1
|
Zhang X, Lu B, Jin LN, Yang S, Wang C, Tai J, Li D, Chen J. Emission Dynamics and Public Health Implications of Airborne Pathogens and Antimicrobial Resistance from Urban Waste Collection Facilities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8060-8072. [PMID: 40229216 DOI: 10.1021/acs.est.4c12108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
Airborne pathogens and antimicrobial resistance (AMR) present significant global health threats. Household waste collection facilities (WCFs), crucial initial nodes in urban waste management systems, have been understudied in regards to their role in emitting these hazards. This study investigated the abundance, composition, sources, driving mechanisms, and health risks associated with pathogens and AMR originating from WCFs in a major city, using culture-based analysis, high-throughput sequencing, and health risk modeling, respectively. The atmospheric escape rates of culturable bacteria (43.4%), fungi (71.7%), and antibiotic-resistant bacteria (ARB) (43.7%) were estimated based on the concentration differences between the interior and exterior of the WCFs by using SourceTracker2 analysis. Health risk assessments showed that annual infection risks for waste-handling workers ranged from 0.194 to 0.489, far exceeding the World Health Organization's acceptable limit of 10-4. Community exposure risks were notable up to 220 m downwind from WCFs, marking the maximum extent of pathogen dispersion. Our analysis suggests that approximately 6.3% of the megacity's area (equivalent to 400 km2) is within potential risk zones influenced by WCF emissions. These results underscore the critical need to evaluate and mitigate the public health risks posed by airborne pathogens and AMR emitted from WCFs in megacities globally.
Collapse
Affiliation(s)
- Xiang Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan Tyndall Centre, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Bingjie Lu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan Tyndall Centre, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Ling N Jin
- Department of Civil and Environmental Engineering; Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 999077 Kowloon, Hong Kong
- State Key Laboratory of Marine Pollution, City University of Hong Kong, 999077 Kowloon, Hong Kong
| | - Shuo Yang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan Tyndall Centre, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Chuan Wang
- Shanghai Environment Group Co., Ltd, Shanghai 200120, China
| | - Jun Tai
- Shanghai Environment Group Co., Ltd, Shanghai 200120, China
| | - Dan Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan Tyndall Centre, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P. R. China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), IRDR ICoE on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan Tyndall Centre, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|
2
|
Zhou W, Wen Z, Zhu W, Gu J, Wei J, Xiong H, Wang W. Factors associated with clinical antimicrobial resistance in China: a nationwide analysis. Infect Dis Poverty 2025; 14:27. [PMID: 40170057 PMCID: PMC11959846 DOI: 10.1186/s40249-025-01289-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 03/02/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) represents a critical global health threat, necessitating the identification of factors that contribute to its emergence and proliferation. We used a "One Health" perspective to evaluate the association of human and veterinary antibiotic usage, environmental factors, socio-economic factors, and health care factors with clinical AMR in China. METHODS We analyzed data from 31 provincial-level administrative divisions in China, encompassing 20,762,383 bacterial isolates sourced from the China Antimicrobial Resistance Surveillance System dataset between 2014 and 2022. A β regression model was used to explore the relationship of AMR with multiple variables. We also estimated the contribution of factors associated with AMR, and evaluated the avoidable risk of AMR under six different measures during 2019 according to available guidelines. RESULTS AMR had positive associations with human antibiotic usage, veterinary antibiotic usage, particulate matter smaller than 2.5 µm (PM2.5) level, population density, gross domestic product per capita, and length of hospital stay, and a 1 unit increase in the level of above independent variables were associated with a percentage change in the aggregate AMR of 1.8% (95% CI: 1.1, 2.5), 2.0% (95% CI: 0.6, 3.4), 0.9% (95% CI: 0.4, 1.4), 0.02% (95% CI: 0.01, 0.03), 0.5% (95% CI: 0.1, 0.8), and 8.0% (95% CI: 1.2, 15.3), respectively. AMR had negative associations with city water popularity, city greenery area per capita, and health expenditure per capita, and a 1 unit increase in the level of above independent variables were associated with a percentage change in the aggregate AMR of -4.2% (95% CI: -6.4, -1.9), -0.4% (95% CI: -0.8, -0.07), and -0.02% (95% CI: -0.04, -0.01), respectively. PM2.5 might be a major influencing factor of AMR, accounting for 13.7% of variation in aggregate AMR. During 2019, there was estimated 5.1% aggregate AMR could be attributed to PM2.5, corresponding to 25.7 thousand premature deaths, 691.8 thousand years of life lost, and 63.9 billion Chinese yuan in the whole country. Human antibiotic usage halved, veterinary antibiotic usage halved, city water popularity improved, city greenery area improved, and comprehensive measures could decrease nationwide aggregate AMR by 8.5, 0.5, 1.3, 4.4, and 17.2%, respectively. CONCLUSIONS The study highlights the complex and multi-dimensional nature of AMR in China and finds PM2.5 as a possible major influencing factor. Despite improvements in decreasing AMR, future initiatives should consider integrated strategies to control PM2.5 and other factors simultaneously to decrease AMR.
Collapse
Affiliation(s)
- Wenyong Zhou
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, 200032, China
- Department of Epidemiology, School of Public Health, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Zexuan Wen
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, 200032, China
- Department of Epidemiology, School of Public Health, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032, China
| | - Wenlong Zhu
- Fuwai Yunnan Hospital, Chinese Academy of Medical Sciences, Affiliated Cardiovascular Hospital of Kunming Medical University, Kunming, China
| | - Jiali Gu
- School of Software Engineering, University of Science and Technology of China, Hefei, 230051, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA
| | - Haiyan Xiong
- Key Laboratory of Health Technology Assessment, National Health and Family Planning Commission of the People'S Republic of China, Fudan University, Shanghai, 200032, China.
- Department of Epidemiology, School of Public Health, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032, China.
| | - Weibing Wang
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, 200032, China.
- Key Laboratory of Public Health Safety of Ministry of Education, Fudan University, Shanghai, 200032, China.
- Key Laboratory of Health Technology Assessment, National Health and Family Planning Commission of the People'S Republic of China, Fudan University, Shanghai, 200032, China.
- Integrated Research on Disaster Risk and International Center of Excellence (IRDR-ICoE) on Risk Interconnectivity and Governance on Weather/Climate Extremes Impact and Public Health, Fudan University, Shanghai, 200032, China.
- Department of Epidemiology, School of Public Health, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032, China.
| |
Collapse
|
3
|
Pan Y, Zuo Z, Huang X, Zhu R. Airborne fungal communities are more susceptible to anthropogenic activities than bacteria. J Environ Sci (China) 2025; 149:564-573. [PMID: 39181667 DOI: 10.1016/j.jes.2023.12.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 08/27/2024]
Abstract
Airborne microorganisms (AM) have significant environmental and health implications. Extensive studies have been conducted to investigate the factors influencing the composition and diversity of AM. However, the knowledge of AM with anthropogenic activities has not reach a consensus. In this study, we took advantage of the dramatic decline of outdoor anthropogenic activities resulting from COVID-19 lockdown to reveal their associations. We collected airborne particulate matter before and during the lockdown period in two cities. The results showed that it was fungal diversity and communities but not bacteria obviously different between pre-lockdown and lockdown samples, suggesting that airborne fungi were more susceptible to anthropogenic activities than bacteria. However, after the implementation of lockdown, the co-occurrence networks of both bacterial and fungal community became more complex, which might be due to the variation of microbial sources. Furthermore, Mantel test and correlation analysis showed that air pollutants also partly contributed to microbial alterations. Airborne fungal community was more affected by air pollutants than bacterial community. Notably, some human pathogens like Nigrospora and Arthrinium were negatively correlated with air pollutants. Overall, our study highlighted the more impacts of anthropogenic activities on airborne fungal community than bacterial community and advanced the understanding of associations between anthropogenic activities and AM.
Collapse
Affiliation(s)
- Yuanyuan Pan
- School of Water Resources & Environmental Engineering, East China University of Technology, Nanchang 330013, China; Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang 330013, China.
| | - Zhiwei Zuo
- School of Water Resources & Environmental Engineering, East China University of Technology, Nanchang 330013, China
| | - Xueyun Huang
- School of Water Resources & Environmental Engineering, East China University of Technology, Nanchang 330013, China
| | - Renguo Zhu
- School of Water Resources & Environmental Engineering, East China University of Technology, Nanchang 330013, China; Jiangxi Province Key Laboratory of the Causes and Control of Atmospheric Pollution, East China University of Technology, Nanchang 330013, China
| |
Collapse
|
4
|
Zhang L, Wang B, Li K, Su Y, Wu D, Zhan M, Xie B. The dynamics and assembly patterns of airborne pathogen communities in the municipal food waste treatment system and its risk implications. ENVIRONMENT INTERNATIONAL 2024; 194:109143. [PMID: 39566443 DOI: 10.1016/j.envint.2024.109143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/16/2024] [Accepted: 11/10/2024] [Indexed: 11/22/2024]
Abstract
While municipal solid waste (MSW) provides an ideal habitat for pathogen propagation, the dynamics and assembly of airborne pathogen communities in these environments remain largely unknown. Here, we combined amplicon and metagenomics with spatiotemporal sampling to study inhalable particulate matter-carried potential pathogenic bacteria at full-scale food waste treatment plants (FWTPs), alongside comparisons to urban air in the area. The results showed that pathogenic bacteria constituted a notable portion (64.5 % ± 20.6 %, n = 75) of the total bacterial communities in FWTPs-impacted air, with species and relative abundance 2-4 times higher than that of urban air, and contributed over 50 % of pathogens to the outdoor air. Airborne pathogen community structures were highly shaped by sampling sites (i.e. treatment units), but conserved across seasons (summer vs. winter) and particle sizes (PM2.5vs. PM10). Notably, Acinetobacter johnsonii-dominated pathogens (i.e. biofilm-related species) presented high levels of aerosolization and consistently occupied the upper-representative niches in all neutral models, highlighting their persistent exposure risk. Furthermore, pathogen community assembly was strongly driven by stochastic processes (58.8 %-96.8 %), while environmental variables explained only limited variations (3.4 %-28.7 %). In particular, the relative importance of stochastic processes clearly increased along an outdoor-to-indoor gradient (84.9 %-96.5 % vs. 71.3 %-76 %), which might be related to indoor anthropogenic activities that weaken microbial network stability and environmental filtering effects. This work enhances our knowledge of the dynamic behaviors and risk of airborne pathogen communities in MSW disposal and underscores the role of FWTPs in disseminating airborne pathogens.
Collapse
Affiliation(s)
- Liangmao Zhang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; College of Resource Environment and Tourism, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Binghan Wang
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; College of Resource Environment and Tourism, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Kaiyi Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Yinglong Su
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Dong Wu
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Min Zhan
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
| | - Bing Xie
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
5
|
Yang T, Wang X, Ng HY, Huang S, Zheng X, Bi X. Airborne antibiotic resistome from sludge dewatering systems: Mobility, pathogen accessibility, cross-media migration propensity, impacting factors, and risks. WATER RESEARCH 2024; 267:122552. [PMID: 39362131 DOI: 10.1016/j.watres.2024.122552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/25/2024] [Accepted: 09/28/2024] [Indexed: 10/05/2024]
Abstract
Bioaerosol contamination was considered as a potential health threat in sludge dewatering systems (SDSs), while emission and risk of airborne antibiotic resistome remain largely unclear. Herein, seasonal investigations of fine particulate matter (PM2.5) were conducted using metagenomics-based methods within and around different SDSs, together with an analysis of sewage sludge. Featured with evident seasonality, antibiotic resistance genes (ARGs) in SDS-PM2.5 also possessed greater accumulation, transfer, and pathogen accessibility than those in ambient air PM2.5. Mobile ARGs in SDS-PM2.5 mainly encoded resistance to tetracycline, and most were flanked by integrase. Some pathogenic antibiotic resistant bacteria (PARB), including Enterobacter asburiae, Escherichia coli, Enterococcus faecium, and Staphylococcus aureus, also carried mobile genetic elements in SDS-PM2.5. Dewatering behavior actuated > 50.56% of ARG subtypes and > 42.86% of PARB in sewage sludge to aerosolize into air. Relative humidity, temperature, and PM2.5 concentration collectively drove the evolution of bacterial community and indirectly promoted the antibiotic resistance of SDS-PM2.5. SDS-PM2.5 posed more serious resistome risks than sewage sludge and ambient air PM2.5, and the highest levels were discovered in winter. These findings underline the role of dewatering behavior in facilitating resistome's aerosolization, and the need to mitigate this potential air pollution.
Collapse
Affiliation(s)
- Tang Yang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China.
| | - Xuyi Wang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China.
| | - How Yong Ng
- Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087, PR China.
| | - Shujuan Huang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China.
| | - Xiang Zheng
- School of Environment & Natural Resources, Renmin University of China, Beijing 100872, PR China.
| | - Xuejun Bi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China.
| |
Collapse
|
6
|
Ren H, Wang R, Ying L, Iyobosa E, Chen G, Zang D, Tong M, Li E, Nerenberg R. Removal of sulfamethoxazole in an algal-bacterial membrane aerated biofilm reactor: Microbial responses and antibiotic resistance genes. WATER RESEARCH 2024; 268:122595. [PMID: 39423786 DOI: 10.1016/j.watres.2024.122595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/18/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
Antibiotics are frequently detected in wastewater, but often are poorly removed in conventional wastewater treatment processes. Combining microalgal and nitrifying bacterial processes may provide synergistic removal of antibiotics and ammonium. In this research, we studied the removal of the antibiotic sulfamethoxazole (SMX) in two different reactors: a conventional nitrifying bacterial membrane aerated biofilm reactor (bMABR) and algal-bacterial membrane aerated biofilm reactor (abMABR) systems. We investigated the synergistic removal of antibiotics and ammonium, antioxidant activity, microbial communities, antibiotic resistance genes (ARGs), mobile genetic elements (MGEs), and their potential hosts. Our findings show that the abMABR maintained a high sulfamethoxazole (SMX) removal efficiency, with a minimum of 44.6 % and a maximum of 75.8 %, despite SMX inhibition, it maintained a consistent 25.0 % ammonium removal efficiency compared to the bMABR. Through a production of extracellular polymeric substances (EPS) with increased proteins/polysaccharides (PN/PS), the abMABR possibly allowed the microalgae-bacteria consortium to protect the bacteria from SMX inactivation. The activity of antioxidant enzymes caused by SMX was reduced by 62.1-98.5 % in the abMABR compared to the bMABR. Metagenomic analysis revealed that the relative abundance of Methylophilus, Pseudoxanthomonas, and Acidovorax in the abMABR exhibited a significant positive correlation with SMX exposure and reduced nitrate concentrations and SMX removal. Sulfonamide ARGs (sul1 and sul2) appeared to be primarily responsible for defense against SMX stress, and Hyphomicrobium and Nitrosomonas were the key carriers of ARGs. This study demonstrated that the abMABR system has great potential for removing SMX and reducing the environmental risks of ARGs.
Collapse
Affiliation(s)
- Haijing Ren
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Rongchang Wang
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Luyao Ying
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Eheneden Iyobosa
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Gaoxiang Chen
- Institute of Biofilm Technology, Key Laboratory of Yangtze Aquatic Environment (MOE), College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Di Zang
- The Key Laboratory of Embedded System and Service Computing, Ministry of Education, Department of Computer Science and Technology, College of Electronic and Information Engineering, Tongji University, Shanghai 200092, China
| | - Min Tong
- R&D Center of Baowu Group Environmental Resources Technology Co., Ltd, Shanghai 201999, China; R&D Center of Baowu Water Technology Co., Ltd, Shanghai 201999, China
| | - Enchao Li
- R&D Center of Baowu Group Environmental Resources Technology Co., Ltd, Shanghai 201999, China; R&D Center of Baowu Water Technology Co., Ltd, Shanghai 201999, China
| | - Robert Nerenberg
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 156 Fitzpatrick Hall, Notre Dame, IN 46556, USA
| |
Collapse
|
7
|
Habibi N, Uddin S, Behbehani M, Mustafa AS, Al-Fouzan W, Al-Sarawi HA, Safar H, Alatar F, Al Sawan RMZ. Aerosol-Mediated Spread of Antibiotic Resistance Genes: Biomonitoring Indoor and Outdoor Environments. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:983. [PMID: 39200594 PMCID: PMC11353316 DOI: 10.3390/ijerph21080983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 09/02/2024]
Abstract
Antimicrobial resistance (AMR) has emerged as a conspicuous global public health threat. The World Health Organization (WHO) has launched the "One-Health" approach, which encourages the assessment of antibiotic resistance genes (ARGs) within an environment to constrain and alleviate the development of AMR. The prolonged use and overuse of antibiotics in treating human and veterinary illnesses, and the inability of wastewater treatment plants to remove them have resulted in elevated concentrations of these metabolites in the surroundings. Microbes residing within these settings acquire resistance under selective pressure and circulate between the air-land interface. Initial evidence on the indoor environments of wastewater treatment plants, hospitals, and livestock-rearing facilities as channels of AMR has been documented. Long- and short-range transport in a downwind direction disseminate aerosols within urban communities. Inhalation of such aerosols poses a considerable occupational and public health risk. The horizontal gene transfer (HGT) is another plausible route of AMR spread. The characterization of ARGs in the atmosphere therefore calls for cutting-edge research. In the present review, we provide a succinct summary of the studies that demonstrated aerosols as a media of AMR transport in the atmosphere, strengthening the need to biomonitor these pernicious pollutants. This review will be a useful resource for environmental researchers, healthcare practitioners, and policymakers to issue related health advisories.
Collapse
Affiliation(s)
- Nazima Habibi
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Shuwaikh 13109, Kuwait
| | - Saif Uddin
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Shuwaikh 13109, Kuwait
| | - Montaha Behbehani
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Shuwaikh 13109, Kuwait
| | - Abu Salim Mustafa
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya 13060, Kuwait
| | - Wadha Al-Fouzan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya 13060, Kuwait
| | | | - Hussain Safar
- OMICS-RU, Health Science Centre, Kuwait University, Jabriya 13060, Kuwait
| | - Fatemah Alatar
- Serology and Molecular Microbiology Reference Laboratory, Mubarak Al-Kabeer Hospital, Ministry of Health, Kuwait City 13110, Kuwait
| | - Rima M. Z. Al Sawan
- Neonatology Department, Farwaniya Hospital, Ministry of Health, Sabah Al-Nasser 92426, Kuwait
| |
Collapse
|
8
|
Su K, Liang Z, Zhang S, Liao W, Gu J, Guo Y, Li G, An T. The abundance and pathogenicity of microbes in automobile air conditioning filters across the typical cities of China and Europe. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134459. [PMID: 38691999 DOI: 10.1016/j.jhazmat.2024.134459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/18/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Bioaerosols are widely distributed in urban air and can be transmitted across the atmosphere, biosphere, and anthroposphere, resulting in infectious diseases. Automobile air conditioning (AAC) filters can trap airborne microbes. In this study, AAC filters were used to investigate the abundance and pathogenicity of airborne microorganisms in typical Chinese and European cities. Culturable bacteria and fungi concentrations were determined using microbial culturing. High-throughput sequencing was employed to analyze microbial community structures. The levels of culturable bioaerosols in Chinese and European cities exhibited disparities (Analysis of Variance, P < 0.01). The most dominant pathogenic bacteria and fungi were similar in Chinese (Mycobacterium: 18.2-18.9 %; Cladosporium: 23.0-30.2 %) and European cities (Mycobacterium: 15.4-37.7 %; Cladosporium: 18.1-29.3 %). Bartonella, Bordetella, Alternaria, and Aspergillus were also widely identified. BugBase analysis showed that microbiomes in China exhibited higher abundances of mobile genetic elements (MGEs) and biofilm formation capacity than those in Europe, indicating higher health risks. Through co-occurrence network analysis, heavy metals such as zinc were found to correlate with microorganism abundance; most bacteria were inversely associated, while fungi exhibited greater tolerance, indicating that heavy metals affect the growth and reproduction of bioaerosol microorganisms. This study elucidates the influence of social and environmental factors on shaping microbial community structures, offering practical insights for preventing and controlling regional bioaerosol pollution.
Collapse
Affiliation(s)
- Kaifei Su
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Zhishu Liang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Simeng Zhang
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Wen Liao
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jianwei Gu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Yunlong Guo
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Taicheng An
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
9
|
Zuo Z, Pan Y, Huang X, Yuan T, Liu C, Cai X, Xu Z. Seasonal distribution of human-to-human pathogens in airborne PM 2.5 and their potential high-risk ARGs. Front Microbiol 2024; 15:1422637. [PMID: 39027113 PMCID: PMC11254772 DOI: 10.3389/fmicb.2024.1422637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Airborne microorganisms, an emerging global health threat, have attracted extensive studies. However, few attentions have been paid to the seasonal distribution of airborne pathogens, in particular their associations with antibiotic resistance genes (ARGs). To this end, two-week daily PM2.5 samples were consecutively collected from Nanchang in four seasons, and the human-to-human pathogens were screened based on high-throughput sequencing. The results showed that there were 20 pathogenic taxa in PM2.5 in Nanchang, and the highest relative abundance of pathogens was observed in winter (5.84%), followed by summer (3.51%), autumn (2.66%), and spring (1.80%). Although more than half of pathogenic taxa were shared by the four seasons, the analysis of similarities showed that pathogenic community was shaped by season (r = 0.16, p < 0.01). Co-occurrence network analysis disclosed significant interactions among pathogens in each season. Moreover, some dominant pathogens such as Plesiomonas shigelloides, Bacteroides fragilis, and Escherichia-Shigella were hub pathogens. In addition, PICRUSt2 predicted that there were 35 high-risk ARG subtypes in PM2.5, and the pathogens had strongly positive correlations with these ARGs. Even some pathogens like Plesiomonas shigelloides, Bacteroides fragilis, Aeromonas, Citrobacter, may be multi-drug resistant pathogens, including beta-lactam, aminoglycosides, chloramphenicol and multi-drug resistances, etc. Both air pollutants and meteorological conditions contributed to the seasonal variation of airborne pathogenic bacteria (r = 0.15, p < 0.01), especially CO, O3, PM2.5, temperature and relative humidity. This study furthers our understanding of airborne pathogens and highlights their associations with ARGs.
Collapse
Affiliation(s)
- Zhiwei Zuo
- Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution, East China University of Technology, Nanchang, China
| | - Yuanyuan Pan
- Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution, East China University of Technology, Nanchang, China
| | - Xueyun Huang
- Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution, East China University of Technology, Nanchang, China
| | - Tao Yuan
- Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution, East China University of Technology, Nanchang, China
| | - Cheng Liu
- Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution, East China University of Technology, Nanchang, China
| | - Xihong Cai
- Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution, East China University of Technology, Nanchang, China
| | - Zhongji Xu
- Jiangxi Center for Patriotic Health and Health Promotion, Nanchang, China
| |
Collapse
|
10
|
Zhou ZZ, Zhu J, Yin Y, Ding LJ. Seasonal variations of profiles of antibiotic resistance genes and virulence factor genes in household dust from Beijing, China revealed by the metagenomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 928:172542. [PMID: 38636860 DOI: 10.1016/j.scitotenv.2024.172542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/09/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Household-related microbiome is closely related with human health. However, the knowledge about profiles of antibiotic resistance genes (ARGs) and virulence factor genes (VFGs) which are carried by microbes inside homes and their temporal dynamics are rather limited. Here we monitored the seasonal changes of bacterial community (especially pathogenic bacteria), ARGs, and VFGs in household dust samples during two years. Based on metagenomic sequencing, the dust-related bacterial pathogenic community, ARGs, and VFGs all harbored the lowest richness in spring among four seasons. Their structure (except that of VFGs) also exhibited remarkable differences among the seasons. The structural variations of ARGs and VFGs were almost explained by mobile genetic elements (MGEs), bacterial pathogens, and particulate matter-related factors, with MGEs explaining the most. Moreover, the total normalized abundance of ARGs or VFGs showed no significant change across the seasons. Results of metagenomic binning and microbial network both showed that several pathogenic taxa (e.g., Ralstonia pickettii) were strongly linked with numerous ARGs (mainly resistant to multidrug) and VFGs (mainly encoding motility) simultaneously. Overall, these findings underline the significance of MGEs in structuring ARGs and VFGs inside homes along with seasonal variations, suggesting that household dust is a neglected reservoir for ARGs and VFGs.
Collapse
Affiliation(s)
- Zhi-Zi Zhou
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Jasmine Zhu
- School of Journalism and Communication, Tsinghua University, Beijing 100084, China
| | - Yue Yin
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Long-Jun Ding
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
11
|
Yang S, Yin Y, Zhang W, Li H, Wang X, Chen R. Advances in understanding bioaerosol release characteristics and potential hazards during aerobic composting. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171796. [PMID: 38513848 DOI: 10.1016/j.scitotenv.2024.171796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/06/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
Bioaerosol emissions and their associated risks are attracting increasing attention. Bioaerosols are generated during the pretreatment, fermentation, and screening of mature compost when processing various types of solid waste at composting plants (e.g., municipal sludge and animal manure). In this review, we summarize research into bioaerosols at different types of composting plants by focusing on the methods used for sampling bioaerosols, stages when emissions potentially occur, major components of bioaerosols, survival and diffusion factors, and possible control strategies. The six-stage Andersen impactor is the main method used for sampling bioaerosols in composting plants. In addition, different composting management methods mainly affect bioaerosol emissions from composting plants. Studies of the components of bioaerosols produced by composting plants mainly focused on bacteria and fungi, whereas few considered others such as endotoxin. The survival and diffusion of bioaerosols are influenced by seasonal effects due to changes in environmental factors, such as temperature and relative humidity. Finally, three potential strategies have been proposed for controlling bioaerosols in composting plants. Improved policies are required for regulating bioaerosol emissions, as well as bioaerosol concentration diffusion models and measures to protect human health.
Collapse
Affiliation(s)
- Sai Yang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Yanan Yin
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China.
| | - Wenrong Zhang
- School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Haichao Li
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Lennart Hjelms väg 9, 750 07 Uppsala, Sweden
| | - Xiaochang Wang
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| | - Rong Chen
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China; International S&T Cooperation Center for Urban Alternative Water Resources Development, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, No. 13 Yanta Road, Xi'an 710055, PR China
| |
Collapse
|
12
|
Zhao YC, Sun ZH, Xiao MX, Li JK, Liu HY, Cai HL, Cao W, Feng Y, Zhang BK, Yan M. Analyzing the correlation between quinolone-resistant Escherichia coli resistance rates and climate factors: A comprehensive analysis across 31 Chinese provinces. ENVIRONMENTAL RESEARCH 2024; 245:117995. [PMID: 38145731 DOI: 10.1016/j.envres.2023.117995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/27/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023]
Abstract
BACKGROUND The increasing problem of bacterial resistance, particularly with quinolone-resistant Escherichia coli (QnR eco) poses a serious global health issue. METHODS We collected data on QnR eco resistance rates and detection frequencies from 2014 to 2021 via the China Antimicrobial Resistance Surveillance System, complemented by meteorological and socioeconomic data from the China Statistical Yearbook and the China Meteorological Data Service Centre (CMDC). Comprehensive nonparametric testing and multivariate regression models were used in the analysis. RESULT Our analysis revealed significant regional differences in QnR eco resistance and detection rates across China. Along the Hu Huanyong Line, resistance rates varied markedly: 49.35 in the northwest, 54.40 on the line, and 52.30 in the southeast (P = 0.001). Detection rates also showed significant geographical variation, with notable differences between regions (P < 0.001). Climate types influenced these rates, with significant variability observed across different climates (P < 0.001). Our predictive model for resistance rates, integrating climate and healthcare factors, explained 64.1% of the variance (adjusted R-squared = 0.641). For detection rates, the model accounted for 19.2% of the variance, highlighting the impact of environmental and healthcare influences. CONCLUSION The study found higher resistance rates in warmer, monsoon climates and areas with more public health facilities, but lower rates in cooler, mountainous, or continental climates with more rainfall. This highlights the strong impact of climate on antibiotic resistance. Meanwhile, the predictive model effectively forecasts these resistance rates using China's diverse climate data. This is crucial for public health strategies and helps policymakers and healthcare practitioners tailor their approaches to antibiotic resistance based on local environmental conditions. These insights emphasize the importance of considering regional climates in managing antibiotic resistance.
Collapse
Affiliation(s)
- Yi-Chang Zhao
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China; Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, PR China
| | - Zhi-Hua Sun
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, PR China; China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| | - Ming-Xuan Xiao
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, PR China; China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| | - Jia-Kai Li
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China; Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, PR China
| | - Huai-Yuan Liu
- International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, PR China; China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| | - Hua-Lin Cai
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China; Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, PR China
| | - Wei Cao
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China; Department of Medical Laboratory, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China
| | - Yu Feng
- China Pharmaceutical University, Nanjing, Jiangsu, 210009, PR China
| | - Bi-Kui Zhang
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China; Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, PR China.
| | - Miao Yan
- The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China; Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, PR China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, PR China.
| |
Collapse
|
13
|
Zhang T, Zhang D, Lyu Z, Zhang J, Wu X, Yu Y. Effects of extreme precipitation on bacterial communities and bioaerosol composition: Dispersion in urban outdoor environments and health risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123406. [PMID: 38244904 DOI: 10.1016/j.envpol.2024.123406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/22/2024]
Abstract
Concerns about contaminants dispersed by seasonal precipitation have grown due to their potential hazards to outdoor environments and human health. However, studies on the crucial environmental factors influencing dispersion changes in bacterial communities are limited. This research adopted four-season in situ monitoring and sequencing techniques to examine the regional distribution profiles of bioaerosols, bacterial communities, and risks associated with extreme snowfall versus rainfall events in two monsoon cities. In the early-hours of winter snowfall, airborne cultivable bioaerosol concentrations were 4.1 times higher than the reference exposure limit (500 CFU/m3). The concentration of ambient particles (2.5 μm) exceeded 24,910 particles/L (97 μg/m3), positively correlating with the prevalence of cultivable bioaerosols. These bioaerosols contained cultivable bacterial species such as pathogenic Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus pneumoniae, and Escherichia coli. Bioaerosol concentrations increased by 53.0% during 50-mm snow extremes. Taxonomic analysis revealed that Pseudomonas, Staphylococcus, and Veillonella were the most abundant bacterial taxa in the initial snowmelt samples during winter precipitation. However, their abundance decreased by 87.6% as snowing continued (24 h). Reduced water base cation concentration also led to a 1.15-fold increase in the Shannon index, indicating a similar yet heightened bacterial diversity. Seasonally, Pedobacter and Massilia showed higher relative abundance (25% and 18%, respectively), presenting increased bacterial transmission to the soil. Furthermore, Pseudomonas was identified in 60% of spring snowstorm samples, suggesting long-distance dispersal of pathogenic bacteria. When these atmospheric aerosol particles carrying biological entities (0.65-1.1 μm) penetrated human alveoli, the calculated hazard ratio was 0.55, which as observed in inhalation exposures. Consequently, this study underscores the risk of seasonal precipitation-enhanced ambient bacterial transmission.
Collapse
Affiliation(s)
- Ting Zhang
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Dingqiang Zhang
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Zhonghang Lyu
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Jitao Zhang
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Xian Wu
- College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China
| | - Yingxin Yu
- Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou, 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Key Laboratory of City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
14
|
Wang H, Dong Y, Jiang Y, Zhang N, Liu Y, Lu X, Fan Y. Multiple stressors determine the process of the benthic diatom community assembly and network stability in urban water bodies in Harbin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169536. [PMID: 38141986 DOI: 10.1016/j.scitotenv.2023.169536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 12/25/2023]
Abstract
Human activities have triggered biodiversity loss, often resulting in biotic homogenization, which poses a threat to human well-being. Nevertheless, the overall influence of diverse environmental stressors on intra- and inter-community diversity remains insufficiently elucidated. This study aimed to quantify and reveal the impact of environmental stressors on the alpha and beta diversities of benthic diatom communities in the Harbin urban river network during the summer and autumn of 2022 and spring of 2023. The marked seasonal variations observed in alpha and beta diversity indices highlighted the distinct community compositions. Nonetheless, varying types of urban water pollutants were the primary drivers of biotic homogenization in terms of both taxonomic and functional diversities and played a prominent role in steering diversity shifts. These pollutants indirectly led to biotic homogenization by altering water quality parameters and affecting the ecological dynamics of benthic diatom communities. Furthermore, diverse responses to stressors were identified in taxonomic and functional diversities, providing additional insights for understanding ecological shifts in communities. Taxonomic beta diversity was related to environmental filtering, whereas functional beta diversity resulted from stressor-spatial dimension interactions. Our study emphasises that relying solely on traditional water quality monitoring may not fully reveal the current state of river ecosystem protection, and the need to study the continuous changes in biodiversity across seasons in urban waterbodies from the perspective of various stressors is highlighted.
Collapse
Affiliation(s)
- Hao Wang
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Yanlong Dong
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Yutong Jiang
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China
| | - Nannan Zhang
- Modern Educational Technology and Experiment Center, Harbin Normal University, Harbin 150025, China
| | - Yan Liu
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin 150025, China
| | - Xinxin Lu
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin 150025, China.
| | - Yawen Fan
- College of Life Sciences and Technology, Harbin Normal University, Harbin 150025, China; Key Laboratory of Biodiversity of Aquatic Organisms, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
15
|
Liu T, Li G, Liu Z, Xi L, Ma W, Gao X. Characteristics of aerosols from swine farms: A review of the past two-decade progress. ENVIRONMENT INTERNATIONAL 2023; 178:108074. [PMID: 37441818 DOI: 10.1016/j.envint.2023.108074] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
With the rapid development of large-scale and intensive swine production, the emission of aerosols from swine farms has become a growing concern, attracting extensive attention. While aerosols are found in various environments, those from swine farms are distinguished from human habitats, such as residential, suburban, and urban areas. In order to gain a comprehensive understanding of aerosols from swine farms, this paper reviewed relevant studies conducted between 2000 and 2022. The main components, concentrations, and size distribution of the aerosols were systematically reviewed. The differences between aerosols from swine farms and human living and working environments were compared. Finally, the sources, influencing factors, and reduction technologies for aerosols from swine farms were thoroughly elucidated. The results demonstrated that the concentrations of aerosols inside swine farms varied considerably, and most exceeded safety thresholds. However, further exploration is needed to fully understand the difference in airborne microorganism community structure and particles with small sizes (<1 μm) between swine farms and human living and working environments. More airborne bacterial and viruses were adhered to large particles in swine houses, while the proportion of airborne fungi in the respirable fraction was similar to that of human living and working environments. In addition, swine farms have a higher abundance and diversity of potential pathogens, airborne resistant microorganisms and resistant genes compared to the human living and working environments. The aerosols of swine farms mainly originated from sources such as manure, feed, swine hair and skin, secondary production, and waste treatment. According to the source analysis and factors influencing aerosols in swine farms, various technologies could be employed to mitigate aerosol emissions, and some end-of-pipe technologies need to be further improved before they are widely applied. Swine farms are advised not to increase aerosol concentration in human living and working environments, in order to decrease the impact of aerosols from swine farms on human health and restrain the spread of airborne potential pathogens. This review provides critical insights into aerosols of swine farms, offering guidance for taking appropriate measures to enhance air quality inside and surrounding swine farms.
Collapse
Affiliation(s)
- Tongshuai Liu
- College of Animal Science & Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan 450046, China; Henan Engineering Research Center on Animal Healthy Environment and Intelligent Equipment, Zhengzhou, Henan 450046, China
| | - Guoming Li
- Department of Poultry Science, The University of Georgia, Athens, GA 30602, USA; Institute for Artificial Intelligence, The University of Georgia, Athens, GA 30602, USA.
| | - Zhilong Liu
- Henan University of Animal Husbandry and Economy Library, Zhengzhou, Henan 450046, China
| | - Lei Xi
- College of Animal Science & Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan 450046, China; Henan Engineering Research Center on Animal Healthy Environment and Intelligent Equipment, Zhengzhou, Henan 450046, China
| | - Wei Ma
- College of Animal Science & Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan 450046, China; Henan Engineering Research Center on Animal Healthy Environment and Intelligent Equipment, Zhengzhou, Henan 450046, China
| | - Xuan Gao
- College of Animal Science & Technology, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan 450046, China
| |
Collapse
|
16
|
Wang Q, Tan L, Sun S, Lu X, Luo Y. Land-derived wastewater facilitates antibiotic resistance contamination in marine sediment of semi-closed bay: A case study in Jiaozhou Bay, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117870. [PMID: 37084540 DOI: 10.1016/j.jenvman.2023.117870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/29/2023] [Accepted: 04/02/2023] [Indexed: 05/03/2023]
Abstract
The emergence of antibiotic resistance is a severe threat to public health. There are few studies on the effects of sewage discharge on antibiotics and antibiotic resistance genes (ARGs) contamination in Jiaozhou Bay sediment. Herein, a total of 281 ARG subtypes, 10 mobile genetic elements (MGEs), 10 antibiotics and bacterial communities in marine sediments from Jiaozhou Bay were characterized. Similar bacterial community structures and ARG profiles were identified between the various sampling sites inside the bay, which were both dominated by multidrug and (fluoro)quinolone resistance genes and harbored lower relative abundances of ARGs than those in the sampling sites near the bay exit. Compared with antibiotics and MGEs, bacterial community composition was a more important driver of ARG diversity and geographic distribution. The abundance of pathogens carrying genetic information increased dramatically in southern Jiaozhou Bay is affected by sewage discharge, which indicating that wastewater discharge facilitated ARG contamination of marine sediments. This study highlights the risk of disseminating antibiotic resistance-influencing factors from treated wastewater discharge into marine environment there is an urgent need to optimize or improve wastewater treatment processes to enhance the removal of antibiotics and ARGs. This study has necessary implications for filling the gap in information on antibiotic resistance in Jiaozhou Bay and developing future pollution regulation and control measures.
Collapse
Affiliation(s)
- Qing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China; College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan, 056038, China
| | - Lu Tan
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China.
| | - Shaojing Sun
- College of Energy and Environmental Engineering, Hebei Key Laboratory of Air Pollution Cause and Impact, Hebei Engineering Research Center of Sewage Treatment and Resource Utilization, Hebei University of Engineering, Handan, 056038, China
| | - Xueqiang Lu
- Tianjin International Joint Research Center for Environmental Biogeochemical Technology and Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| | - Yi Luo
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210093, China
| |
Collapse
|
17
|
Habibi N, Uddin S, Behbehani M, Kishk M, Abdul Razzack N, Zakir F, Shajan A. Antibiotic Resistance Genes in Aerosols: Baseline from Kuwait. Int J Mol Sci 2023; 24:ijms24076756. [PMID: 37047728 PMCID: PMC10095457 DOI: 10.3390/ijms24076756] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Antimicrobial resistance (AMR) is one of the biggest threats to human health worldwide. The World Health Organization (WHO, Geneva, Switzerland) has launched the "One-Health" approach, which encourages assessment of antibiotic-resistant genes (ARGs) within environments shared by human-animals-plants-microbes to constrain and alleviate the development of AMR. Aerosols as a medium to disseminate ARGs, have received minimal attention. In the present study, we investigated the distribution and abundance of ARGs in indoor and outdoor aerosols collected from an urban location in Kuwait and the interior of three hospitals. The high throughput quantitative polymerase chain reaction (HT-qPCR) approach was used for this purpose. The results demonstrate the presence of aminoglycoside, beta-lactam, fluoroquinolone, tetracycline, macrolide-lincosamide-streptogramin B (MLSB), multidrug-resistant (MDR) and vancomycin-resistant genes in the aerosols. The most dominant drug class was beta-lactam and the genes were IMP-2-group (0.85), Per-2 group (0.65), OXA-54 (0.57), QnrS (0.50) and OXA-55 (0.55) in the urban non-clinical settings. The indoor aerosols possessed a richer diversity (Observed, Chao1, Shannon's and Pielou's evenness) of ARGs compared to the outdoors. Seasonal variations (autumn vs. winter) in relative abundances and types of ARGs were also recorded (R2 of 0.132 at p < 0.08). The presence of ARGs was found in both the inhalable (2.1 µm, 1.1 µm, 0.7 µm and < 0.3 µm) and respirable (>9.0 µm, 5.8 µm, 4.7 µm and 3.3 µm) size fractions within hospital aerosols. All the ARGs are of pathogenic bacterial origin and are hosted by pathogenic forms. The findings present baseline data and underpin the need for detailed investigations looking at aerosol as a vehicle for ARG dissemination among human and non-human terrestrial biota.
Collapse
Affiliation(s)
- Nazima Habibi
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Saif Uddin
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Montaha Behbehani
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Mohamed Kishk
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Nasreem Abdul Razzack
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Farhana Zakir
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| | - Anisha Shajan
- Environment and Life Science Research Centre, Kuwait Institute for Scientific Research, Safat 13109, Kuwait
| |
Collapse
|
18
|
Characteristics and Traceability Analysis of Microbial Assemblage in Fine Particulate Matter from a Pig House. Animals (Basel) 2023; 13:ani13061058. [PMID: 36978598 PMCID: PMC10044456 DOI: 10.3390/ani13061058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Fine particulate matter (PM2.5) can carry numerous substances and penetrate deep into the respiratory tract due to its small particle size; associated harmful microorganisms are suspected to increase health risks for humans and animals. To find out the microbial compositions of PM2.5 in piggeries, their interaction and traceability, we collected PM2.5 samples from a piggery while continuously monitoring the environmental indicators. We also identified pathogenic bacteria and allergens in the samples using high-throughput sequencing technology. We analyzed the microbial differences of PM2.5 samples at different heights and during different times of day and investigated the microbial dynamics among the PM2.5 samples. To better understand the interaction between microorganisms and environmental factors among different microbial communities, we applied the network analysis method to identify the correlation among various variables. Finally, SourceTracker, a commonly used microbial traceability tool, was used to predict the source of airborne microorganisms in the pig house. We identified 14 potential pathogenic bacteria and 5 allergens from PM2.5 in the pig houses, of which Acinetobacter was the dominant bacterium in all samples (relative abundance > 1%), which warrants attention. We found that bacteria and fungi directly affected the the microbial community. The bacterial community mainly played a positive role in the microbial community. Environmental variables mainly indirectly and positively affected microbial abundance. In the SourceTracker analysis using fecal matter and feed as sources and PM2.5 sample as sink, we found that fecal matter made the greatest contribution to both bacterial and fungal components of PM2.5. Our findings provide important insights into the potential risks of pathogens in PM2.5 to human and animal health and their main sources.
Collapse
|