1
|
Tanaka YK, Hasegawa S, Ogra Y. Evaluation of elemental impurities and particle size distribution in nanomedicine using asymmetric flow field-flow fractionation hyphenated to inductively coupled plasma mass spectrometry. Talanta 2025; 293:128116. [PMID: 40233535 DOI: 10.1016/j.talanta.2025.128116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 03/19/2025] [Accepted: 04/08/2025] [Indexed: 04/17/2025]
Abstract
Nanomedicines, which consist of nanoparticles as active ingredients, have been developed and approved for pharmaceutical use. However, no method has been established to quantify ions and nanoparticles containing the same elements separately. We developed an asymmetric flow field-flow fractionation hyphenated to inductively coupled plasma mass spectrometry (AF4-ICP-MS) to assess elemental impurities from ions and nanoparticles of different sizes. Our method effectively removed silicon (Si) ions from a mixture of Si ions and silica nanoparticles. For iron (Fe), we observed that 28.5 % of Fe ions were converted into insoluble hydroxide colloids in a diluted solution at neutral pH. Nevertheless, we could separate Fe ions from iron oxide nanoparticles and iron hydroxide colloids converted from Fe ions. We applied this method to Resovist®, a nanomedicine composed of carboxydextran-coated iron oxide nanoparticles, and found that 0.022 % of Fe was present in ionic form. The particle size of Resovist® was also evaluated using AF4-ICP-MS, which applies to nano-to submicron-size particles. The active ingredient in Resovist® had a particle size smaller than 30 nm, and some aggregated particles exhibited a hydrodynamic diameter of approximately 50 nm. Our findings indicate that AF4-ICP-MS can evaluate the physicochemical properties of nanomedicines, which are essential for their quality, efficacy, and toxicity.
Collapse
Affiliation(s)
- Yu-Ki Tanaka
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba, 260-8675, Japan
| | - Sana Hasegawa
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba, 260-8675, Japan
| | - Yasumitsu Ogra
- Graduate School of Pharmaceutical Sciences, Chiba University, 1-8-1 Inohana, Chuo, Chiba, 260-8675, Japan.
| |
Collapse
|
2
|
Loan TTH, Anh TT, Hai VH, Phuong HT, Van Thang N, Ba VN. Evaluation of heavy metal content in agricultural soil samples in the Mekong Delta region, VietNam and human health risks. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2025; 47:170. [PMID: 40221602 DOI: 10.1007/s10653-025-02428-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 03/01/2025] [Indexed: 04/14/2025]
Abstract
Salinity intrusion due to climate change, together with industrialization and farming activities, has increased the heavy metal content in soil, causing serious risks to ecosystems and human health. In this study, neutron analysis was applied to determine the metal content in soil samples, exposure dose, pollution index, and multivariate statistical analysis was used to evaluate the characteristics of each area. The results showed that the Zn content (235 mg/kg) in Soc Trang and Cr (213 mg/kg) in An Giang exceeded the permissible limit of Vietnam. Notably, the enrichment factor of U (Kien Giang) elements increased by 5.66 times compared to the background level. Although most elements tended to be enriched, metals such as As went against this trend. Principal component analysis revealed distinct regional distributions of observed variables in soils, while hierarchical clustering (AHC) and correlations between metals revealed strong associations between them in the environment. Children are at higher risk of both cancer and non-cancer events than adults when exposed to heavy metals and environmental pollutants through ingestion, dermal absorption, and inhalation.
Collapse
Affiliation(s)
- Truong Thi Hong Loan
- Faculty of Physics and Engineering Physics, University of Science, Ho Chi Minh City, 700000, Vietnam
- Nuclear Technique Laboratory, University of Science, Ho Chi Minh City, 700000, Vietnam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Tran Tuan Anh
- Dalat Nuclear Research Institute, Dalat, 66000, Vietnam
| | - Vo Hong Hai
- Faculty of Physics and Engineering Physics, University of Science, Ho Chi Minh City, 700000, Vietnam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Huynh Truc Phuong
- Faculty of Physics and Engineering Physics, University of Science, Ho Chi Minh City, 700000, Vietnam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Nguyen Van Thang
- Faculty of Physics and Engineering Physics, University of Science, Ho Chi Minh City, 700000, Vietnam
- Nuclear Technique Laboratory, University of Science, Ho Chi Minh City, 700000, Vietnam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam
| | - Vu Ngoc Ba
- Faculty of Physics and Engineering Physics, University of Science, Ho Chi Minh City, 700000, Vietnam.
- Nuclear Technique Laboratory, University of Science, Ho Chi Minh City, 700000, Vietnam.
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, 700000, Vietnam.
| |
Collapse
|
3
|
Dong W, Liu C, Lin GB, Zhang YC, Li HB, Juhasz AL, Liu C, Ma LQ. Chromium Oral Bioavailability in 16 Contaminated Soils from Different Sources: Mouse Model Development and Cr Speciation in Soil and Mouse Tissues. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:4318-4329. [PMID: 40017172 DOI: 10.1021/acs.est.4c12079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Soil contamination by chromium (Cr) has attracted much public attention due to its ubiquity in the environment and toxicity to humans, with hexavalent CrVI being more toxic and mobile than trivalent CrIII. In this study, 16 soils contaminated from different sources were chosen to determine their Cr accumulation in mouse tissues and changes in Cr speciation in soils, and mouse intestinal contents, organs and excreta based on a steady-state mouse model. The Cr accumulation in mouse organs after exposing to CrVI was 1.6-2.6 fold greater than those exposing to CrIII. Further, Cr relative bioavailability (RBA) was measured using a mouse urinary excretion bioassay. Results show that Cr via oral digestion was mainly accumulated in the kidneys, with Cr-RBA in soils being 5.12-50.0%, averaging 15.6%. Besides soil properties, variation in Cr-RBA also depended on its contamination sources, with soils near electronic waste dismantling and tannery sites showing greater values. Further, instead of the CrVI contents in contaminated soils, Cr-RBA was closely related to the unreduced CrVI contents in mouse intestines, with 90.1% of CrVI being reduced before its absorption. This study helps to evaluate the health risks associated with Cr-contaminated soils by measuring Cr-RBA via a newly developed mouse model and its influence by Cr speciation. Our data suggest a potential risk associated with incidental exposure to Cr-contaminated soils via an oral pathway.
Collapse
Affiliation(s)
- Wenjie Dong
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Can Liu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Guo-Bing Lin
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuan-Chen Zhang
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hong-Bo Li
- State Key Laboratory of Pollution Control and Resource Reuse, Jiangsu Key Laboratory of Vehicle Emissions Control, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Albert L Juhasz
- Future Industries Institute, University of South Australia, Mawson Lakes, Adelaide, South Australia 5095, Australia
| | - Chenjing Liu
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lena Q Ma
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
4
|
Xia Y, Wen Y, Yang Y, Song X, Wang Y, Zhang Z. Exploring bio-remediation strategies by a novel bacteria Micrococcus sp. strain HX in Cr(VI)-contaminated groundwater from long-term industrial polluted. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117474. [PMID: 39644576 DOI: 10.1016/j.ecoenv.2024.117474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/25/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Hexavalent chromium (Cr(VI)) has emerged as a contaminant of heavy metal, owing to its wide use in industry. This study focuses on elucidating the interaction between microbial communities and environmental parameters in Cr(VI)-contaminated groundwater near a factory in Henan Province, and evaluating the bio-remediation potential of microorganisms toward Cr(VI) reduction. The highest concentration of Cr(VI) in the groundwater is 208.08 mg/L. The dominant microbes were Proteobacteria and Bacteroidota, closely positively related to Cr(VI) and SO42-. Many of these genus have been proven to be chromium tolerant or have the ability to reduce Cr(VI). Two strains, Micrococcus sp. HX and Bacillus sp. HX-2, were isolated from contaminated groundwater, and Micrococcus sp. HX was used for the first time to reduce Cr(VI) in groundwater. The reduced ability of HX reached 90.18 % at a Cr(VI) concentration of 100 mg/L, while HX-2 achieved a reduction capacity of 63.8 %. Micrococcus sp. HX shows the best reduction efficiency in alkaline environments (ph=8), which is close to the tannery industry wastewater. The reduction efficiency by Micrococcus sp. HX reached 67.26 % in groundwater samples (Cr(VI)= 26.08 mg/L). Transcriptome analyses revealed oxidoreductase activity, ATP binding and the NAD(P) binding region protein-related gene expression were up-regulated. Binding reduction experiments indicated that most of the Cr(III) was detected extracellular, which suggests that the reduction of Cr(VI) by HX was mainly extracellular enzyme-catalyzed.
Collapse
Affiliation(s)
- Yu Xia
- Key Laboratory of Regional Environment and Eco-restoration (Shenyang University), Ministry of Education, Shenyang University, Shenyang 110044, China
| | - Yujuan Wen
- Key Laboratory of Regional Environment and Eco-restoration (Shenyang University), Ministry of Education, Shenyang University, Shenyang 110044, China; Northeast Geological S&T Innovation Center of China Geological Survey, Shenyang University, Shenyang 110044, China; Key Laboratory of Black Soil Evolution and Ecological Effect, Ministry of Natural Resources, China.
| | - Yuesuo Yang
- Key Laboratory of Regional Environment and Eco-restoration (Shenyang University), Ministry of Education, Shenyang University, Shenyang 110044, China; Key Laboratory of Groundwater Resources and Environment (Jilin University), Ministry of Education, Changchun 130021, China
| | - Xiaoming Song
- Key Laboratory of Regional Environment and Eco-restoration (Shenyang University), Ministry of Education, Shenyang University, Shenyang 110044, China
| | - Yunlong Wang
- Key Laboratory of Regional Environment and Eco-restoration (Shenyang University), Ministry of Education, Shenyang University, Shenyang 110044, China
| | - Zhipeng Zhang
- Sichuan Geological Environment Survey and Research Center, Sichuan 610000, China
| |
Collapse
|
5
|
Liu T, Wei R, Li J, Xie W, Sun S, Deng T, Wang S, Tang Y, Lin Q, Ni Z, Qiu R. Fe (hydr)oxides and organic colloids mediate colloid-bound chromium mobilization in Cr(VI) contaminated paddy soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125045. [PMID: 39357552 DOI: 10.1016/j.envpol.2024.125045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/14/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
The association of chromium (Cr) with colloidal particles transport in contaminated sites can affect hexavalent chromium (Cr(VI)) migration and transformation, which is an important mechanism for Cr pollutants in soil and groundwater systems. Here, we investigated colloid and particle-bound Cr migration and transformation effects on rice Cr accumulation during different rice growth stages and different redox conditions in Cr(VI) contaminated soil by pot experiment. Results showed that 13-29% of soil Cr was water dispersible colloid-bound (100-1000 nm) form during rice growth. Using transmission electron microscopy - energy dispersion spectroscopy and asymmetric flow field - flow separation, we identified colloid-bound organic matter (OM) and iron (Fe), most likely in the form of Fe (hydr)oxides - clay composites, as the primary Cr carrier. Specifically, colloid-bound Cr was mainly associated with 125-350 nm soil particle size. Under different redox conditions, colloid- and nanoparticle-bound Cr concentration decreased with increasing nanoparticles zero-valent iron (nZVI) dose. Soil reoxidation promoted the colloid- and nanoparticle-bound Cr release due to the weakly crystalline Fe-(hydr)oxides reprecipitation. Further quantitative analysis showed that colloid-bound Cr concentrations were positively correlated with colloid-bound Mn concentrations during the whole rice growth soils. Most important of all, Cr content in rice grain was positively correlated with colloid-bound Cr significantly. This study provides a quantitative and size-resolved understanding of particle-bound Cr in paddy soils, highlighting the importance of colloid-bound Cr and Fe interactions in Cr geochemical cycle of paddy soil.
Collapse
Affiliation(s)
- Ting Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Ran Wei
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Jingjing Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Weipeng Xie
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Shengsheng Sun
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Tenghaobo Deng
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Shizhong Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yetao Tang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Qingqi Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China.
| | - Zhuobiao Ni
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| |
Collapse
|
6
|
Liu J, Tang L, Peng Z, Gao W, Xiang C, Chen W, Jiang J, Guo J, Xue S. The heterogeneous distribution of heavy metal(loid)s at a smelting site and its potential implication on groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174944. [PMID: 39047821 DOI: 10.1016/j.scitotenv.2024.174944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/01/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
The downward migration of soil heavy metal(loid)s (HMs) at smelting sites poses a significant risk to groundwater. Therefore, it is requisite for pollution control to determine the pollution characteristics of soil HMs and their migration risks to groundwater. 198 soil samples collected from a Pb-Zn smelting site were classified into 6 clusters by self-organizing map (SOM) and K-means clustering. Cd, Zn, As, and Pb were identified as the characteristic contaminants of the site. The driving factors for the heterogeneous distribution of HMs have been validated through the implementation of K-means clustering and multiple-hits calculation. Using ultrafiltration extraction and microscopic analysis, the soil colloids were identified as crucial carriers facilitating the migration of HMs. Specifically, the colloidal fractions of Cd, Zn, and As, Pb in deep soil (3-4 m) accounted for 91 %, 78 %, 88 %, and 82 %, respectively, consistently surpassing those found in topsoil (0-0.5 m). It was primarily attributed to the strong affinity of HMs toward soil colloids (franklinite, PbS, and kaolinite) and dissolved organic matter (humic acids and protein). The research findings highlight the potential risk of colloidal HMs to groundwater contamination, providing valuable insights for the development of targeted management and remediation strategies.
Collapse
Affiliation(s)
- Jie Liu
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Lu Tang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Zhihong Peng
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Wenyan Gao
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Chao Xiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Wenwan Chen
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Jun Jiang
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China
| | - Junkang Guo
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha 410083, PR China; School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| |
Collapse
|
7
|
Chen L, Yu H, Wang X, Zhu H. Re-yellowing of chromium-contaminated soil after reduction-based remediation: Effects and mechanisms of extreme natural conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171538. [PMID: 38453066 DOI: 10.1016/j.scitotenv.2024.171538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/18/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Chromium (VI) in soil poses a significant threat to the environment and human health. Despite efforts to remediate Cr contaminated soil (Cr-soil), instances of re-yellowing have been observed over time. To understand the causes of re-yellowing as well as the influence of overdosed chemical reductant in remediating Cr-soil, experiments on excess reducing agent interference and soil re-yellowing mechanisms under different extreme conditions were conducted. The results show that the USEPA method 3060A & 7196A combined with K2S2O8 oxidation is an effective approach to eliminate interference from excess FeSO4 reducing agents. The main causes of re-yellowing include the failure of reducing agents, disruption of soil lattice, and interactions between manganese oxides and microorganisms. Under various extreme conditions simulated across the four seasons, high temperature and drought significantly accelerated the failure of reducing agents, resulting in the poorest remediation effectiveness for Cr-soil (91.75 %). Dry-wet cycles promoted the formation of soil aggregates, negatively affecting Cr(VI) removal. While these extreme conditions caused relatively mild re-yellowing (9.46 %-16.79 %) due to minimal soil lattice damage, the potential risk of re-yellowing increases with the failure of reducing agents and the release of Cr(VI) within the lattice. Prolonged exposure to acid rain leaching and freeze-thaw cycles disrupted soil structure, leading to substantial leaching and reduction of insoluble Cr, resulting in optimal remediation effectiveness (94.37 %-97.73 %). As reducing agents gradually and the involvement of the water medium, significant re-yellowing occurred in the remediated soil (51.52 %). Mn(II) in soil enriched relevant microorganisms, and the Mn(IV)-mediated biological oxidation process was also one of the reasons for soil re-yellowing.
Collapse
Affiliation(s)
- Long Chen
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Huilin Yu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China
| | - Xingrun Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Hongtao Zhu
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
8
|
Bai Z, Li T, Zhang S, Wang G, Xu X, Zhou W, Pan X, Pu Y, Jia Y, Yang Z, Long L. Effects of climate and geochemical properties on the chemical forms of soil Cd, Pb and Cr along a more than 4000 km transect. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133746. [PMID: 38341885 DOI: 10.1016/j.jhazmat.2024.133746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/15/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Soil heavy metal speciation has received much attention for their different ecological and environmental effects. However, the effects of climate and soil geochemical properties on them in uncontaminated soils at macroscale were still unclear. Therefore, a transect more than 4000 km was chosen to study the effects of these factors on soil Cd, Pb and Cr forms. The results revealed that mean annual temperature and precipitation showed significant positive relations with the exchangeable and Fe-Mn oxide bound states of Cd, Pb and Cr, and residual Cr. And humidity and drought indexes were significantly positively correlated with their organic and carbonate bound forms, respectively. As for soil geochemical properties, pH displayed significant negative relationships with exchangeable, Fe-Mn oxide and organic bound Pb and Cr, and exchangeable Cd. Fe2O3 was significantly positively with the exchangeable and Fe-Mn oxide bound Cd, Pb and Cr, and residual Cr. And soil organic matter showed positive relations with organic bound Pb and Cr, and residual Cd and Cr, displayed negative relationships with carbonated bound Pb and Cr. Overall, climate and soil geochemical properties together affect the transformation and transport of heavy metals between different forms in uncontaminated soils.
Collapse
Affiliation(s)
- Zhiqiang Bai
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang 611130, PR China; Sichuan Provincial Key Laboratory of Soil Environmental Protection, Wenjiang 611130, PR China
| | - Ting Li
- College of Resources, Sichuan Agricultural University, Wenjiang 611130, PR China
| | - Shirong Zhang
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang 611130, PR China; Sichuan Provincial Key Laboratory of Soil Environmental Protection, Wenjiang 611130, PR China.
| | - Guiyin Wang
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang 611130, PR China; Sichuan Provincial Key Laboratory of Soil Environmental Protection, Wenjiang 611130, PR China
| | - Xiaoxun Xu
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang 611130, PR China
| | - Wei Zhou
- College of Resources, Sichuan Agricultural University, Wenjiang 611130, PR China
| | - Xiaomei Pan
- Chengdu Agricultural College, Wenjiang 611130, PR China
| | - Yulin Pu
- College of Resources, Sichuan Agricultural University, Wenjiang 611130, PR China
| | - Yongxia Jia
- College of Resources, Sichuan Agricultural University, Wenjiang 611130, PR China
| | - Zhanbiao Yang
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang 611130, PR China
| | - Lulu Long
- College of Environmental Sciences, Sichuan Agricultural University, Wenjiang 611130, PR China
| |
Collapse
|
9
|
Zhao R, Zhang X, Zhou Y, Li J, Guo B, Oyama K, Tokoro C. Influence of elevated temperature on the species and mobility of chromium in ferrous sulfate-amended contaminated soil. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120457. [PMID: 38503231 DOI: 10.1016/j.jenvman.2024.120457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/22/2023] [Accepted: 02/20/2024] [Indexed: 03/21/2024]
Abstract
Ferrous sulfate (FeSO4) combined with acid pretreatment is usually employed to remediate contaminated soils containing Cr(VI). However, the long-term efficiency of this stabilization method is important for its sustainability. In this study, a gradient temperature-elevating exposure test was employed to investigate the stability of Cr in FeSO4-remediated soil when exposed to elevated temperatures (40 °C, 120 °C, and 500 °C), possibly caused by hot weather and/or wildfires. The results of chemical extraction and X-ray absorption near edge structure spectroscopy (XANES) showed that the Cr(VI) in contaminated soil was successfully transformed to Cr(III) after stabilization, resulting in the dramatic decrease of water-leachable Cr(VI). The stabilization efficiency was further improved under 40 °C treatment after 30 days. Subsequently, the 120 °C treatment (7 days) had relatively little effect on the Cr speciation and mobility in soils. However, even one day of 500 °C calcination resulted in the deterioration of stabilization efficiency, and the water-leachable Cr(VI) re-increased and became higher than the Chinese environmental standards (total Cr 15 mg/L, Cr(VI) 5 mg/L) for the classification of hazardous solid wastes. XANES results reflected that heating at 500 °C facilitate the formation of Cr2O3, which was mainly caused by thermal decomposition and dehydration of Cr(OH)3 in the soil. Besides, the transformation of Cr species resulted in the enhanced association of Cr with the most stable residual fraction (88.3%-91.6%) in soil. Based on chemical extraction results, it was suggested that the oxidation of Cr(III) to Cr(VI) contributed to the re-increased mobility of Cr(VI) in soil. However, the XANES results showed that almost no significant re-oxidization of Cr(III) to Cr(VI) happened after heating at 500 °C, which was probably caused by XANES linear combination fits (LCF) uncertainties. Moreover, the changes in soil properties, including a rise in pH to a slightly alkaline range and/or the decomposition of organic matter, possibly contributed to the enhanced mobility of Cr(VI) in soil. This study contributes to clarifying the mobility and transformation of Cr in contaminated soils and provides a support for the sustainable management of remediated soils.
Collapse
Affiliation(s)
- Ruolin Zhao
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu province, 210023, China
| | - Xinqing Zhang
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu province, 210023, China
| | - Yiwen Zhou
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, Guangdong province, 510650, China
| | - Jining Li
- School of Environment, Nanjing Normal University, Nanjing, Jiangsu province, 210023, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, Guangdong province, 510650, China.
| | - Binglin Guo
- School of Civil Engineering, Hefei University of Technology, Hefei, Anhui province, 230009, China.
| | - Keishi Oyama
- Faculty of Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Chiharu Tokoro
- Faculty of Science and Engineering, Waseda University, Tokyo, 169-8555, Japan; Faculty of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| |
Collapse
|
10
|
Du Y, Shi L, Li X, Liu J, Ying R, Hu P, Wu L, Christie P. Potential mobilization of water-dispersible colloidal thallium and arsenic in contaminated soils and sediments in mining areas of southwest China. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133211. [PMID: 38101008 DOI: 10.1016/j.jhazmat.2023.133211] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/20/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023]
Abstract
Water-dispersible colloids (WDCs) are vital for trace element migration, but there is limited information about the abundance, size distribution and elemental composition of WDC-bound thallium (Tl) and arsenic (As) in mining-contaminated soils and sediments solutions. Here, we investigated the potential mobilization of WDC-bound Tl and As in soils and sediments in a typical Tl/As-contaminated area. Ultrafiltration results revealed on average > 60% of Tl and As in soil solution (< 220 nm) coexisted in colloidal form whereas Tl and As in sediment solution primarily existed in the truly dissolved state (< 10 kDa) due to increased acidity. Using AF4-UV-ICP-MS and STEM-EDS, we identified Fe-bearing WDCs in association with aluminosilicate minerals and organic matter were main carriers of Tl and As. SAED further verified jarosite nanoparticles were important components of soil WDC, directly participating in the migration of Tl and As. Notably, high pollution levels and solution pH promoted the release of Tl/As-containing WDCs. This study provides quantitative and visual insights into the distribution of Tl and As in WDC, highlighting the important roles of Fe-bearing WDC, soil solution pH and pollution level in the potential mobilization of Tl and As in contaminated soils and sediments.
Collapse
Affiliation(s)
- Yanpei Du
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Lingfeng Shi
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyang Li
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Juan Liu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Rongrong Ying
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China.
| | - Pengjie Hu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Longhua Wu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Peter Christie
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
11
|
Sun S, Deng T, Ao M, Mo Y, Li J, Liu T, Yang W, Jin C, Qiu R, Tang Y. Release of chromium from Cr(III)- and Ni(II)-substituted goethite in presence of organic acids: Role of pH in the formation of colloids and complexes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166979. [PMID: 37699483 DOI: 10.1016/j.scitotenv.2023.166979] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/14/2023]
Abstract
High levels of Cr(III) are hosted in Fe (oxyhydr)oxides in soils derived on (ultra)mafic rocks, which can pose potential risks to the environment. Organic acids can cause the solubilization of Fe (oxyhydr)oxides and the release of Cr(III). However, the release behaviors of Cr(III) from Fe (oxyhydr)oxides by organic acids and its main factors remain unclear. This study investigates the speciation of Cr released from Cr(III)-substituted goethite in the presence of citrate and oxalate and the effects of pH (3-7). Batch experiments showed that Fe(III) and Cr(III) dissolution were significantly enhanced by citrate and oxalate, and the extent of dissolution was negatively correlated with pH. When at relatively high pH (5-7), AF4-ICP-MS results revealed that large proportions of dissolved Fe (>58 %) and Cr (18 %-73 %) were presented in the form of Cr(III)-citrate colloids in the sizes of 1-125 nm and 125-350 nm. Further, FTIR and cryogenic XPS characterization demonstrated that the formation of·Cr(III)-citrate colloids was attributed to the adsorption and complexation of citrate on the substituted goethite surface. However, Cr was mainly released as soluble Cr(III)-organic complexes when presented at pH 3. While low pH inhibited the formation of Cr(III)-organic colloids, it promoted the release of Cr by facilitating the dissociation of surface Cr(III)-organic complexes. In addition, the incorporation of Ni(II) in Cr(III)-substituted goethite weakened the adsorption of organic acid by shortening the crystal size of goethite, thus significantly inhibiting the formation of Cr(III)-organic complexes and colloids. This study confirms the formation of Cr(III)-organic acid colloids and highlights the importance of pH on Cr release behavior, which is essential for evaluating Cr transport and fate in soils with high background values.
Collapse
Affiliation(s)
- Shengsheng Sun
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Tenghaobo Deng
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Ming Ao
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yijun Mo
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Jingjing Li
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Ting Liu
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Wenjun Yang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| | - Chao Jin
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Rongliang Qiu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China; Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yetao Tang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| |
Collapse
|
12
|
Tan M, Dong J, Qu J, Hao M. The Patterns of Migration of Potentially Toxic Elements from Coal Mining Subsidence Areas and Associated Soils to Waterlogged Areas. TOXICS 2023; 11:888. [PMID: 37999540 PMCID: PMC10675259 DOI: 10.3390/toxics11110888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/16/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023]
Abstract
It is crucial for effectively controlling potentially toxic element (PTE) pollution to understand the pollution situation, ecological risks, health risks, and migration patterns of PTEs. However, currently, no research has been conducted on the migration patterns of soil PTEs from coal mining subsidence areas to waterlogged areas under different restoration modes. In this study, a total of 15 sediment samples and 60 soil samples were collected from landscaped wetlands, aquaculture wetland, fish-photovoltaic complementary wetland, photovoltaic wetland, and waterlogged areas with untreated coal mining subsidence. The PTE pollution status, ecological risks, health risks, migration patterns, and the important factors influencing the migration were analyzed. The results indicated that the comprehensive pollution level of PTEs in waterlogged areas with coal mining subsidence can be reduced by developing them into landscaped wetlands, aquaculture wetlands, fish-photovoltaic complementary wetlands, and photovoltaic wetlands. Additionally, the closer to the waterlogged area, the higher the Cu content in the subsidence area soil is, reaching its peak in the waterlogged area. The Cd was influenced positively by SOC and pH. The research results were of great significance for formulating reclamation plans for waterlogged areas and controlling PTE pollution.
Collapse
Affiliation(s)
- Min Tan
- School of Public Policy and Management, China University of Mining and Technology, Xuzhou 221116, China;
| | - Jihong Dong
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China;
| | - Junfeng Qu
- Carbon Neutrality Institute, China University of Mining and Technology, Xuzhou 221008, China;
- Xuzhou Institute of Ecological Civilization Construction, Xuzhou 221008, China
| | - Ming Hao
- School of Environment and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, China;
| |
Collapse
|
13
|
Wang X, Liu Y, Liu B. Vertical migration in the soil of Cr(VI) and chromite ore processing residue: Field sampling and benchtop simulation. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:132052. [PMID: 37454486 DOI: 10.1016/j.jhazmat.2023.132052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 06/12/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Chromite ore processing residue (COPR) keeps releasing Cr(VI) over time, and the mixing of residual COPR into soil makes the remediation of COPR-contaminated sites challenging. In this study, a sample of COPR and two soil profiles were collected from a typical historical COPR-contaminated site, and the vertical migration of Cr(VI) and COPR particles in contaminated soil was simulated in the laboratory. Cr(VI) was detected in the upper layer of the field samples at thousands of milligrams per kilogram even after decades of aging, and it can be leached out and migrate vertically deep into the surrounding soil and groundwater. In the COPR-containing soil, more diverse hydrated minerals of brownmillerite were produced than the COPR in the open air on the site. Minerals with high Cr content in COPR-containing soils have a relatively high proportion of particles smaller than 10 µm. COPR particles smaller than 5 µm were found to have migrated downward into the deep soil. During simulated one-year of precipitation, 578.9 mg Cr(VI)/kg was leached from COPR, while 35.5% of the COPR particles smaller than 5 µm had the potential to migrate vertically. The management of COPR particles should be emphasized during risk management or remediation of COPR-contaminated sites.
Collapse
Affiliation(s)
- Xizhi Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Yuanyuan Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China.
| | - Bin Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| |
Collapse
|