1
|
Juturu R, Vinayagam R, Murugesan G, Selvaraj R. Mesoporous hydrochar from Acacia falcata leaves by hydrothermal process for hexavalent chromium adsorption. Sci Rep 2025; 15:12670. [PMID: 40221469 PMCID: PMC11993668 DOI: 10.1038/s41598-025-96439-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
This study evaluates mesoporous-hydrochar derived from Acacia falcata leaves via a single-step hydrothermal treatment for Cr(VI) adsorption. Material characterization indicated that the adsorbent has a rough and porous structure. FTIR analysis confirmed Cr(VI) adsorption through functional group interactions, evidenced by peak intensity changes and the emergence of a Cr-O bond vibration at 669 cm-1. Two new peaks were observed in XPS spectra, corresponding to Cr 2p at 577.04 eV (Cr 2p3/2) and 586.67 eV (Cr 2p1/2) after adsorption, further substantiating the adsorption and Cr(VI) reduction. Batch experiments showed an improved adsorption capacity of 30.47 mg/g. Kinetic investigation adhered to the pseudo-second-order model, whereas the equilibrium dataset satisfied the Freundlich model, indicating a heterogeneous adsorption mechanism involving physisorption and chemisorption. The thermodynamic evaluation confirmed spontaneous and endothermic adsorption. Regeneration studies showed reduced Cr(VI) removal performance after four cycles, attributed to pore blockage and loss of functional groups while maintaining effective reuse potential. Spiked studies in various water matrices showed a slight decrease in Cr(VI) removal efficiency, yet it maintained over 95% efficiency, demonstrating its potential for real-world water treatment applications.
Collapse
Affiliation(s)
- Rajesh Juturu
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Gokulakrishnan Murugesan
- Department of Biotechnology, M.S. Ramaiah Institute of Technology, Bengaluru, Karnataka, 560054, India
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India.
| |
Collapse
|
2
|
Yan C, Cai X, Zhou X, Luo Z, Deng J, Tian X, Shi J, Li W, Luo Y. Boosting peroxymonosulfate activation via Fe-Cu bimetallic hollow nanoreactor derived from copper smelting slag for efficient degradation of organics: The dual role of Cu. J Colloid Interface Sci 2025; 678:858-871. [PMID: 39222606 DOI: 10.1016/j.jcis.2024.08.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Valorization of iron-rich metallurgical slags in the construction of Fenton-like catalysts has an appealing potential from the perspective of sustainable development. For the first time, copper smelting slag (CSS) was utilized as the precursor to synthesize hollow sea urchin-like Fe-Cu nanoreactors (Cu1.5Fe1Si) to activate peroxymonosulfate (PMS) for chlortetracycline hydrochloride (CTC) degradation. The hyper-channels and nano-sized cavities were formed in the catalysts owing to the induction and modification of Cu, not only promoting the in-situ growth of silicates and the formation of cavities due to the etching of SiO2 microspheres, but also resulting the generation of nanotubes through the distortion and rotation of the nanosheets. It was found that 100 % CTC degradation rate can be achieved within 10 min for Cu1.5Fe1Si, 75 times higher than that of Cu0Fe1Si (0.0024 up to 0.18 M-1‧min-1). The unique nanoconfined microenvironment structure could enrich reactants in the catalyst cavities, prolong the residence time of molecules, and increase the utilization efficiency of active species. Density functional theory (DFT) calculations show that Cu1.5Fe1Si has strong adsorption energy and excellent electron transport capacity for PMS, and Fe-Fe sites are mainly responsible for the activation of PMS, while Cu assists in accelerating the Fe(II)/Fe(Ⅲ) cycle and promotes the catalytic efficiency. The excellent mineralization rate (83.32 % within 10 min) and efficient treatment of CTC in consecutive trials corroborated the high activity and stability of the Cu1.5Fe1Si. This work provides a new idea for the rational design of solid waste-based eco-friendly functional materials, aiming at consolidating their practical application in advanced wastewater treatment.
Collapse
Affiliation(s)
- Cuirong Yan
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Faculty of Environmental and Chemical Engineering, Kunming Metallurgy College, Kunming, Yunnan 650033, China
| | - Xiunan Cai
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Xintao Zhou
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Zhongqiu Luo
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Jiguang Deng
- Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xincong Tian
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Jinyu Shi
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Wenhao Li
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yongming Luo
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| |
Collapse
|
3
|
Abdelkrim Y, Wu J, Jiao FZ, Wang ZH, Hou SX, Zhang TT, Yu ZZ, Qu J. Cobalt germanium hydroxides with asymmetric electron distribution and surface hydroxyl groups for superb catalytic degradation performances. J Colloid Interface Sci 2025; 677:282-293. [PMID: 39094489 DOI: 10.1016/j.jcis.2024.07.197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/04/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024]
Abstract
Peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs) are attractive approaches for solving the global problem of water pollution, due to the generation of highly-active reactive oxygen species (ROS). Therefore, highly-efficient PMS activation is crucial for promoting the catalytic degradation of environmental pollutants. Here, bimetallic CoGeO2(OH)2 nanosheets with abundant surface hydroxyl groups (CGH) were synthesized via a simple hydrothermal route for PMS activation and degradation of various organic contaminants for the first time. The abundant surface hydroxyl groups (≡Co-OH/≡Ge-OH) could promptly initiate PMS to generate highly-active species: singlet oxygen (1O2), sulfate radicals (SO4·-) and hydroxyl radicals (HO•), while the asymmetric electron distribution among Co-O-Ge bonds derived from the higher electronegativity of Ge than Co further enhances the quick electron transfer to promote the redox cycle of Co2+/Co3+ and Ge2+/Ge4+, thereby achieving an outstanding catalytic capability. The optimal catalyst exhibits nearly 100 % catalytic degradation performance of dyes (Methylene blue, Rhodamine B, Methyl orange, Orange II, Methyl green) and antibiotics (Norfloxacin, Bisphenol A, Tetracycline) over a wide pH range of 3-11 and under different coexisting anion conditions (Cl-, HCO3-, NO3-, HA), suggesting the excellent adaptability for practical usage. This study could potentially lead to novel perspectives on the remediation of water areas such as groundwater and deep-water areas.
Collapse
Affiliation(s)
- Yasmine Abdelkrim
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China; Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jing Wu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Fan-Zhen Jiao
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhi-Hao Wang
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Sheng-Xing Hou
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ting-Ting Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhong-Zhen Yu
- Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jin Qu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
4
|
Li S, Jiang X, Xu W, Li M, Liu Z, Han W, Yu C, Li J, Wang H, Yeung KL. Unveiling electron transfer and radical transformation pathways in coupled electrocatalysis and persulfate oxidation reactions for complex pollutant removal. WATER RESEARCH 2024; 267:122456. [PMID: 39357158 DOI: 10.1016/j.watres.2024.122456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 10/04/2024]
Abstract
The degradation of multiple organic pollutants in wastewater via advanced oxidation processes might involve different radicals, of which the types and concentrations vary upon interacting with different pollutants. In this study, electrochemical activation of peroxymonosulfate (E/PMS) using advanced activated carbon cloth (ACC) as electrode was applied for simultaneous degradation of mixed pollutants, e.g., metronidazole (MNZ) and p-chloroaniline (PCA). 92.5 % of MNZ and 91.4 % of PCA can be degraded at the cathode and anode at a low current density and PMS concentration, respectively. The rate constants for the simultaneous removal of MNZ and PCA in the E/PMS/MNZ(PCA) system were 118 times and 6 times higher than those in the sole PMS system, and 2.5 times and 1.6 times higher than those in the E/Na2SO4/MNZ(PCA) system, respectively. Different electrochemical characteristics, EPR spectra and radical quenching tests verified that the degradation of MNZ and PCA in the optimal system proceeded primarily through non-radical-dominated oxidation, involving electron transfer and 1O2 effect. The system also exhibited low energy consumption (0.215 kWh/m-3·order-1), broad operational pH range, excellent removal efficiency for water matrix, and low by-products toxicity, indicating its strong potential for practical applications. The ACC, with its super stable, low cost, and electrochemical activity, make it as a promising materials applicable in the E/PMS system for degradation of multiple pollutants. The study further elucidated the mechanism of pollutant interaction with electrode materials in terms of radical and non-radical transformation, providing fundamental insight into the application of this system for treatment of complex wastewater.
Collapse
Affiliation(s)
- Shuai Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - Xueding Jiang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - Weicheng Xu
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China.
| | - Meng Li
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, PR China
| | - Zhang Liu
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China.
| | - Wei Han
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China
| | - Chenglong Yu
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Jiesen Li
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - Hailong Wang
- School of Environmental and Chemical Engineering, Foshan University, Foshan 528000, PR China
| | - King Lun Yeung
- Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China; Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, PR China
| |
Collapse
|
5
|
Ruan M, Zhou H, Zhao L, Hu T, He L, Shan S. The ortho-substituent effect regulating the separation of photogenerated carriers to efficiently photodegrade tetracycline on the surface of FeCo-based MOFs. CHEMOSPHERE 2024; 352:141296. [PMID: 38296214 DOI: 10.1016/j.chemosphere.2024.141296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/25/2023] [Accepted: 01/23/2024] [Indexed: 02/13/2024]
Abstract
It is feasible to improve the photodegradation efficiency of organic pollutants by metal-organic frameworks (MOF)-based semiconductors via ligand engineering. In this work, three (Fe/Co)-XBDC-based MOFs were synthesized by introducing different ortho-functional groups X (X = -H, -NO2, -NH2) next to the carboxyl group of the organic ligand (i.e., terephthalic acid). The analysis focused on the influence mechanism of the adjacent functional group effect of the ligand on the physicochemical properties of the material and the actual photodegradation activity of TC. Multiple pieces of evidences suggested that the differences in electron-induced and photocharge-transfer mechanisms of the above ortho functional groups affect the crystal morphology and photocatalytic activity of FeCo-MOF during pyrolysis. Interestingly, (Fe/Co)-NH2BDC exhibited the highest photocatalytic activity under neutral conditions. The results of density functional theory show that the introduction of a strong donor-NH2 group can enhance light absorption and act as an "electron pump" to supply electrons to the iron center, accelerating the separation and efficient transport of photogenerated carriers on the ligand-metal bridge. In conclusion, this study is a proposal for a strategy of structural regulation for the enhancement of the catalytic activity of (Fe/Co)-MOFs in the photodegradation of TC.
Collapse
Affiliation(s)
- Ming Ruan
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, China
| | - Huajing Zhou
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, China
| | - Lingxiang Zhao
- Faculty of Civil Engineering and Mechanics, Kunming University of Science and Technology, Kunming, China
| | - Tianding Hu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, China
| | - Liang He
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, China.
| | - Shaoyun Shan
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, China.
| |
Collapse
|
6
|
Shang X, Liu X, Ma X, Zhang Z, Lin C, He M, Ouyang W. Efficient degradation of chlorpyrifos and intermediate in soil by a novel microwave induced advanced oxidation process: A two-stage reaction. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:133001. [PMID: 37988944 DOI: 10.1016/j.jhazmat.2023.133001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/22/2023] [Accepted: 11/11/2023] [Indexed: 11/23/2023]
Abstract
The application of microwave/peroxymonosulfate (MW/PMS) in soil remediation has been limited by some shortages including low utilization efficiency of oxidants, low MW absorption capacity of soil particles and incomplete degradation of intermediate. In this study, heating pad waste (HPW) was added in the MW/PMS system to increase the ability of absorbing MW and degradation efficiency of toxic intermediate. A two-stage method for degradation of chlorpyrifos (CPF) and its intermediate 3,5,6-trichloro-2-pyridinol (TCP) by MW/PMS assisted with HPW was proposed. In the first stage, more than 90% of CPF was degraded within 15 min before the addition of HPW, and most of the CPF was converted into TCP through direct or indirect pathways under the action of 1O2. In the second stage, more than 70% of the generated TCP was rapidly degraded through SO4•- oxidation and electron transfer. The TCP was further degraded with the assistance of HPW through methylation, hydroxylation and dechlorination etc., and the toxicity of degradation products was decreased significantly. pH and soil organic matter had little influences on CPF and TCP degradation. Therefore, a new strategy for remediation of CPF contaminated-soil was provided based on MW/PMS technology and the concept of "treating waste with waste".
Collapse
Affiliation(s)
- Xiao Shang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Xiaoyu Ma
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zhenguo Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai 519087, China
| |
Collapse
|
7
|
Liu S, Liu S, Chen H, Xing Y, Wang W, Wang L, Liang Y, Fu J, Zhang C. Catalytic activation of percarbonate with synthesized carrollite for efficient decomposition of bisphenol S: Performance, degradation mechanism and toxicity assessment. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132719. [PMID: 37866148 DOI: 10.1016/j.jhazmat.2023.132719] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/10/2023] [Accepted: 10/03/2023] [Indexed: 10/24/2023]
Abstract
This study demonstrates the novel application of carrollite (CuCo2S4) for the activation of sodium percarbonate (SPC) towards bisphenol S (BPS) degradation. The effect of several crucial factors like BPS concentration, CuCo2S4 dosage, SPC concentration, reaction temperature, water matrices, inorganic anions, and pH value were investigated. Experimental results demonstrated that BPS could be efficiently degraded by CuCo2S4-activated SPC system (88.52% at pH = 6.9). The mechanism of BPS degradation by CuCo2S4-activated SPC system was uncovered by quenching and electron spin resonance experiments, discovering that a multiple reactive oxygen species process was involved in BPS degradation by hydroxyl radical (•OH), superoxide radical (•O2-), singlet oxygen superoxide (1O2) and carbonate radical (•CO3-). Furthermore, the S(-II) species facilitated rapid redox cycles between Cu(I)/Cu(II) and Co(II)/Co(III). •CO3- was found to not only directly react with BPS molecules, but also act as a bridge to promote •O2- and 1O2 generation, thereby accelerating BPS degradation. Finally, the combination of UHPLC/Q-TOF-MS test with density functional theory (DFT) method was employed to detect major degradation intermediates and thereby elucidate possible reaction pathways of BPS degradation. This study provides a novel strategy by integrating transition metal sulfides with percarbonate for the elimination of organic pollutants in water.
Collapse
Affiliation(s)
- Shicheng Liu
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, PR China; College of Life and Environmental Science, Minzu University of China, Beijing 100081, PR China
| | - Sitong Liu
- Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, PR China
| | - Huabin Chen
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, PR China; College of Life and Environmental Science, Minzu University of China, Beijing 100081, PR China
| | - Yujin Xing
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, PR China; College of Life and Environmental Science, Minzu University of China, Beijing 100081, PR China
| | - Wenzhong Wang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, PR China; College of Life and Environmental Science, Minzu University of China, Beijing 100081, PR China; School of Science, Minzu University of China, Beijing 100081, PR China.
| | - Lijuan Wang
- School of Science, Minzu University of China, Beijing 100081, PR China
| | - Yujie Liang
- School of Science, Minzu University of China, Beijing 100081, PR China
| | - Junli Fu
- School of Science, Minzu University of China, Beijing 100081, PR China
| | - Chen Zhang
- College of Life and Environmental Science, Minzu University of China, Beijing 100081, PR China
| |
Collapse
|
8
|
Wang H, Chen D, Cui T, Duan R, Yan X, Zhang Y, Xu R. Efficient and effective immobilization of tetracycline and copper from wastewater by zero-valent iron fabricated hydrochar derived from walnut peel. BIORESOURCE TECHNOLOGY 2023; 387:129557. [PMID: 37499925 DOI: 10.1016/j.biortech.2023.129557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 07/29/2023]
Abstract
Antibiotics and heavy metals often coexist as non-point-source contaminants in wastewater and their quite contrary physiochemical properties make their co-removal processes challenging. In this work, a bifunctional zero-valent iron-modified hydrochar derived from walnut peel (MWPHC) was synthesized, which was then applied for the simultaneous removal of tetracycline (TC) and Cu(II) from wastewater. Based on the characterizations, Fe0 species were successfully distributed on the surface of the walnut peel substrates. The TC and Cu(II) could be synergistically immobilized, and bridging effects were observed between them, and MWPHC exhibited excellent ability on the simultaneous removal of TC (qmax = 433.59 mg/g) and Cu(II) (qmax = 586.25 mg/g). Furthermore, the engineering feasibility of the MWPHC was evaluated using column and regeneration experiments. These results shed light on the tailored MWPHC as an environmental functional material for pollution control of co-existing antibiotic and heavy metal contaminants in agro-industrial wastewater.
Collapse
Affiliation(s)
- Huabin Wang
- School of Energy and Environmental Science, Yunnan Normal University, Kunming 650500, PR China; Yunnan Key Laboratory of Rural Energy Engineering, Kunming 650500, PR China
| | - Dingxiang Chen
- School of Energy and Environmental Science, Yunnan Normal University, Kunming 650500, PR China; Yunnan Key Laboratory of Rural Energy Engineering, Kunming 650500, PR China
| | - Ting Cui
- School of Energy and Environmental Science, Yunnan Normal University, Kunming 650500, PR China; Yunnan Key Laboratory of Rural Energy Engineering, Kunming 650500, PR China
| | - Ran Duan
- School of Energy and Environmental Science, Yunnan Normal University, Kunming 650500, PR China; Yunnan Key Laboratory of Rural Energy Engineering, Kunming 650500, PR China
| | - Xianghong Yan
- School of Energy and Environmental Science, Yunnan Normal University, Kunming 650500, PR China; Yunnan Key Laboratory of Rural Energy Engineering, Kunming 650500, PR China
| | - Yong Zhang
- School of Energy and Environmental Science, Yunnan Normal University, Kunming 650500, PR China; Yunnan Key Laboratory of Rural Energy Engineering, Kunming 650500, PR China
| | - Rui Xu
- School of Energy and Environmental Science, Yunnan Normal University, Kunming 650500, PR China; Yunnan Key Laboratory of Rural Energy Engineering, Kunming 650500, PR China.
| |
Collapse
|
9
|
Tan Y, Chen K, Zhu J, Sun F, Peng H, Zhan T, Lyu J. Gravity-driven rattan-based catalytic filter for rapid and highly efficient organic pollutant removal. J Colloid Interface Sci 2023; 643:124-136. [PMID: 37058888 DOI: 10.1016/j.jcis.2023.03.158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/06/2023] [Accepted: 03/24/2023] [Indexed: 04/05/2023]
Abstract
Metal organic frameworks hold great promise as heterogeneous catalysts in sulfate radical (SO4∙-) based advanced oxidation. However, the aggregation of powdered MOF crystals and the complicated recovery procedure largely hinder their large-scale practical applications. It is important to develop eco-friendly and adaptable substrate-immobilized metal organic frameworks. Based on the hierarchical pore structure of the rattan, gravity-driven metal organic frameworks loaded rattan-based catalytic filter was designed to degrade organic pollutants by activating PMS at high liquid fluxes. Inspired by the water transportation of rattan, ZIF-67 was in-situ grown uniformly on the rattan channels inner surface using the continuous flow method. The intrinsically aligned microchannels in the vascular bundles of rattan acted as reaction compartments for the immobilization and stabilization of ZIF-67. Furthermore, the rattan-based catalytic filter exhibited excellent gravity-driven catalytic activity (up to 100 % treatment efficiency for a water flux of 10173.6 L·m-2·h-1), recyclability, and stability of organic pollutant degradation. After ten cycles, the TOC removal of ZIF-67@rattan was 69.34 %, maintaining a stable mineralisation capacity for pollutants. The inhibitory effect of the micro-channel promoted the interaction between active groups and contaminants, increasing the degradation efficiency and improving the stability of the composite. The design of a gravity-driven rattan-based catalytic filter for wastewater treatment provides an effective strategy for developing renewable and continuous catalytic systems.
Collapse
Affiliation(s)
- Yujing Tan
- College of Materials Science and Engineering, Nanjing Forestry University, 210037 Nanjing, PR China
| | - Kaiwen Chen
- College of Materials Science and Engineering, Nanjing Forestry University, 210037 Nanjing, PR China
| | - Jianyi Zhu
- College of Materials Science and Engineering, Nanjing Forestry University, 210037 Nanjing, PR China
| | - Fengze Sun
- College of Materials Science and Engineering, Nanjing Forestry University, 210037 Nanjing, PR China
| | - Hui Peng
- College of Materials Science and Engineering, Nanjing Forestry University, 210037 Nanjing, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 210037 Nanjing, PR China
| | - Tianyi Zhan
- College of Materials Science and Engineering, Nanjing Forestry University, 210037 Nanjing, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 210037 Nanjing, PR China
| | - Jianxiong Lyu
- College of Materials Science and Engineering, Nanjing Forestry University, 210037 Nanjing, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, 210037 Nanjing, PR China; Research Institute of Wood Industry of Chinese Academy of Forestry, 100091 Beijing, PR China.
| |
Collapse
|