1
|
Zhou Y, Xiong J, Wang L, Li F, Bai H, Wang S, Yang X. Multi-ligand strategy for enhanced removal of heavy metal ions by thiol-functionalized defective Zr-MOFs. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135723. [PMID: 39243545 DOI: 10.1016/j.jhazmat.2024.135723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/15/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Given the significant global concern about heavy metal pollution, the development of effective adsorbents to capture pollutants has become an urgent issue. In this work, thiol-functionalized defective Zr-MSA-DMSA was designed by mixing 2,3-dimercaptosuccinic acid and mercaptosuccinic acid, which was applied for the rapid and efficient removal of M(II) (i.e., Pb(II), Hg(II), Cd(II)) from wastewater. Zr-MSA-DMSA exhibited excellent adsorption performance, and the maximum adsorption capacities for Pb(II), Hg(II), and Cd(II) were 715.2 mg g-1, 862.7 mg g-1, and 450.5 mg g-1. In actual wastewater, Zr-DMSA-MSA exhibited up to 97 % M(II) removal efficiency and excellent anti-interference ability. It also maintained good structural stability after five adsorption/regeneration cycles. Thus, the abundant oxygen vacancies and unsaturated adsorption sites on Zr-MSA-DMSA significantly improved the adsorption performance of M(II). Spectral analysis and DFT calculations confirmed that Zr-MSA-DMSA mainly relied on the coordination of sulfur and oxygen atoms, electrostatic attraction and a large number of defective sites to achieve the adsorption of M(II). Fixed bed experiments showed that Zr-MSA-DMSA exhibited a depletion time of 10500 min and a volume of 7.0 L. In summary, Zr-MSA-DMSA holds significant potential for treating heavy metal wastewater and provides potential applications for defect engineering.
Collapse
Affiliation(s)
- Yu Zhou
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, No. 2, Cuihu North Road, Kunming 650091, China
| | - Jiaxing Xiong
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, No. 2, Cuihu North Road, Kunming 650091, China
| | - Li Wang
- The Unconventional Oil and Gas Institute, China University of Petroleum-Beijing, Beijing 102200, China
| | - Feng Li
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, No. 2, Cuihu North Road, Kunming 650091, China
| | - Huiping Bai
- School of Materials and Energy, Key Laboratory of Micro/Nano Materials and Technology, Yunnan University, Kunming 650091, China
| | - Shixiong Wang
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, No. 2, Cuihu North Road, Kunming 650091, China.
| | - Xiangjun Yang
- Research Center of Lake Restoration Technology Engineering for Universities of Yunnan Province, School of Chemical Science and Technology, Yunnan University, No. 2, Cuihu North Road, Kunming 650091, China.
| |
Collapse
|
2
|
Wang D, Yao H, Ye J, Gao Y, Cong H, Yu B. Metal-Organic Frameworks (MOFs): Classification, Synthesis, Modification, and Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2404350. [PMID: 39149999 DOI: 10.1002/smll.202404350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/02/2024] [Indexed: 08/17/2024]
Abstract
Metal-organic frameworks (MOFs) are a new variety of solid crystalline porous functional materials. As an extension of inorganic porous materials, it has made important progress in preparation and application. MOFs are widely used in various fields such as gas adsorption storage, drug delivery, sensing, and biological imaging due to their high specific surface area, porosity, adjustable pore size, abundant active sites, and functional modification by introducing groups. In this paper, the types of MOFs are classified, and the synthesis methods and functional modification mechanisms of MOFs materials are summarized. Finally, the application prospects and challenges of metal-organic framework materials in the biomedical field are discussed, hoping to promote their application in multidisciplinary fields.
Collapse
Affiliation(s)
- Dayang Wang
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Huanchen Yao
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Jiashuo Ye
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yan Gao
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Life Sciences, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
3
|
Sharma S, Krishnaswamy S, Prusty S, Chand DK. A pair of conjoined trinuclear sub-frameworks in a pentanuclear double-cavity discrete coordination cage. Chem Sci 2024; 15:11287-11301. [PMID: 39055040 PMCID: PMC11268487 DOI: 10.1039/d4sc01078g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/11/2024] [Indexed: 07/27/2024] Open
Abstract
Combination of Pd(ii) with selected bis-monodentate ligands produces the familiar multinuclear Pd m L2m type self-assembled "single-cavity discrete coordination cages" (SCDCC). If the ligand provides parallel coordination vectors, then it forms a binuclear Pd2L4 type cage, whereas utilization of ligands having appropriately divergent coordination vectors results in specific higher nuclear complexes. In contrast, preparation of emergent "multi-cavity discrete coordination cages" (MCDCC) using Pd(ii) and designer ligands is quite captivating where the neighboring cavities of the framework are conjoined with each other through a common metal center. A pair of conjoined binuclear Pd2L4 type sub-frameworks are present in a trinuclear Pd3L4 type double-cavity cage prepared from Pd(ii) and a tris-monodentate ligand having parallel coordination vectors. The present work envisioned a design to make double-cavity coordination cages having a pair of conjoined trinuclear Pd3L6 type sub-frameworks. To fulfill the objective we combined Pd(ii) with a mixture of designer bis-monodentate ligand (L) and tris-monodentate ligand (L') in a 5 : 4 : 4 ratio in one pot to afford the targeted pentanuclear type cage. The choice of bis-monodentate ligand L is based on the divergent nature of the coordination vectors suitable to produce a Pd3L6 type SCDCC. The tris-monodentate ligand L' having two arms is designed in such a manner that each of the arms reasonably resembles L. Study of the complexation behavior of Pd(ii) with L' provided additional guiding factors essential for the successful making of type MCDCC by integrative self-sorting. A few other MCDCC including lower symmetry versions were also prepared in the course of the work.
Collapse
Affiliation(s)
- Shruti Sharma
- IoE Center of Molecular Architecture, Department of Chemistry, Indian Institute of Technology Madras Chennai 600036 India
| | - Shobhana Krishnaswamy
- IoE Center of Molecular Architecture, Department of Chemistry, Indian Institute of Technology Madras Chennai 600036 India
| | - Soumyakanta Prusty
- IoE Center of Molecular Architecture, Department of Chemistry, Indian Institute of Technology Madras Chennai 600036 India
| | - Dillip Kumar Chand
- IoE Center of Molecular Architecture, Department of Chemistry, Indian Institute of Technology Madras Chennai 600036 India
| |
Collapse
|
4
|
Wang J, Yang C, Fu M, Ye D, Fan L, Hu Y. Derivatives of Br-doped metal-organic framework for improved acetaldehyde adsorption-photocatalytic oxidation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172941. [PMID: 38703844 DOI: 10.1016/j.scitotenv.2024.172941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/10/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Different Br-doped metal-organic frameworks (MOFs) derived (Brx@UiO-66) have been prepared by heat treatment using UiO-66 as the precursor. The experimental results showed that Br0.2@UiO-66 exhibited the best photocatalytic oxidation and adsorption performances toward acetaldehyde. In the dynamic system, the acetaldehyde removal rate and adsorption capacity of Br0.2@UiO-66 were 93.2 % and 230.59 mg/g, respectively. The improvement of the photocatalytic performance can be attributed to the presence of Br ions and CBr bonds, which facilitated the rapid separation of electrons and holes and the production of •O2-. In addition, Br0.2@UiO-66 had a better adsorption performance than 300UiO-66, mainly because of the increased Lewis acidity of the metal active sites due to Br doping. Radical capture experiments indicated that •O2- and e- were the primary active substances in acetaldehyde oxidation, and allowed establishing the possible mechanism of acetaldehyde oxidation. This work shows that MOFs can have high catalytic oxidation performances toward volatile organic compounds (VOCs) while retaining their adsorption capacity, and can be used for practical applications in the adsorption-catalytic integrated degradation of VOCs.
Collapse
Affiliation(s)
- Jun Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Changqing Yang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Mingli Fu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China
| | - Daiqi Ye
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China
| | - Lan Fan
- Yancheng Lanfeng Environmental Engineering Technology Co., Ltd., Yancheng 224051, PR China
| | - Yun Hu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, PR China.
| |
Collapse
|
5
|
Xue Y, Gao R, Lin S, Zhong Q, Zhang Q, Hong J. Regulating the interface electron distribution of iron-based MOFs through ligand functionalization enables efficient peroxymonosulfate utilization and catalytic performance. J Colloid Interface Sci 2024; 663:358-368. [PMID: 38412721 DOI: 10.1016/j.jcis.2024.02.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/17/2024] [Accepted: 02/14/2024] [Indexed: 02/29/2024]
Abstract
Ligand functionalization is an effective way to endow Metal-organic frameworks (MOF) with versatility for multiple applications by introducing or displaying substituents without changing the origin framework. In this work, the original MIL-101(Fe) was modified by functional groups, including -NH2, -NO2, -CH3, and -Cl substituents. The Bader charge results and electron localization function (ELF) quantitatively indicated that the functional ligands with different properties can regulate the electron structure of transition-metal centers through interface-charge redistribution. Accompanying the higher adsorption and utilization rate of peroxymonosulfate (PMS), more than 96% of acetaminophen (APAP) was degraded with a mineralization rate of 40.17% under the NH2-BDC/PMS system. In terms of mechanism, the amino group not only accelerated the regeneration of Fe(II) via the NCFe electron-transfer path, but also stimulated the appearance of high-valent Fe species. Meanwhile, the degradation pathways of APAP were proposed by integrating the results of liquid chromatograph-mass spectrometry (LC-MS) and Frontier molecular-orbital theory. Finally, the NH2-BDC/PMS system reveals long-term stability, nonselectivity, low biotoxicity as well as secondary pollution for pollutant degradation, which is a considered candidate for further environmental applications.
Collapse
Affiliation(s)
- Yuwei Xue
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| | - Ran Gao
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| | - Shuangjie Lin
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| | - Qing Zhong
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| | - Qian Zhang
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China
| | - Junming Hong
- College of Chemical Engineering, Huaqiao University, Xiamen 361021, China; Xiamen Engineering Research Center of Industrial Wastewater Biochemical Treatment, Xiamen 361021, China; Fujian Provincial Research Center of Industrial Wastewater Biochemical Treatment (Huaqiao University), Xiamen 361021, China.
| |
Collapse
|
6
|
Feng X, Ren Y, Wang H, Wu W, Jiang H. Dimensional Reduction of Metal-Organic Frameworks for Photocatalytic Synthesis of Fused Tetracyclic Heterocycles. Inorg Chem 2024; 63:9854-9863. [PMID: 38753036 DOI: 10.1021/acs.inorgchem.4c00545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2024]
Abstract
Heterogeneous palladium catalysts with high efficiency, high Pd atom utilization, simplified separation, and recycle have attracted considerable attention in the field of synthetic chemistry. Herein, we reported a zirconium-based two-dimensional metal-organic framework (2D-MOF)-based Pd(II) photocatalyst (Zr-Ir-Pd) by merging the Ir photosensitizers and Pd(II) species into the skeletons of the 2D-MOF for the Pd(II)-catalyzed oxidation reaction. Morphological and structural characterization identified that Zr-Ir-Pd with a specific nanoflower-like structure consists of ultrathin 2D-MOF nanosheets (3.85 nm). Due to its excellent visible-light response and absorption capability, faster transfer and separation of photogenerated carriers, more accessible Pd active sites, and low mass transfer resistance, Zr-Ir-Pd exhibited boosted photocatalytic activity in catalyzing sterically hindered isocyanide insertion of diarylalkynes for the construction of fused tetracyclic heterocycles, with up to 12 times the Pd catalyst turnover number than the existing catalytic systems. In addition, Zr-Ir-Pd inhibited the competitive agglomeration of Pd(0) species and could be reused at least five times, owing to the stabilization of 2D-MOF on the single-site Pd and Ir sites. Finally, a possible mechanism of the photocatalytic synthesis of fused tetracyclic heterocycles catalyzed by Zr-Ir-Pd was proposed.
Collapse
Affiliation(s)
- Xiao Feng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yanwei Ren
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Haosen Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Wanqing Wu
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| | - Huanfeng Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
7
|
Zhao R, Lu W, Chai X, Dong C, Shuang S, Guo Y. Design of a dual-mode ratiometric fluorescent probe via MOF-on-MOF strategy for Al (III) and pH detection. Anal Chim Acta 2024; 1298:342403. [PMID: 38462341 DOI: 10.1016/j.aca.2024.342403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/28/2024] [Accepted: 02/21/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND The construction of ratiometric fluorescent MOF sensors with integrated self-calibration and dual-channel detection can efficiently overcome the deficiencies of single-signal sensing. In this regard, the rational design of structurally functionalized MOFs is paramount for enhancing their performance in ratiometric fluorescent sensors. Lately, the concept of MOF-on-MOF design has garnered notable interest as a potential strategy for regulating the structural parameters of MOFs by integrating two or more distinct MOF types. Great efforts have been dedicated to exploring new MOF-on-MOF hybrids and developing their applications in diverse fields. Even so, these materials are still in the stage of advancement in the sensing field. RESULTS Herein, a Zr-based metal-organic framework anchored on a rare-earth metal-organic framework (UiO-66(OH)2@Y-TCPP) was prepared for the ratiometric fluorescence detection toward Al (III) and pH. In this probe, the UiO-66(OH)2 featured hydroxyl active sites for Al (III), leading to a significant enhancement in fluorescence intensity upon the addition of Al (III), while the signal emitted by the red-emitting Y-TCPP, serving as the reference, remained constant. UiO-66(OH)2@Y-TCPP exhibited excellent selectivity for Al (III) sensing with a wider linear range of 0.1-1000 μM, and a lower detection limit of 0.06 μM. This probe has also been utilized for the quantitative determination of Al (III) in hydrotalcite chewable tablets with satisfactory results. In addition, the probe realized ratiometric pH sensing in the range of 7-13 using UiO-66(OH)2 as an interior reference. The paper-based probe strip was developed for visual pH sensing. By installing color recognition and processing software on a smartphone, real-time and convenient pH sensing could be achieved. SIGNIFICANCE This is the first ratiometric fluorescent sensor for Al (III) and pH detection based on a MOF-on-MOF composite probe, which yields two different response modes. The detection results of Al (III) in hydrotalcite chewable tables and smartphone imaging for pH test paper demonstrate the practicability of the probe. This work opens up a new outlook on constructing a multi-functional application platform with substantial potential for employment in environmental and biological analysis tasks.
Collapse
Affiliation(s)
- Ruirui Zhao
- College of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Wenjing Lu
- College of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Xiaojing Chai
- College of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Chuan Dong
- College of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China
| | - Shaomin Shuang
- College of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China.
| | - Yujing Guo
- College of Chemistry and Chemical Engineering, Institute of Environmental Science, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
8
|
Guo L, Kong W, Che Y, Liu C, Zhang S, Liu H, Tang Y, Yang X, Zhang J, Xu C. Research progress on antibacterial applications of metal-organic frameworks and their biomacromolecule composites. Int J Biol Macromol 2024; 261:129799. [PMID: 38296133 DOI: 10.1016/j.ijbiomac.2024.129799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/24/2024] [Accepted: 01/25/2024] [Indexed: 02/03/2024]
Abstract
With the extensive use of antibiotics, resulting in increasingly serious problems of bacterial resistance, antimicrobial therapy has become a global concern. Metal-organic frameworks (MOFs) are low-density porous coordination materials composed of metal ions and organic ligands, which can form composite materials with biomacromolecules such as proteins and polysaccharides. In recent years, MOFs and their derivatives have been widely used in the antibacterial field as efficient antibacterial agents. This review offers a detailed summary of the antibacterial applications of MOFs and their composites, and the different synthesis methods and antibacterial mechanisms of MOFs and MOF-based composites are briefly introduced. Finally, the challenges and prospects of MOFs-based antibacterial materials in the rapidly developing medical field were briefly discussed. We hope this review will provide new strategies for the medical application of MOFs-based antibacterial materials.
Collapse
Affiliation(s)
- Lei Guo
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Wei Kong
- Radiation Medicine, School of Public Health, Jilin University, Changchun 130021, Jilin, China
| | - Yilin Che
- Radiation Medicine, School of Public Health, Jilin University, Changchun 130021, Jilin, China
| | - Chang Liu
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China; Department of Neurology and Neuroscience Center, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Shichen Zhang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun 130021, Jilin, China
| | - Heshi Liu
- Department of Gastrocolorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Yixin Tang
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Xi Yang
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Jizhou Zhang
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China
| | - Caina Xu
- College of Basic Medical Sciences, Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, Jilin, China.
| |
Collapse
|
9
|
Ghaderi M, Bi H, Dam-Johansen K. Advanced materials for smart protective coatings: Unleashing the potential of metal/covalent organic frameworks, 2D nanomaterials and carbonaceous structures. Adv Colloid Interface Sci 2024; 323:103055. [PMID: 38091691 DOI: 10.1016/j.cis.2023.103055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/20/2023] [Accepted: 11/22/2023] [Indexed: 01/13/2024]
Abstract
The detrimental impact of corrosion on metallic materials remains a pressing concern across industries. Recently, intelligent anti-corrosive coatings for safeguarding metal infrastructures have garnered significant interest. These coatings are equipped with micro/nano carriers that store corrosion inhibitors and release them when triggered by external stimuli. These advanced coatings have the capability to elevate the electrochemical impedance values of steel by 2-3 orders of magnitude compared to the blank coating. However, achieving intelligent, durable, and reliable anti-corrosive coatings requires careful consideration in the design of these micro/nano carriers. This review paper primarily focuses on investigating the corrosion inhibition mechanism of various nano/micro carriers/barriers and identifying the challenges associated with using them for achieving desired properties in anti-corrosive coatings. Furthermore, the fundamental aspects required for nano/micro carriers, including compatibility with the coating matrix, high specific surface area, stability in different environments, stimuli-responsive behavior, and facile synthesis were investigated. To achieve this aim, we explored the properties of micro/nanocarriers based on oxide nanoparticles, carbonaceous and two-dimensional (2D) nanomaterials. Finally, we reviewed recent literature on the application of state-of the art nanocarriers based on metal-organic frameworks (MOFs) and covalent-organic frameworks (COFs). We believe that the outcomes of this review paper offer valuable insights for researchers in selecting appropriate materials that can effectively enhance the corrosion resistance of coatings.
Collapse
Affiliation(s)
- Mohammad Ghaderi
- CoaST, Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU), Building 229, 2800 Kgs. Lyngby, Denmark
| | - Huichao Bi
- CoaST, Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU), Building 229, 2800 Kgs. Lyngby, Denmark.
| | - Kim Dam-Johansen
- CoaST, Department of Chemical and Biochemical Engineering, Technical University of Denmark (DTU), Building 229, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
10
|
Khan MS, Li Y, Li DS, Qiu J, Xu X, Yang HY. A review of metal-organic framework (MOF) materials as an effective photocatalyst for degradation of organic pollutants. NANOSCALE ADVANCES 2023; 5:6318-6348. [PMID: 38045530 PMCID: PMC10690739 DOI: 10.1039/d3na00627a] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/30/2023] [Indexed: 12/05/2023]
Abstract
Water plays a vital role in all aspects of life. Recently, water pollution has increased exponentially due to various organic and inorganic pollutants. Organic pollutants are hard to degrade; therefore, cost-effective and sustainable approaches are needed to degrade these pollutants. Organic dyes are the major source of organic pollutants from coloring industries. The photoactive metal-organic frameworks (MOFs) offer an ultimate strategy for constructing photocatalysts to degrade pollutants present in wastewater. Therefore, tuning the metal ions/clusters and organic ligands for the better photocatalytic activity of MOFs is a tremendous approach for wastewater treatment. This review comprehensively reports various MOFs and their composites, especially POM-based MOF composites, for the enhanced photocatalytic degradation of organic pollutants in the aqueous phase. A brief discussion on various theoretical aspects such as density functional theory (DFT) and machine learning (ML) related to MOF and MOF composite-based photocatalysts has been presented. Thus, this article may eventually pave the way for applying different structural features to modulate novel porous materials for enhanced photodegradation properties toward organic pollutants.
Collapse
Affiliation(s)
- M Shahnawaz Khan
- Pillar of Engineering Product Development, Singapore University of Technology and Design 8 Somapah Road 487372 Singapore
| | - Yixiang Li
- Pillar of Engineering Product Development, Singapore University of Technology and Design 8 Somapah Road 487372 Singapore
| | - Dong-Sheng Li
- College of Materials and Chemical Engineering, Key Laboratory of Inorganic Nonmetallic Crystalline and Energy Conversion Materials, China Three Gorges University Yichang 443002 P. R. China
| | - Jianbei Qiu
- Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology Kunming Yunnan 650093 China
| | - Xuhui Xu
- Key Laboratory of Advanced Materials of Yunnan Province, Kunming University of Science and Technology Kunming Yunnan 650093 China
| | - Hui Ying Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design 8 Somapah Road 487372 Singapore
| |
Collapse
|
11
|
Wang J, Qin J, Yang C, Hu Y. Effect of ligand substitution in UiO-66 metal-organic frameworks on the photocatalytic oxidation of acetaldehyde. CHEMOSPHERE 2023; 340:139841. [PMID: 37597629 DOI: 10.1016/j.chemosphere.2023.139841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 08/21/2023]
Abstract
A series of functionalized X-UiO-66 (X = NH2, H, Br and NO2) materials were prepared using a hydrothermal method and modified with various ligands. Their photocatalytic activity was evaluated by the oxidation of acetaldehyde. Experimental results show that the introduction of different ligands significantly influences the physicochemical properties of UiO-66. Br-UiO-66 exhibited the highest photocatalytic activity and CO2 selectivity of 85.6% and 85.7%, respectively. Photochemical properties reveal that -Br functional group facilitate the separation of photogenerated electrons and holes, significantly improving their transfer and oxygen reduction. As a result, an increased number of hydroxyl and superoxide radicals can form, improving the efficiency of the photocatalytic reaction. Br-UiO-66 accumulates fewer intermediates on its surface and still shows excellent photocatalytic activity and structural stability after 24 h of dynamic reaction. This work demonstrates the excellent adsorption and catalytic oxidation performance of Br-UiO-66 towards acetaldehyde and may provide new ideas for researching catalysts in the photocatalytic degradation of pollutants.
Collapse
Affiliation(s)
- Jun Wang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Junxian Qin
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Changqing Yang
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Yun Hu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Atmospheric Environment and Pollution Control, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, 510006, PR China.
| |
Collapse
|
12
|
Zhang N, Mu M, Qin M, Zhu J, Tian X, Lou X, Zhou Q, Lu M. Confinement effect of ionic liquid: Improve of the extraction performance of parent metal organic framework for phthalates. J Chromatogr A 2023; 1703:464101. [PMID: 37271083 DOI: 10.1016/j.chroma.2023.464101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/06/2023]
Abstract
In order to better identify the hazards of pollutants, developing the analytical methods that can sensitively detect and precisely monitor the content of trace pollutants has been the constant pursuit. In this paper, a new solid phase microextraction coating-ionic liquid/metal organic framework (IL/MOF) was obtained through the IL-induced strategy and used for the solid phase microextraction (SPME) process. IL was introduced into metal-organic framework (MOF) cage based on the anion of ionic liquid could interact strongly with the zirconium nodes of UiO-66-NH2. The introduction of IL not only increased the stability of composite, the hydrophobicity of IL also changed the environment of MOF channel, providing the hydrophobic effect to the targets. The confinement effect of IL effectively improved the extraction performance of parent MOF and the extraction performance of synthesized IL/UiO-66-NH2 for phthalates (PAEs) were 1.3-3.0 times that of parent UiO-66-NH2. Thanks to the strong interaction force (hydrogen bonding interaction, π-π stacking, hydrophobic interaction force), the IL/UiO-66-NH2-coated fiber coupled with gas chromatography-mass spectrometer showed a wide linear ranges (1-5000 ng L-1) with good correlation (R2, 0.9855-0.9987), lower detection limit (0.2-0.4 ng L-1) and satisfactory recoveries (95.3-119.3%) for PAEs. This article is dedicated to provide another way to improve the extraction performance of material.
Collapse
Affiliation(s)
- Ning Zhang
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China.
| | - Mengyao Mu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Mengjie Qin
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Jiawen Zhu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Xiao Tian
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Xuejing Lou
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Qian Zhou
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China
| | - Minghua Lu
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan 475004, China.
| |
Collapse
|