1
|
Meng Q, Wang Z, Sun K, Wen Z, Xue H. Screening and risk assessment of priority organic micropollutants for control in reclaimed water in China. JOURNAL OF HAZARDOUS MATERIALS 2025; 491:137883. [PMID: 40101638 DOI: 10.1016/j.jhazmat.2025.137883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/02/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
Organic micropollutants (OMPs) in reclaimed water have been frequently detected over the past decades, posing significant risks to ecosystems and human health. Given the complexity of these pollutants and the differences in their risk and toxicity, current assessments remain incomplete. This study conducted a large-scale investigation of OMPs in reclaimed water across China and developed a comprehensive multi-criteria integrated scoring method based on OMP toxicity and exposure potential. This method aims to protect aquatic organisms and human health by screening and prioritizing OMPs in reclaimed water, classifying their priority levels, and creating a prioritized control list. The study quantified OMP exposure potential, environmental persistence, bioaccumulation, and impacts on ecology and human health. The survey detected 369 OMPs from 11 chemical classes, with 325 compounds passing pre-selection. According to the prioritization scheme, 29 OMPs were identified as high priority, 171 as medium priority, and 125 as low priority. The BPs and Other Industrial Chemicals categories had the highest average maximum concentrations, followed by HPCCs and PAEs. High-priority pollutants were dominated by PAHs and PCBs, each comprising 31.03 %. Medium- and low-priority groups were mainly composed of Pesticides. PAHs and PCBs showed higher risk quotients, indicating significant ecological risks, while PCB 126, BaP, and PFOA exhibited high toxicity and potential health risks. This study provides valuable information for controlling priority pollutants in Chinese reclaimed water and establishes a foundation for OMP risk management. Future research should intensify monitoring to ensure the safe and sustainable use of water resources.
Collapse
Affiliation(s)
- Qingling Meng
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China.
| | - Zijian Wang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Kaicheng Sun
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Zhao Wen
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| | - Honghai Xue
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun 130118, China
| |
Collapse
|
2
|
Tabares‐Mosquera O, Juárez‐Díaz J, Camacho‐Carranza R, Ramos‐Morales P. Transgenerational Reproductive and Developmental Toxicity Induced by N-Nitrosodimethylamine and Its Metabolite Formaldehyde in Drosophila melanogaster. J Appl Toxicol 2025; 45:841-857. [PMID: 39775945 PMCID: PMC11982778 DOI: 10.1002/jat.4749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 12/18/2024] [Accepted: 12/24/2024] [Indexed: 01/11/2025]
Abstract
N-Nitrosodimethylamine (NDMA) is a known water disinfection byproduct (DBP) characterized as a potent hepatotoxin, promutagen, and probable human carcinogen; this is because of the metabolites associated with its biotransformation. The metabolism of NDMA produces formaldehyde, another alkylating agent and DBP. Both compounds are generated from natural and anthropogenic sources, but the safety restrictions applied to NDMA do not extend to the uses of formaldehyde. Hence, potential health and ecological risks are of concern. Due to limited information on the long-term effects of exposure to these compounds at environmentally relevant concentrations, this work aimed to compare the transgenerational reproductive and developmental toxicity of separate exposures to NDMA or its metabolite formaldehyde in Drosophila melanogaster over four generations. The parental flies were fed NDMA or formaldehyde (1.19E-06 to 5 mM) for 48 h during the third larval instar. Subsequent offspring (F1-F3) were grown under compound-free conditions. In the parental generation, both exposures modified the time to emergence and reduced the number of progenies. NDMA, but not formaldehyde, was lethal, affected fertility, and weakly induced malformations. In the next generations, both exposures induced malformed flies and modified the number of offspring. Reproductive toxicity and malformations were maintained for at least three generations, suggesting that detrimental effects could extend to unexposed offspring. This is the first study reporting the associated individual transgenerational effects on reproduction and development between NDMA and its metabolite formaldehyde in D. melanogaster, highlighting the relevance of evaluating multiple generations to accurately determine the health and environmental risks of pollutants.
Collapse
Affiliation(s)
- Oscar Eduardo Tabares‐Mosquera
- Laboratorio de Genética y Toxicología Ambiental‐Banco de Moscas, Facultad de CienciasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
- Posgrado en Ciencias BiológicasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Javier Andrés Juárez‐Díaz
- Departamento de Biología Celular, Facultad de CienciasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Rafael Camacho‐Carranza
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones BiomédicasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| | - Patricia Ramos‐Morales
- Laboratorio de Genética y Toxicología Ambiental‐Banco de Moscas, Facultad de CienciasUniversidad Nacional Autónoma de MéxicoMexico CityMexico
| |
Collapse
|
3
|
Pei Y, Liu R, Chen J, Chen Y, Chen J, Jiang Z. Efficient activation of persulfate by copper-coated nano zero-valent iron for degradation of nitrogenous disinfection by-products: The key role of Cu. J Colloid Interface Sci 2025; 684:213-225. [PMID: 39793429 DOI: 10.1016/j.jcis.2025.01.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/04/2025] [Accepted: 01/05/2025] [Indexed: 01/13/2025]
Abstract
The essential shortcoming of rapid passivation deactivation limits the efficient application of nano zero-valent iron (nZVI) in eliminating disinfection byproducts from drinking water. Copper-coated nano zero-valent iron (Cu-nZVI) bimetallic composites were synthesized to efficiently activate persulfate (PS) to remove nitrosopyrrolidine (NPYR). By introducing Cu-coated coatings, nZVI is protected from direct contact with PS; thus, Cu-nZVI appears to activate PS efficiently and stably without rapid deactivation. Compared with plain nZVI, the constructed Cu-nZVI/PS system significantly increased the removal efficiency for NPYR from 76.3 % to 94.3 % at a pH of 7.0. The Cu-nZVI composites achieved a synergetic effect on the degradation of NPYR by regulating PS activation and reactive oxygen species (ROS) formation, promoting Fe2+/Fe3+ cycling with the Cu-nZVI surface and accelerating the electron transport capacity. The bursting tests and electron paramagnetic resonance (EPR) tests confirmed that multiple types of ROS coexisted in the Cu-nZVI/PS system. Furthermore, vulnerable sites and degradation pathways on the NPYR molecule were predicted by density functional theory (DFT) calculations. Toxicity predictions revealed decreased biotoxicity of NPYR and its intermediates. The NPYR removal efficiency decreased slightly to 81.1 % after 30 days of ageing, which demonstrates the excellent potential of the composites for realistic applications.
Collapse
Affiliation(s)
- Yanyan Pei
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Renyu Liu
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Junlan Chen
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Yewei Chen
- China Construction Fourth Engineering Bureau Construction Development Co, Ltd, Xiamen 361006, China
| | - Jinfeng Chen
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian 350118, China
| | - Zhuwu Jiang
- College of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian 350118, China.
| |
Collapse
|
4
|
Yan X, Chen W, Song X, Ma Y, Wang H, Yang T, Liang Y, Zeng H. Environmental concentrations of N-nitrosodiethylamine (NDEA) disturb the Ca 2 + and K + homeostasis in the gills and epidermis of mosquitofish (Gambusia affinis). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 294:118067. [PMID: 40147174 DOI: 10.1016/j.ecoenv.2025.118067] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 03/04/2025] [Accepted: 03/14/2025] [Indexed: 03/29/2025]
Abstract
N-nitrosodiethylamine (NDEA), a nitrogenous disinfection by-product, is notorious for its ubiquitous presence in the environment and its carcinogenic properties. However, its impact on ion homeostasis in aquatic organisms remains underexplored. In the present study, we investigated the effects of NDEA on ion homeostasis in mosquitofish exposed to varying concentrations for 30 days. Calcium and potassium fluxes were monitored using noninvasive micro-test technology (NMT), and ATPase activities and gene expressions related to ion transport and immune responses were assessed. Principal component analysis was conducted to identify the organs most sensitive to different NDEA exposure levels. The results revealed that NDEA exposure inhibited transport enzyme activities and affected the expression of ion transport- and immune-related genes. Among all tested tissues, the gills exhibited the highest overall sensitivity (0.443) to NDEA exposure, underscoring their essential functions in ion transport and calcium regulation. These findings underscore the critical role of ion homeostasis in NDEA-induced toxicity and highlight the importance of understanding tissue-specific responses in assessing the ecological risks posed by N-nitrosamines in aquatic environments.
Collapse
Affiliation(s)
- Xiaoyu Yan
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China
| | - Wenwen Chen
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Xiaohong Song
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China.
| | - Yun Ma
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China
| | - Haiqin Wang
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China
| | - Tao Yang
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China
| | - Yanpeng Liang
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China
| | - Honghu Zeng
- The Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541006, China; Collaborative Innovation Center for Water Pollution Control and Water Safety in Karst Area, Guilin University of Technology, Guilin 541006, China; Key Laboratory of Carbon Emission and Pollutant Collaborative Control, Guilin University of Technology, Guilin 541006, China.
| |
Collapse
|
5
|
Liu J, Zhao B, Wang L, Zhang W, Zan T, Chen Z, Li Y. Occurrence, fate, and transport of N-nitrosamines and precursors in sewage treatment plants and receiving rivers in a highly urbanized basin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 368:125808. [PMID: 39914564 DOI: 10.1016/j.envpol.2025.125808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/17/2025] [Accepted: 02/03/2025] [Indexed: 02/09/2025]
Abstract
N-nitrosamines (NAs), highly carcinogenic disinfection by-products, were frequently detected in raw sewage, sewage treatment plants (STPs), and receiving rivers. This study investigated five NAs, including N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA), N-nitrosomorpholine (NMOR), N-nitrosodi-n-butylamine (NDBA), and N-nitrosopiperidine (NPIP), and their formation potentials (FPs) in a highly urbanized basin. The results showed that total NAs and their FPs ranged from 101 to 141 ng/L and 72.6-203 ng/L in the influent, implying that NAs and their FPs in the raw sewage might be affected by the sewage type, especially for NDMA (up to 103 ng/L) influenced by industrial wastewater. NDMA FP was positively correlated with NH4+, TN, and TOC, while NDMA, NDEA, and NDEA FP were strongly associated with heavy metals, especially Hg, implying factories using Hg as potential sources. The biological treatment effectively removed NAs in STPs, but NMOR showed the weakest biological removal. In addition, the removal efficiency of NDMA was related to the type of biological treatment in the following order: Modified anaerobic-anoxic-oxic-membrane-bioreactor (Modified AAO-MBR) (81.2%) > AAO (60.1%) > Oxidation ditch (53.3%) > UNITANK (46.5%) > Modified AAO (25.8%). After treatment, total NAs (mainly NDMA and NMOR) in the effluent still ranged from 7.09 to 31.8 ng/L. In the receiving rivers, although NMOR was mainly photodegraded, Patescibacteria discharged from STPs was the first time to be identified as a potential contributor for NMOR. NDMA was primarily degraded through photodegradation and biodegradation, NDMA FP was probably biodegraded, with Proteobacteria probably contributing to the biodegradation of NDMA and NDMA FP.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Bo Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China
| | - Tingchao Zan
- Nanjing Jiangning Water Business Group, Nanjing, 210000, PR China
| | - Zhenguo Chen
- Guangdong Provincial Engineering Research Center of Intelligent Low-carbon Pollution Prevention and Digital Technology, South China Normal University, Guangzhou, 510006, PR China; SCNU (NAN'AN) Green and Low-carbon Innovation Center, Nan'an SCNU Institute of Green and Low-carbon Research, Quanzhou, 362300, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, PR China.
| |
Collapse
|
6
|
Bak KH, Bauer S, Eisenreich C, Paulsen P. Residual Nitrite, Nitrate, and Volatile N-Nitrosamines in Organic and Conventional Ham and Salami Products. Foods 2025; 14:112. [PMID: 39796401 PMCID: PMC11720157 DOI: 10.3390/foods14010112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Nitrite and nitrate in meat products may be perceived negatively by consumers. These compounds can react to form carcinogenic volatile N-nitrosamines. "Nitrite-free" (i.e., uncured) organic meat products may contain nitrate from natural sources (e.g., spices and water). We studied the quality of ham and salami (conventional cured; organic cured; organic uncured). Residual nitrite and nitrate, volatile N-nitrosamines, microbial load, surface color, water activity, and pH were determined, considering one week of refrigerated storage in open or unopened packages. Residual nitrite and nitrate in organic, uncured salami were similar to cured salami, presumably from the addition of herbs and spices and nitrate reduction by nitrate reductase from microorganisms. For cooked ham, residual nitrite was significantly lower in the organic, uncured sample, while residual nitrate was not detected. N-nitrosodiphenylamine was detected in all samples at day 0, exceeding, in three out of five cured and both uncured products, the US legal limit of 10 µg/kg of volatile N-nitrosamines in foods. This finding warrants further investigation. The microbial load in salami products was dominated by bacteria from starter cultures. In ham, a slight increase in total aerobic count and lactic acid bacteria during storage was noted. Overall, the microbial quality of the products was as expected for the respective product types.
Collapse
Affiliation(s)
- Kathrine H. Bak
- FFoQSI GmbH—Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, Technopark 1C, 3430 Tulln, Austria
- Unit for Food Hygiene and Technology, Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (S.B.); (C.E.); (P.P.)
| | - Susanne Bauer
- Unit for Food Hygiene and Technology, Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (S.B.); (C.E.); (P.P.)
| | - Christoph Eisenreich
- Unit for Food Hygiene and Technology, Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (S.B.); (C.E.); (P.P.)
| | - Peter Paulsen
- Unit for Food Hygiene and Technology, Centre for Food Science and Veterinary Public Health, Clinical Department for Farm Animals and Food System Science, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (S.B.); (C.E.); (P.P.)
| |
Collapse
|
7
|
Ullah A, Afzal A, Lim HJ. Real-time monitoring of aqueous total N-nitrosamines by UV photolysis and chemiluminescence. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:1162. [PMID: 39496861 DOI: 10.1007/s10661-024-13328-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/25/2024] [Indexed: 11/06/2024]
Abstract
N-nitrosamines such as N-nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA), N-nitrosopiperidine (NPIP), and N-nitrosopyrrolidine (NPYR) have been established as potent carcinogens that can induce diverse types of cancer. Several studies have extensively investigated the accurate quantification of total N-nitrosamines (TONO) and the intricate nature of the matrix in which they are detected. The potential for the formation of N-nitrosamines in post-combustion CO2 capture (PCCC) and water treatment has raised concerns. This study outlines a unique method for the quantification of TONO in aqueous matrices using UV photolysis and the subsequent detection of NO by chemiluminescence. This method offers benefits such as operation in the continuous mode and handling of high sample flow rates to achieve a low limit of detection (LOD) and a low limit of quantification (LOQ). The observed LODs for the individual N-nitrosamines of NDMA, N-nitrosomorpholine (NMOR), N-nitrosodibutylamine (NDBA), and NPIP range between 0.06 and 0.2 µM at a sample flow rate of 0.25 mL/min, while the LOD range is reduced to between 0.02 and 0.06 µM at 0.75 mL/min. Linear responses for the NO produced from specific N-nitrosamines are observed between 0.5 and 10 µM. The developed method is resistant to interfering chemicals (i.e., nitrite, amines, and carbonyls) and exhibits high specificity.
Collapse
Affiliation(s)
- Atta Ullah
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Aqeel Afzal
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
- Institute of Energy and Environmental Engineering, University of the Punjab, Lahore, 54590, Pakistan
| | - Ho-Jin Lim
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
8
|
Pu C, Cavarra BR, Zeng T. Combining High-Resolution Mass Spectrometry and Chemiluminescence Analysis to Characterize the Composition and Fate of Total N-Nitrosamines in Wastewater Treatment Plants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39254226 PMCID: PMC11428135 DOI: 10.1021/acs.est.4c06555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Monitoring the prevalence and persistence of N-nitrosamines and their precursors in wastewater treatment plants (WWTPs) and effluent-receiving aquatic compartments is a priority for utilities practicing wastewater recycling or exploiting wastewater-impacted source waters. In this work, we developed an analytical framework that combines liquid chromatography-high-resolution mass spectrometry (LC-HRMS) with acidic triiodide-chemiluminescence analysis to characterize the composition and fate of total N-nitrosamines (TONO) and their precursors along the treatment trains of eight WWTPs in New York. Through the parallel application of LC-HRMS and chemiluminescence methods, the TONO scores for 41 N-nitrosamines containing structurally diverse substituents on their amine nitrogen were derived based on their solid-phase extraction recoveries and conversion efficiencies to nitric oxide. Correcting the compositional analysis of TONO using the TONO scores of target N-nitrosamines refined the assessment of the reduction or accumulation of TONO and their precursors across treatment steps in WWTPs. Nontargeted analysis prioritized seven additional N-nitrosamines for confirmation by reference standards, including three previously uncharacterized species: N-nitroso-tert-butylphenylamine, N-nitroso-2-pyrrolidinmethanol, and N-nitrosodesloratadine, although they only served as minor components of TONO. Overall, our study establishes an adaptable methodological framework for advancing the quantitative and qualitative analysis of specific and unknown components of TONO across water treatment and reuse scenarios.
Collapse
Affiliation(s)
- Changcheng Pu
- Department of Civil and Environmental Engineering, Syracuse University, 151 Link Hall, Syracuse, New York 13244, United States
| | - Benjamin R Cavarra
- Department of Civil and Environmental Engineering, Syracuse University, 151 Link Hall, Syracuse, New York 13244, United States
| | - Teng Zeng
- Department of Civil and Environmental Engineering, Syracuse University, 151 Link Hall, Syracuse, New York 13244, United States
| |
Collapse
|
9
|
Zhu J, Lu Y, He Q. From detection methods to risk prevention: Control of N-nitrosamines in foods and the role of natural bioactive compounds. Compr Rev Food Sci Food Saf 2024; 23:e70000. [PMID: 39217507 DOI: 10.1111/1541-4337.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/04/2024]
Abstract
Food processing unavoidably introduces various risky ingredients that threaten food safety. N-Nitrosamines (NAs) constitute a class of food contaminants, which are considered carcinogenic to humans. According to the compiled information, pretreatment methods based on solid-phase extraction (SPE) were widely used before the determination of volatile NAs in foods. The innovation of adsorbents and hybridization of other methods have been confirmed as the future trends of SPE-based pretreatment methods. Moreover, technologies based on liquid chromatography and gas chromatography were popularly applied for the detection of NAs. Recently, sensor-based methods have garnered increasing attention due to their efficiency and flexibility. More portable sensor-based technologies are recommended for on-site monitoring of NAs in the future. The application of artificial intelligence can facilitate data processing during high-throughput detection of NAs. Natural bioactive compounds have been confirmed to be effective in mitigating NAs in foods through antioxidation, scavenging precursors, and regulating microbial activities. Meanwhile, they exhibit strong protective activities against hepatic damage, pancreatic cancer, and other NA injuries. Further supplementation of data on the bioavailability of bioactives can be achieved through encapsulation and clinical trials. The utilization of bioinformatics tools rooted in various omics technologies is suggested for investigating novel mechanisms and finally broadening their applications in targeted therapies.
Collapse
Affiliation(s)
- Jinpeng Zhu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Yunhao Lu
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| | - Qiang He
- College of Biomass Science and Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Zhou J, Wang S, He X, Ren H, Zhang XX. Comparative evaluation of SPE methods for biotoxicity assessment of water and wastewater: Linkage between chemical extracting efficiency and biotoxicity outcome. J Environ Sci (China) 2024; 142:33-42. [PMID: 38527894 DOI: 10.1016/j.jes.2023.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 03/27/2024]
Abstract
Biotoxicity assessment results of environmental waters largely depend on the sample extraction protocols that enrich pollutants to meet the effect-trigger thresholds of bioassays. However, more chemical mixture does not necessarily translate to higher combined biotoxicity. Thus, there is a need to establish the link between chemical extracting efficiency and biotoxicity outcome to standardize extraction methods for biotoxicity assessment of environmental waters. This study compares the performance of five different extraction phases in solid phase extraction (SPE), namely HLB, HLB+Coconut, C18 cartridge, C18 disk and Strata-X, and evaluated their chemical extracting efficiencies and biotoxicity outcomes. We quantitatively assessed cytotoxicity, acute toxicity, genotoxicity, estrogenic activity, and neurotoxicity of the extracts using in vitro bioassays and characterized the chemical extracting efficiencies of the SPE methods through chemical recoveries of 23 model compounds with different polarities and total organic carbon. Using Pareto ranking, we identified HLB+Coconut as the optimal SPE method, which exhibited the highest level of water sample biotoxicity and recovered the most chemicals in water samples. We found that the biotoxicity outcomes of the extracted water samples significantly and positively correlated with the chemical extracting efficiencies of the SPE methods. Moreover, we observed synchronous changing patterns in biotoxicity outcome and chemical extracting efficiencies in response to increasing sample volumes per cartridge (SVPC) during SPE. Our findings underscore that higher chemical extracting efficiency of SPE corresponds to higher biotoxicity outcome of environmental water samples, providing a scientific basis for standardization of SPE methods for adequate assessment of biotoxicities of environmental waters.
Collapse
Affiliation(s)
- Jiawei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Shihao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xiwei He
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
11
|
Huang H, Chen Z, Su Y, Zeng H, Li H, Chen Y, Qi S, Chen W, Chen W, Zhang G. N-nitrosamines in electroplating and printing/dyeing industrial wastewater treatment plants: Removal efficiency, environmental emission, and the influence on drinking water. WATER RESEARCH 2024; 255:121537. [PMID: 38555784 DOI: 10.1016/j.watres.2024.121537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/04/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
The discharge of industrial wastewater containing high concentrations of N-nitrosamines to the aquatic environment can impair downstream source waters and pose potential risks to human health. However, the transport and fate of N-nitrosamines in typical industrial wastewater treatment plants (IWWTPs) and the influence of these effluents on source water and drinking water are still unclear. This study investigated nine N-nitrosamines in four full-scale electroplating (E-) and printing/dyeing (PD-) IWWTPs, two drinking water treatment plants (DWTPs) in the lower reaches of these IWWTPs, and the corresponding tap water in South China. The total concentrations of N-nitrosamines (∑NAs) were 382-10,600, 480-1920, 494-789, and 27.9-427 ng/L in influents, effluents, source water, and tap water, respectively. The compositions of N-nitrosamine species in different influents varied a lot, while N-nitrosodi-n-butylamine (NDBA) and N-nitrosodimethylamine (NDMA) dominated in most of the effluents, source water, and tap water. More than 70 % N-nitrosamines were removed by wastewater treatment processes used in E-IWWTPs such as ferric-carbon micro-electrolysis (Fe/C-ME), while only about 50 % of N-nitrosamines were removed in PD-IWWTPs due to the use of chlorine reagent or other inefficient conventional processes such as flocculation by cationic amine-based polymers or bio-contact oxidation. Therefore, the mass fluxes of N-nitrosamines discharged from these industrial wastewaters to the environment in the selected two industrial towns were up to 14,700 mg/day. The results based on correlation and principal component analysis significantly demonstrated correlations between E-and PD-effluents and source water and tap water, suggesting that these effluents can serve as sources of N-nitrosamines to local drinking water systems. This study suggests that N-nitrosamines are prevalent in typical IWWTPs, which may infect drinking water systems. The findings of this study provide a basis data for the scientific evaluation of environmental processes of N-nitrosamines.
Collapse
Affiliation(s)
- Huanfang Huang
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, PR China; State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, MEE, Guangzhou 510535, PR China
| | - Zifeng Chen
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, PR China
| | - Yuru Su
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, PR China
| | - Honghu Zeng
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, PR China
| | - Haixiang Li
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, PR China
| | - Yingjie Chen
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, PR China
| | - Shihua Qi
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, PR China
| | - Wei Chen
- School of Environmental Studies, China University of Geosciences, Wuhan 430078, PR China
| | - Wenwen Chen
- Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, PR China.
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, PR China
| |
Collapse
|
12
|
Chen Y, Zeng H, Huang H, Qin L, Qi S, Li H, Shahab A, Zhang H, Chen W. Occurrence and fate of N-nitrosamines in full-scale domestic wastewater treatment plants and their impact on receiving waters along the Lijiang River, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133870. [PMID: 38430594 DOI: 10.1016/j.jhazmat.2024.133870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/05/2024]
Abstract
Domestic wastewaters contaminated with N-nitrosamines pose a significant threat to river ecosystems worldwide, particularly in urban areas with riparian cities. Despite widespread concern, the precise impact of these contaminants on receiving river waters remains uncertain. This study investigated eight N-nitrosamines in wastewater treatment plants (WWTPs) and their adjacent receiving river, the Lijiang River in Guilin City, Southwest China. By analyzing thirty wastewater samples from five full-scale WWTPs and twenty-three river water samples from Guilin, we quantified the mass loads of N-nitrosamines discharged into the surrounding watershed via domestic effluents. The results revealed that N-nitrosodimethylamine (10-60 ng/L), N-nitrosodiethylamine (3.4-22 ng/L), and N-nitrosopyrrolidine (not detected-4.5 ng/g) were predominant in influents, effluents, and sludge, respectively, with the overall removal efficiencies ranging from 17.7 to 65.6% during wastewater treatment. Cyclic activated sludge system and ultraviolet disinfection were effective in removing N-nitrosamines (rates of 59.6% and 24.3%), while chlorine dioxide disinfection promoted their formation. A total of 30.4 g/day of N-nitrosamine mass loads were observed in the Lijiang River water, with domestic effluents contributing about 31.3% (19.4 g/day), followed by livestock breeding wastewater (34.5%, 12.0 g/day), and unknown sources (24.7%, 7.5 g/day). These findings highlight the critical role of WWTPs in transporting N-nitrosamines to watersheds and emphasize the urgent need for further investigation into other potential sources of N-nitrosamine pollution within watersheds.
Collapse
Affiliation(s)
- Yingjie Chen
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China; School of Environmental Studies and State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; Lancaster Environment Centre, Lancaster University, Lancashire LA1 4YW, the United Kingdom
| | - Honghu Zeng
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Huanfang Huang
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, MEE, Guangzhou 510535, China
| | - Litang Qin
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Shihua Qi
- School of Environmental Studies and State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
| | - Haixiang Li
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Asfandyar Shahab
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China
| | - Hao Zhang
- Lancaster Environment Centre, Lancaster University, Lancashire LA1 4YW, the United Kingdom
| | - Wenwen Chen
- Guangxi Key Laboratory of Theory and Technology for Environmental Pollution Control, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
13
|
Pan Y, Breider F, Barrios B, Minakata D, Deng H, von Gunten U. Role of Carbonyl Compounds for N-Nitrosamine Formation during Nitrosation: Kinetics and Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:4792-4801. [PMID: 38427382 PMCID: PMC10938875 DOI: 10.1021/acs.est.3c07461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/11/2024] [Accepted: 02/14/2024] [Indexed: 03/02/2024]
Abstract
N-Nitrosamines are potential human carcinogens frequently detected in natural and engineered aquatic systems. This study sheds light on the role of carbonyl compounds in the formation of N-nitrosamines by nitrosation of five secondary amines via different pathways. The results showed that compared to a control system, the presence of formaldehyde enhances the formation of N-nitrosamines by a factor of 5-152 at pH 7, depending on the structure of the secondary amines. Acetaldehyde showed a slight enhancement effect on N-nitrosamine formation, while acetone and benzaldehyde did not promote nitrosation reactions. For neutral and basic conditions, the iminium ion was the dominant intermediate for N-nitrosamine formation, while carbinolamine became the major contributor under acidic conditions. Negative free energy changes (<-19 kcal mol-1) and relatively low activation energies (<18 kcal mol-1) of the reactions of secondary amines with N2O3, iminium ions with nitrite and carbinolamines with N2O3 from quantum chemical computations further support the proposed reaction pathways. This highlights the roles of the iminium ion and carbinolamine in the formation of N-nitrosamines during nitrosation in the presence of carbonyl compounds, especially in the context of industrial wastewater.
Collapse
Affiliation(s)
- Yishuai Pan
- School
of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale Lausanne
(EPFL), CH-1015 Lausanne, Switzerland
- Key
Laboratory of Yangtze River Water Environment, Ministry of Education,
Shanghai Institute of Pollution Control and Ecological Security, College
of Environmental Science and Engineering, Tongji University, Shanghai 20092, China
| | - Florian Breider
- School
of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale Lausanne
(EPFL), CH-1015 Lausanne, Switzerland
| | - Benjamin Barrios
- Department
of Civil, Environmental and Geospatial Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| | - Daisuke Minakata
- Department
of Civil, Environmental and Geospatial Engineering, Michigan Technological University, 1400 Townsend Drive, Houghton, Michigan 49931, United States
| | - Huiping Deng
- Key
Laboratory of Yangtze River Water Environment, Ministry of Education,
Shanghai Institute of Pollution Control and Ecological Security, College
of Environmental Science and Engineering, Tongji University, Shanghai 20092, China
| | - Urs von Gunten
- School
of Architecture, Civil and Environmental Engineering (ENAC), Ecole Polytechnique Fédérale Lausanne
(EPFL), CH-1015 Lausanne, Switzerland
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| |
Collapse
|
14
|
Chong ZX, Yong CY, Ong AHK, Yeap SK, Ho WY. Deciphering the roles of aryl hydrocarbon receptor (AHR) in regulating carcinogenesis. Toxicology 2023; 495:153596. [PMID: 37480978 DOI: 10.1016/j.tox.2023.153596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/13/2023] [Accepted: 07/16/2023] [Indexed: 07/24/2023]
Abstract
Aryl hydrocarbon receptor (AHR) is a ligand-dependent receptor that belongs to the superfamily of basic helix-loop-helix (bHLH) transcription factors. The activation of the canonical AHR signaling pathway is known to induce the expression of cytochrome P450 enzymes, facilitating the detoxification metabolism in the human body. Additionally, AHR could interact with various signaling pathways such as epidermal growth factor receptor (EGFR), signal transducer and activator of transcription 3 (STAT3), hypoxia-inducible factor-1α (HIF-1α), nuclear factor ekappa B (NF-κβ), estrogen receptor (ER), and androgen receptor (AR) signaling pathways. Over the past 30 years, several studies have reported that various chemical, physical, or biological agents, such as tobacco, hydrocarbon compounds, industrial and agricultural chemical wastes, drugs, UV, viruses, and other toxins, could affect AHR expression or activity, promoting cancer development. Thus, it is valuable to overview how these factors regulate AHR-mediated carcinogenesis. Current findings have reported that many compounds could act as AHR ligands to drive the expressions of AHR-target genes, such as CYP1A1, CYP1B1, MMPs, and AXL, and other targets that exert a pro-proliferation or anti-apoptotic effect, like XIAP. Furthermore, some other physical and chemical agents, such as UV and 3-methylcholanthrene, could promote AHR signaling activities, increasing the signaling activities of a few oncogenic pathways, such as the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathways. Understanding how various factors regulate AHR-mediated carcinogenesis processes helps clinicians and scientists plan personalized therapeutic strategies to improve anti-cancer treatment efficacy. As many studies that have reported the roles of AHR in regulating carcinogenesis are preclinical or observational clinical studies that did not explore the detailed mechanisms of how different chemical, physical, or biological agents promote AHR-mediated carcinogenesis processes, future studies should focus on conducting large-scale and functional studies to unravel the underlying mechanism of how AHR interacts with different factors in regulating carcinogenesis processes.
Collapse
Affiliation(s)
- Zhi Xiong Chong
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia
| | - Chean Yeah Yong
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia
| | - Alan Han Kiat Ong
- Faculty of Medicine and Health Sciences, Universiti Tunku Abdul Rahman, 43000 Kajang, Malaysia
| | - Swee Keong Yeap
- China-ASEAN College of Marine Sciences, Xiamen University Malaysia, 43900 Sepang, Selangor, Malaysia.
| | - Wan Yong Ho
- Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor, Malaysia.
| |
Collapse
|