oxidation methods are required to remove these pollutants from water because of their inefficient abatement in municipal wastewater treatment plants. Over the last three years in the period 2021-September 2023, powerful peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs) have been developed to guaranty the effective removal of antibiotics in synthetic and real waters and wastewater. This review presents a comprehensive analysis of the different procedures proposed to activate PMS-producing strong oxidizing agents like sulfate radical (SO4•-), hydroxyl radical (•OH, radical superoxide ion (O2•-), and non-radical singlet oxygen (1O2) at different proportions depending on the experimental conditions. Iron, non-iron transition metals, biochar, and carbonaceous materials catalytic, UVC, photocatalytic, thermal, electrochemical, and other processes for PMS activation are summarized. The fundamentals and characteristics of these procedures are detailed remarking on their oxidation power to remove antibiotics, the influence of operating variables, the production and detection of radical and non-radical oxidizing agents, the effect of added inorganic anions, natural organic matter, and aqueous matrix, and the identification of by-products formed. Finally, the theoretical and experimental analysis of the change of solution toxicity during the PMS-based AOPs are described.
Collapse
Affiliation(s)
- Enric Brillas
- Laboratori d'Electroquímica dels Materials i del Medi Ambient, Departament de Ciència de Materials i Química Física, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028, Barcelona, Spain.
| | - Juan M Peralta-Hernández
- Departamento de Química, DCNE, Universidad de Guanajuato, Cerro de La Venada s/n, Pueblito, United States.
| |
Collapse
|
13
|
Murtaza G, Ahmed Z, Valipour M, Ali I, Usman M, Iqbal R, Zulfiqar U, Rizwan M, Mahmood S, Ullah A, Arslan M, Rehman MHU, Ditta A, Tariq A. Recent trends and economic significance of modified/functionalized biochars for remediation of environmental pollutants. Sci Rep 2024; 14:217. [PMID: 38167973 PMCID: PMC10762257 DOI: 10.1038/s41598-023-50623-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
The pollution of soil and aquatic systems by inorganic and organic chemicals has become a global concern. Economical, eco-friendly, and sustainable solutions are direly required to alleviate the deleterious effects of these chemicals to ensure human well-being and environmental sustainability. In recent decades, biochar has emerged as an efficient material encompassing huge potential to decontaminate a wide range of pollutants from soil and aquatic systems. However, the application of raw biochars for pollutant remediation is confronting a major challenge of not getting the desired decontamination results due to its specific properties. Thus, multiple functionalizing/modification techniques have been introduced to alter the physicochemical and molecular attributes of biochars to increase their efficacy in environmental remediation. This review provides a comprehensive overview of the latest advancements in developing multiple functionalized/modified biochars via biological and other physiochemical techniques. Related mechanisms and further applications of multiple modified biochar in soil and water systems remediation have been discussed and summarized. Furthermore, existing research gaps and challenges are discussed, as well as further study needs are suggested. This work epitomizes the scientific prospects for a complete understanding of employing modified biochar as an efficient candidate for the decontamination of polluted soil and water systems for regenerative development.
Collapse
Affiliation(s)
- Ghulam Murtaza
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
| | - Zeeshan Ahmed
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, Xinjiang, China.
- Xinjiang Institute of Ecology and Geography, Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Chinese Academy of Sciences, Xinjiang, 848300, China.
| | - Mohammad Valipour
- Department of Engineering and Engineering Technology, Metropolitan State University of Denver, Denver, CO, 80217, USA
| | - Iftikhar Ali
- Center for Plant Science and Biodiversity, University of Swat, Charbagh, Pakistan
| | - Muhammad Usman
- Department of Botany, Government College University, Katcheri Road, Lahore, 54000, Punjab, Pakistan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Rashid Iqbal
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Usman Zulfiqar
- Department of Agronomy, Faculty of Agriculture and Environment, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Muhammad Rizwan
- School of Energy Science and Engineering, Central South University, Changsha, 410011, China
| | - Salman Mahmood
- Faculty of Economics and Management, Southwest Forestry, Kunming, Yunnan, 650224, China
| | - Abd Ullah
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, Xinjiang, China
- Xinjiang Institute of Ecology and Geography, Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Chinese Academy of Sciences, Xinjiang, 848300, China
| | - Muhammad Arslan
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany.
| | - Muhammad Habib Ur Rehman
- Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
- Department of Seed Science and Technology, Institute of Plant Breeding and Biotechnology (IPBB), MNS-University of Agriculture, Multan, Pakistan
| | - Allah Ditta
- Department of Environmental Sciences, Shaheed Benazir Bhutto University Sheringal Dir (U), KPK, Sheringal, Pakistan.
- School of Biological Sciences, The University of Western Australia, Perth, WA, 6009, Australia.
| | - Akash Tariq
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, 830011, Xinjiang, China
- Xinjiang Institute of Ecology and Geography, Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Chinese Academy of Sciences, Xinjiang, 848300, China
| |
Collapse
|
14
|
Liu X, Hao Z, Fang C, Pang K, Yan J, Huang Y, Huang D, Astruc D. Using waste to treat waste: facile synthesis of hollow carbon nanospheres from lignin for water decontamination. Chem Sci 2023; 15:204-212. [PMID: 38131073 PMCID: PMC10732141 DOI: 10.1039/d3sc05275c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Lignin, the most abundant natural material, is considered as a low-value commercial biomass waste from paper mills and wineries. In an effort to turn biomass waste into a highly valuable material, herein, a new-type of hollow carbon nanospheres (HCNs) is designed and synthesized by pyrolysis of biomass dealkali lignin, as an efficient nanocatalyst for the elimination of antibiotics in complex water matrices. Detailed characterization shows that HCNs possess a hollow nanosphere structure, with abundant graphitic C/N and surface N and O-containing functional groups favorable for peroxydisulfate (PDS) activation. Among them, HCN-500 provides the maximum degradation rate (95.0%) and mineralization efficiency (74.4%) surpassing those of most metal-based advanced oxidation processes (AOPs) in the elimination of oxytetracycline (OTC). Density functional theory (DFT) calculations and high-resolution mass spectroscopy (HR-MS) were employed to reveal the possible degradation pathway of OTC elimination. In addition, the HCN-500/PDS system is also successfully applied to real antibiotics removal in complex water matrices (e.g. river water and tap water), with excellent catalytic performances.
Collapse
Affiliation(s)
- Xiang Liu
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Zixuan Hao
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Chen Fang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Kun Pang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Jiaying Yan
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Yingping Huang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Di Huang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Didier Astruc
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
- ISM, UMR CNRS N°5255, Université de Bordeaux 351 Cours de la Libération, 33405 Talence Cedex France
| |
Collapse
|
15
|
Huang J, Zhu Y, Bian H, Song L, Liu Y, Lv Y, Ye X, Lin C, Li X. Insights into Enhanced Peroxydisulfate Activation with B and Fe Co-Doped Biochar from Bark for the Rapid Degradation of Guaiacol. Molecules 2023; 28:7591. [PMID: 38005313 PMCID: PMC10674898 DOI: 10.3390/molecules28227591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
A boron and iron co-doped biochar (B-Fe/biochar) from Masson pine bark was fabricated and used to activate peroxydisulfate (PDS) for the degradation of guaiacol (GL). The roles of the dopants and the contribution of the radical and non-radical oxidations were investigated. The results showed that the doping of boron and iron significantly improved the catalytic activity of the biochar catalyst with a GL removal efficiency of 98.30% within 30 min. The degradation of the GL mainly occurred through the generation of hydroxyl radicals (·OHs) and electron transfer on the biochar surface, and a non-radical degradation pathway dominated by direct electron transfer was proposed. Recycling the B-Fe/biochar showed low metal leaching from the catalyst and satisfactory long-term stability and reusability, providing potential insights into the use of metal and non-metal co-doped biochar catalysts for PDS activation.
Collapse
Affiliation(s)
- Jian Huang
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China; (J.H.); (Y.Z.); (L.S.); (Y.L.); (Y.L.); (X.Y.)
| | - Yu Zhu
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China; (J.H.); (Y.Z.); (L.S.); (Y.L.); (Y.L.); (X.Y.)
| | - Huiyang Bian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China;
| | - Liang Song
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China; (J.H.); (Y.Z.); (L.S.); (Y.L.); (Y.L.); (X.Y.)
| | - Yifan Liu
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China; (J.H.); (Y.Z.); (L.S.); (Y.L.); (Y.L.); (X.Y.)
| | - Yuancai Lv
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China; (J.H.); (Y.Z.); (L.S.); (Y.L.); (Y.L.); (X.Y.)
| | - Xiaoxia Ye
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China; (J.H.); (Y.Z.); (L.S.); (Y.L.); (Y.L.); (X.Y.)
| | - Chunxiang Lin
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China; (J.H.); (Y.Z.); (L.S.); (Y.L.); (Y.L.); (X.Y.)
| | - Xiaojuan Li
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China; (J.H.); (Y.Z.); (L.S.); (Y.L.); (Y.L.); (X.Y.)
| |
Collapse
|
16
|
Li M, Ma M, Zhao Z, Bao M, Zhang N, Zhou Y, Zheng Y. Simultaneous degradation of binary fluoroquinolone antibiotics by B and N in-situ self-doped guar gum hydrogel. CHEMOSPHERE 2023; 342:140197. [PMID: 37717915 DOI: 10.1016/j.chemosphere.2023.140197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 09/19/2023]
Abstract
Using guar gum (GG) as the raw material and borax (B) as the cross-linker, zeolitic imidazolate framework-8 (ZIF-8) was in-situ loaded into the 3D network of GG hydrogel, forming a highly efficient catalytic material GG-B-ZIF-8 combined with a subsequent low-temperature calcination process. In GG-B-ZIF-8 activated peroxymonosulfate (PMS) system, binary norfloxacin (NOR) and ciprofloxacin (CIP) could be removed simultaneously, with the degradation efficiency of >99.9% within 1 h. This system was adaptable to a wide pH range of 3.0-9.0, and was also highly resistant to 5-20 mM Cl- and 10-40 mg/L humic acid. The degradation process was dominated by free radical O2•-, non-radical 1O2 and electron transfer, with eleven degradation products identified for NOR and nine for CIP via eight possible degradation pathways. Finally, the potential eco-toxicity of NOR, CIP and degradation intermediates was evaluated using the ECOSAR method.
Collapse
Affiliation(s)
- Mingzhe Li
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Mengling Ma
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Ziwei Zhao
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Mingkun Bao
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Nan Zhang
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yun Zhou
- Radiation Environmental Monitoring Station of Hainan Province, Haikou, 571126, China.
| | - Yian Zheng
- Gansu Key Laboratory for Environmental Pollution Prediction and Control, College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
17
|
Hung CM, Chen CW, Huang CP, Dong CD. Effects of pyrolysis conditions and heteroatom modification on the polycyclic aromatic hydrocarbons profile of biochar prepared from sorghum distillery residues. BIORESOURCE TECHNOLOGY 2023:129295. [PMID: 37311529 DOI: 10.1016/j.biortech.2023.129295] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/04/2023] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
The formation of 2- to 6-ring polycyclic aromatic hydrocarbons (PAHs) in sorghum distillery residue-derived biochar (SDRBC) was evaluated under different thermochemical pyrolysis conditions of carbonization atmosphere (N2 or CO2), temperature (300-900 °C) and doping with nonmetallic elements, i.e., N, B, O, P, N + B, and N + S. The results indicated that without surface modification, PAHs formation was 944 ± 74 ng g-1, the highest level, and 181 ± 16 ng g-1, the lowest level, at 300 °C in N2 and CO2 atmosphere, respectively. Boron doping of SDRBC significantly reduced the PAHs content (by 97%) under N2 at 300 °C. Results demonstrated that boron modified SDRBC exhibited the highest degree of PAH reduction. Combined pyrolysis temperature and atmosphere in addition to heteroatom doping is a robust and viable strategy for efficient suppression of PAHs formation and high-value utilization of pyrolysis products of low carbon footprint.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
18
|
Magnetic pyro-hydrochar derived from waste cartons as an efficient activator of peroxymonosulfate for antibiotic dissipation. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|