1
|
Du Y, Yu C, Sun Z, Liu Y, Liu X, Feng Y, Wang H, Zhou J, Li X. Soil resource availability regulates the response of micro-food web multitrophic interactions to heavy metal contamination. ENVIRONMENTAL RESEARCH 2025; 273:121222. [PMID: 40010424 DOI: 10.1016/j.envres.2025.121222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/08/2025] [Accepted: 02/23/2025] [Indexed: 02/28/2025]
Abstract
The effects of heavy metal contamination on soil biomes have been of considerable interest. However, the effects of heavy metal pollution on the interactions between soil multi-trophic biota in soil food webs and the regulatory mechanisms still need more research, especially in different soil situations. This study examined the impact of heavy metal contamination on soil micro-food web in two distinct soil resource availability situations. Under low soil resources availability situation, heavy metals mainly affected the community structure of soil bacteria and nematodes, with the number of edges of the bacterial network and network complexity reduced by 60.5% and 187%, respectively. In addition, the presence of heavy metals led to a significant reduction in the energy flow from soil resources to bacterivores in the nematode food web. For micro-food webs, heavy metal contamination increased the network average degree by 18.8% and 11.56% in the low and high resource availability situations, respectively. However, in high soil resource availability, heavy metal contamination decreased micro-food web stability and eased competitive relationships among multitrophic organisms and increased microbial carbon limitation and mitigates nitrogen limitation. In low soil resource availability, it increased network stability and shifted relationships among micro-food web organisms from cooperative to competitive and decreased microbial carbon limitation and aggravated nitrogen limitation. This study offers new research insights into the feedback discrepancy between resource availability and pollution stress from the perspective of multitrophic level interactions and further deepens the understanding of the environmental impacts of heavy metal pollution at the ecosystem level.
Collapse
Affiliation(s)
- Yanbin Du
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Caihong Yu
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China.
| | - Zhanghan Sun
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - Yijia Liu
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China
| | - XiaoXia Liu
- Beijing Cultivated Land Construction and Protection Center, Beijing, 100000, China
| | - Yang Feng
- Beijing Cultivated Land Construction and Protection Center, Beijing, 100000, China
| | - Hongting Wang
- Beijing Cultivated Land Construction and Protection Center, Beijing, 100000, China
| | - Jie Zhou
- Beijing Cultivated Land Construction and Protection Center, Beijing, 100000, China
| | - Xianhong Li
- School of Chemical & Environmental Engineering, China University of Mining & Technology (Beijing), Beijing, 100083, China; Hangzhou Institute of National Extremely-weak Magnetic Field Infrastructure, Hangzhou, 310028, China
| |
Collapse
|
2
|
Jiang S, Deng X, Ma L, Wang H, Wang X, Feng L, Zhu F, Xue S, Mohammad A. Standardized framework for assessing soil quality at antimony smelting site by considering microbial-induced resilience and heavy metal contamination. J Environ Sci (China) 2025; 148:306-320. [PMID: 39095167 DOI: 10.1016/j.jes.2023.12.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 08/04/2024]
Abstract
Antimony smelting activities damage the soil and vegetation surroundings while generating economic value. However, no standardized methods are available to diagnose the extent of soil degradation at antimony smelting sites. This study developed a standardized framework for assessing soil quality by considering microbial-induced resilience and heavy metal contamination at Xikuangshan antimony smelting site. The soil resilience index (SRI) and soil contamination index (SCI) were calculated by Minimum Data Set and geo-accumulation model, respectively. After standardized by a multi-criteria quantitative procedure of modified Nemerow's pollution index (NPI), the integrated assessment of soil quality index (SQI), which is the minimum of SRINPI and SCINPI, was achieved. The results showed that Sb and As were the prominent metal(loid) pollutants, and significant correlations between SQI and SRI indicated that the poor soil quality was mainly caused by the low level of soil resilience. The primary limiting factors of SRI were Fungi in high and middle contaminated areas, and Skermanella in low contaminated area, suggesting that the weak soil resilience was caused by low specific microbial abundances. Microbial regulation and phytoremediation are greatly required to improve the soil quality at antimony smelting sites from the perspectives of pollution control and resilience improvement. This study improves our understanding of ecological effects of antimony smelting sites and provides a theoretical basis for ecological restoration and sustainable development of mining areas.
Collapse
Affiliation(s)
- Shasha Jiang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xiaoyu Deng
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Liyuan Ma
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China; School of Engineering, Cardiff University, Cardiff CF243AA, United Kingdom.
| | - Hongmei Wang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xingjie Wang
- School of Engineering, Cardiff University, Cardiff CF243AA, United Kingdom; Institute of Geological Survey, China University of Geosciences, Wuhan 430074, China
| | - Liang Feng
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Feng Zhu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Shengguo Xue
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Arif Mohammad
- School of Engineering, Cardiff University, Cardiff CF243AA, United Kingdom
| |
Collapse
|
3
|
Yang S, Liu B, Wang L, Duran R. Dispatched microbial community assembly processes driving ecological succession during phytostabilization of mercury-rich tailings. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 365:125376. [PMID: 39581369 DOI: 10.1016/j.envpol.2024.125376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/05/2024] [Accepted: 11/20/2024] [Indexed: 11/26/2024]
Abstract
Phytostabilization is an important way for the remediation of mine tailings, but the associated microbial processes and community succession remain largely unknown. In this study, we investigated the assembly mechanisms maintaining the core and satellite subcommunities diversity during phytostabilizaion of a mercury-rich mine tailings. The contents of total Hg and methylmercury decreased with a concomitant increase of total and available phosphorus content along the successive remediation stages. Microbial community composition, profiled by 16S rRNA gene sequencing, revealed amplicon sequence variants (ASVs) that were separated according to their abundance within either the core community or the satellite community. Community dynamics analysis showed that alpha diversity indices increased for the core community while decreased for the satellite community. Both satellite and core communities were mainly driven by stochastic drift process, and homogeneous selection was relatively higher in shaping the core community organization. The core community included ASVs affiliated to Proteobacteria, Crenarchaeota, Bacteroidota, Verrucomicrobiota, Acidobacteriota, and Myxococcota phyla, which were driven primarily by heterogeneous selection and drift. The satellite community included ASVs affiliated to Acidobacteriota, Ktedonobacteria, Anaerolineae and Verrucomicrobiota phyla, which were mainly influenced by heterogeneous selection. Nineteen taxa and one taxon were identified as keystone taxa for the satellite and core communities respectively. This study provides important insights on the assemble rules within the core and satellite communities, and theoretical guidance for further ecological restoration and management during microbial remediation of metal-mined derelict land.
Collapse
Affiliation(s)
- Shengxiang Yang
- College of Resources and Environment, Zunyi Normal University, Pingan Road, Xinpunew District, Zunyi, China
| | - Bang Liu
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France.
| | - Lu Wang
- College of Resources and Environment, Zunyi Normal University, Pingan Road, Xinpunew District, Zunyi, China
| | - Robert Duran
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
| |
Collapse
|
4
|
Lin J, Dai Z, Lei M, Qi Q, Zhou W, Ma LQ, Dahlgren RA, Xu J. Arsenic modifies the microbial community assembly of soil-root habitats in Pteris vittata. ISME COMMUNICATIONS 2025; 5:ycae172. [PMID: 39830094 PMCID: PMC11742257 DOI: 10.1093/ismeco/ycae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/12/2024] [Accepted: 12/26/2024] [Indexed: 01/22/2025]
Abstract
Pteris vittata, renowned for its ability to hyperaccumulate arsenic, presents a promising solution to the escalating issue of global soil arsenic contamination. This fern cultivates a unique underground microbial community to enhance its environmental adaptability. However, our understanding of the assembly process and the long-term ecological impacts of this community remains limited, hindering the development of effective soil remediation strategies. This study addresses this gap by investigating soil-root habitats from three geographically diverse fields comprising a gradient of arsenic contamination, complemented by a time-scale greenhouse experiment. Field investigations reveal that arsenic stress influences community assembly dynamics in the rhizosphere by enhancing processes of homogeneous selection. Greenhouse experiments further reveal that arsenic exposure alters the assembly trajectory of rhizosphere communities by promoting key microbial modules. Specifically, arsenic exposure increases the enrichment of a core taxon (i.e. Rhizobiaceae) in the rhizosphere, both in field and greenhouse settings, boosting their abundance from undetectable levels to 0.02% in the soil after phytoremediation. Notably, arsenic exposure also promotes a pathogenic group (i.e. Spirochaetaceae) in the rhizosphere, increasing their abundance from undetectable levels to 0.1% in the greenhouse. This raise concerns that warrant further investigation in future phytoremediation studies. Overall, this study elucidates the assembly dynamics of the soil microbiome following the introduction of a remediation plant and emphasizes the often-overlooked impacts on soil microbial community following phytoremediation. By probing the ecological impacts of remediation plants, this work advances a more nuanced understanding of the complex ecological implications inherent in phytoremediation processes.
Collapse
Affiliation(s)
- Jiahui Lin
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Zhongmin Dai
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- The Rural Development Academy, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Mei Lei
- Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
| | - Qian Qi
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Weijun Zhou
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, One Shields Avenue, Davis 95616 CA, United States
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
- The Rural Development Academy, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
5
|
Wang Y, Kang Y, Dong J, Ma H, Guo Z, Wu H, Hu Z, Xie H, Zhang J. Synergetic effect of pyrrhotite and zero-valent iron on Hg(Ⅱ) removal in constructed wetland: Mechanisms of electron transfer and microbial reaction. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136041. [PMID: 39368359 DOI: 10.1016/j.jhazmat.2024.136041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/09/2024] [Accepted: 10/01/2024] [Indexed: 10/07/2024]
Abstract
Effective removal of mercury (Hg) from wastewater is significant due to its high toxicity, especially methylmercury (MeHg). Reducing of Hg(II) to Hg(0) in constructed wetlands (CWs) using iron-based materials is an effective strategy for preventing the formation of MeHg. However, the surface passivation of zero-valent iron (ZVI) limits its application. Herein, synergetic ZVI and pyrrhotite were utilized to enhance Hg removal in CWs. Results indicated that the removal of total Hg, dissolved Hg, and particulate Hg in CWs with ZVI and pyrrhotite were improved by 21.68 ± 0.76 %, 13.02 ± 0.88 %, and 22.27 ± 0.76 % compared to that with single ZVI or pyrrhotite. Pyrrhotite increased the surface corrosion of ZVI, thereby facilitating the process of iron reduction. The redox of iron promoted the generation of EPS, which could provide electrons for Hg(II) reduction. The sulfur also participates in electron transfer by driving the methylation of Hg and provides sulfides to form FeS-Hg complexes and HgS precipitation. The abundance of key enzymes that involved in iron reduction and Hg transformation was enhanced with the addition of ZVI and pyrrhotite. The synergetic of pyrrhotite and ZVI enhances the removal of Hg in CW, offering a promising technology for high-efficiency treatment of Hg.
Collapse
Affiliation(s)
- Yuqi Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yan Kang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Jiahao Dong
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Haoqin Ma
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zizhang Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Huijun Xie
- Shandong University Environment Research Institute, Shandong University, Jinan 250100, China
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, Shandong 250014, China
| |
Collapse
|
6
|
Peng M, Deng G, Hu C, Hou X, Wang Z. Bioremediation Potential of Rhodococcus qingshengii PM1 in Sodium Selenite-Contaminated Soil and Its Impact on Microbial Community Assembly. Microorganisms 2024; 12:2458. [PMID: 39770660 PMCID: PMC11677749 DOI: 10.3390/microorganisms12122458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 11/26/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Soil microbial communities are particularly sensitive to selenium contamination, which has seriously affected the stability of soil ecological environment and function. In this study, we applied high-throughput 16S rRNA gene sequencing to examine the effects of low and high doses of sodium selenite and the selenite-degrading bacterium, Rhodococcus qingshengii PM1, on soil bacterial community composition, diversity, and assembly processes under controlled laboratory conditions. Our results indicated that sodium selenite and strain PM1 were key predictors of bacterial community structure in selenium-contaminated soils. Exposure to sodium selenite initially led to reductions in microbial diversity and a shift in dominant bacterial groups, particularly an increase in Actinobacteria and a decrease in Acidobacteria. Sodium selenite significantly reduced microbial diversity and simplified co-occurrence networks, whereas inoculation with strain PM1 partially reversed these effects by enhancing community complexity. Ecological modeling, including the normalized stochasticity ratio (NST) and Sloan's neutral community model (NCM), suggested that stochastic processes predominated in the assembly of bacterial communities under selenium stress. Null model analysis further revealed that heterogeneous selection and drift were primary drivers of community turnover, with PM1 inoculation promoting species dispersal and buffering against the negative impacts of selenium. These findings shed light on microbial community assembly mechanisms under selenium contamination and highlight the potential of strain PM1 for the bioremediation of selenium-affected soils.
Collapse
Affiliation(s)
- Mu Peng
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China; (M.P.); (G.D.); (C.H.); (X.H.)
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China
| | - Guangai Deng
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China; (M.P.); (G.D.); (C.H.); (X.H.)
- College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China
| | - Chongyang Hu
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China; (M.P.); (G.D.); (C.H.); (X.H.)
| | - Xue Hou
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China; (M.P.); (G.D.); (C.H.); (X.H.)
| | - Zhiyong Wang
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China; (M.P.); (G.D.); (C.H.); (X.H.)
| |
Collapse
|
7
|
Zhu A, Liang Z, Gao L, Xie Z. Dispersal limitation determines the ecological processes that regulate the seasonal assembly of bacterial communities in a subtropical river. Front Microbiol 2024; 15:1430073. [PMID: 39252829 PMCID: PMC11381306 DOI: 10.3389/fmicb.2024.1430073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Bacteria play a crucial role in pollutant degradation, biogeochemical cycling, and energy flow within river ecosystems. However, the underlying mechanisms governing bacterial community assembly and their response to environmental factors at seasonal scales in subtropical rivers remain poorly understood. In this study, we conducted 16S rRNA gene amplicon sequencing on water samples from the Liuxi River to investigate the composition, assembly processes, and co-occurrence relationships of bacterial communities during the wet season and dry season. The results demonstrated that seasonal differences in hydrochemistry significantly influenced the composition of bacterial communities. A more heterogeneous community structure and increased alpha diversity were observed during the dry season. Water temperature emerged as the primary driver for seasonal changes in bacterial communities. Dispersal limitation predominantly governed community assembly, however, during the dry season, its contribution increased due to decreased immigration rates. Co-occurrence network analysis reveals that mutualism played a prevailing role in shaping bacterial community structure. Compared to the wet season, the network of bacterial communities exhibited higher modularity, competition, and keystone species during the dry season, resulting in a more stable community structure. Although keystone species displayed distinct seasonal variations, Proteobacteria and Actinobacteria were consistently abundant keystone species maintaining network structure in both seasons. Our findings provide insights into how bacterial communities respond to seasonal environmental changes, uncovering underlying mechanisms governing community assembly in subtropical rivers, which are crucial for the effective management and conservation of riverine ecosystems.
Collapse
Affiliation(s)
- Aiping Zhu
- School of Geography and Tourism, Anhui Normal University, Wuhu, China
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Chinese Academy of Sciences, Guangzhou, China
| | - Zuobing Liang
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang, China
| | - Lei Gao
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, Chinese Academy of Sciences, Guangzhou, China
| | - Zhenglan Xie
- School of Geomatics and Municipal Engineering, Zhejiang University of Water Resources and Electric Power, Hangzhou, China
| |
Collapse
|
8
|
Yin T, Zhang X, Long Y, Jiang J, Zhou S, Chen Z, Hu J, Ma S. Impact of soil physicochemical factors and heavy metals on co-occurrence pattern of bacterial in rural simple garbage dumping site. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 280:116476. [PMID: 38820822 DOI: 10.1016/j.ecoenv.2024.116476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/14/2024] [Accepted: 05/16/2024] [Indexed: 06/02/2024]
Abstract
Rural waste accumulation leads to heavy metal soil pollution, impacting microbial communities. However, knowledge gaps exist regarding the distribution and occurrence patterns of bacterial communities in multi-metal contaminated soil profiles. In this study, high-throughput 16 S rRNA gene sequencing technology was used to explore the response of soil bacterial communities to various heavy metal pollution in rural simple waste dumps in karst areas of Southwest China. The study selected three habitats in the center, edge, and uncontaminated areas of the waste dump to evaluate the main factors driving the change in bacterial community composition. Pollution indices reveal severe contamination across all elements, except for moderately polluted lead (Pb); contamination severity ranks as follows: Mn > Cd > Zn > Cr > Sb > V > Cu > As > Pb. Proteobacteria, Actinobacteria, Chloroflexi, and Acidobacteriota predominate, collectively constituting over 60% of the relative abundance. Analysis of Chao and Shannon indices demonstrated that the waste dump center boasted the greatest bacterial richness and diversity. Correlation data indicated a predominant synergistic interaction among the landfill's bacterial community, with a higher number of positive associations (76.4%) compared to negative ones (26.3%). Network complexity was minimal at the dump's edge. RDA analysis showed that Pb(explained:46%) and Mn(explained:21%) were the key factors causing the difference in bacterial community composition in the edge area of the waste dump, and AK(explained:42.1%) and Cd(explained:35.2%) were the key factors in the center of the waste dump. This study provides important information for understanding the distribution patterns, co-occurrence networks, and environmental response mechanisms of bacterial communities in landfill soils under heavy metal stress, which helps guide the formulation of rural waste treatment and soil remediation strategies.
Collapse
Affiliation(s)
- Tongyun Yin
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Xiangyu Zhang
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Yunchuan Long
- Guizhou Academy of Sciences, Shanxi Road 1, Guiyang 550001, PR China
| | - Juan Jiang
- Guizhou Academy of Sciences, Shanxi Road 1, Guiyang 550001, PR China
| | - Shaoqi Zhou
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, PR China; College of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Center, PR China
| | - Zhengquan Chen
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, PR China
| | - Jing Hu
- College of Resources and Environmental Engineering, Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, PR China; Guizhou Jiamu Environmental Protection Technology Co., Ltd, PR China.
| | - Shengming Ma
- Guizhou Jiamu Environmental Protection Technology Co., Ltd, PR China
| |
Collapse
|
9
|
Li H, Yao J, Min N, Sunahara G, Zhao Y, Duran R. Considering the bioavailability and bioaccessibility of metal(loid)s for risk assessment of soils affected by different non-ferrous metal activities in Southwest China. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134527. [PMID: 38735184 DOI: 10.1016/j.jhazmat.2024.134527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/22/2024] [Accepted: 05/01/2024] [Indexed: 05/14/2024]
Abstract
Toxic metal(loid)s released into the soil by non-ferrous metal mining and smelting activities pose a serious threat to residents and the surrounding ecosystem. Considering only total metal(loid) concentrations likely overestimates routine (eco)toxicological risk assessment of soil. We hypothesize that considering metal(loid) bioavailability/accessibility will improve the accuracy of risk assessment. To test this hypothesis, four mining areas in Southwest China, including mining and surrounding sites, were studied. Bioavailability was determined considering metal(loid)s leached by a simulated strong acid rain (SSAR) treatment. In the four areas, the mining site showed higher cumulative releases of metal(loid)s under SSAR treatment than the agricultural field located in the surrounding sites. Thus, the bioavailable metal(loid)s contents were continuously being released during SSAR treatment and likely increased the environmental risk. Ecological and health risk assessment of soil, calculated using total metal(loid)s content, was corrected considering bioavailable/accessible metal(loid)s, which was determined by the heavy metal(loid)s forms and in vitro simulated intestinal stages. Although the corrected indices indicated that the risk of metal(loid)s-contaminated soil was reduced, unfavorable ecological and health risks remained in the four areas. Our study provides new perspectives to better predict the risk of bioavailable/accessible metal(loid)s in non-ferrous metal contaminated and surrounding soils.
Collapse
Affiliation(s)
- Hao Li
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Jun Yao
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China.
| | - Ning Min
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Geoffrey Sunahara
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China; Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Drive, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Yan Zhao
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Robert Duran
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China; Universite de Pau et des Pays de l'Adour, E2S-UPPA, IPREM 5254, BP 1155, 64013 Pau Cedex, France
| |
Collapse
|
10
|
Zou M, Zhang Q, Li F, Chen L, Qiu Y, Yin Q, Zhou S. Impacts of multiple environmental factors on soil bacterial community assembly in heavy metal polluted paddy fields. Sci Rep 2024; 14:14696. [PMID: 38926471 PMCID: PMC11208537 DOI: 10.1038/s41598-024-65678-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/24/2024] [Indexed: 06/28/2024] Open
Abstract
Soil microorganisms play pivotal roles in driving essential biogeochemical processes in terrestrial ecosystems, and they are sensitive to heavy metal pollution. However, our understanding of multiple environmental factors interaction in heavy metal polluted paddy fields to shape microbial community assembly remain limited. In the current study, we used 16S rRNA amplicon sequencing to characterize the microbial community composition in paddy soils collected from a typical industry town in Taihu region, eastern China. The results revealed that Cd and Pb were the major pollutant, and Proteobacteria, Acidobacteria and Chloroflexi were the dominate indigenous bacterial phyla. Linear regression and random forest analysis demonstrated that soil pH was the most important predictor of bacterial diversity. Mantel analysis showed that bacterial community structure was mainly driven by pH, CEC, silt, sand, AK, total Cd and DTPA-Cd. The constructed bacterial co-occurrence network, utilizing a random matrix theory-based approach, exhibited non-random with scale-free and modularity features. The major modules within the networks also showed significant correlations with soil pH. Overall, our study indicated that soil physiochemical properties made predominant contribution to bacterial community diversity, structure and their association in Cd/Pb polluted paddy fields. These findings expand our knowledge of the key environmental drivers and co-occurrence patterns of bacterial community in polluted paddy fields.
Collapse
Affiliation(s)
- Mengmeng Zou
- School of Geography and Ocean Science, Nanjing University, 163 Xianlin Road, Nanjing, 210023, Jiangsu, People's Republic of China
- Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, People's Republic of China
| | - Qi Zhang
- School of Geography and Ocean Science, Nanjing University, 163 Xianlin Road, Nanjing, 210023, Jiangsu, People's Republic of China
- Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, People's Republic of China
| | - Fengchun Li
- Testing Center of Shandong Bureau of China Metallurgy and Geology, Jinan, 250014, People's Republic of China
| | - Long Chen
- School of Geography and Ocean Science, Nanjing University, 163 Xianlin Road, Nanjing, 210023, Jiangsu, People's Republic of China
- Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, People's Republic of China
| | - Yifei Qiu
- School of Geography and Ocean Science, Nanjing University, 163 Xianlin Road, Nanjing, 210023, Jiangsu, People's Republic of China
- Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, People's Republic of China
| | - Qiqi Yin
- School of Geography and Ocean Science, Nanjing University, 163 Xianlin Road, Nanjing, 210023, Jiangsu, People's Republic of China
- Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, People's Republic of China
| | - Shenglu Zhou
- School of Geography and Ocean Science, Nanjing University, 163 Xianlin Road, Nanjing, 210023, Jiangsu, People's Republic of China.
- Key Laboratory of Coastal Zone Exploitation and Protection, Ministry of Natural Resources, Nanjing, 210024, People's Republic of China.
| |
Collapse
|
11
|
Liu S, Pan Y, Jin X, Zhao S, Xu X, Chen Y, Shen Z, Chen C. A novel Biochar-PGPB strategy for simultaneous soil remediation and safe vegetable production. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 356:124254. [PMID: 38815893 DOI: 10.1016/j.envpol.2024.124254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/08/2024] [Accepted: 05/25/2024] [Indexed: 06/01/2024]
Abstract
There is currently increasing pressure on agriculture to simultaneously remediate soil and ensure safe agricultural production. In this study, we investigate the potential of a novel combination of biochar and plant growth-promoting bacteria (PGPB) as a promising approach. Two types of biochar, corn stover and rice husk-derived, were used in combination with a PGPB strain, Bacillus sp. PGP5, to remediate Cd and Pb co-contaminated soil and enhance lettuce performance. The contaminated soil was pre-incubated with biochar prior to PGP5 inoculation. The combined application of biochar and PGPB reduced the diethylenetriaminepentaacetic acid (DTPA) -extractable Cd and Pb concentrations in the soil by 46.45%-55.96% and 42.08%-44.83%, respectively. Additionally, this combined application increased lettuce yield by 23.37%-65.39% and decreased Cd and Pb concentrations in the edible parts of the lettuce by 57.39%-68.04% and 13.57%-32.50%. The combined application showed a better promotion on lettuce growth by facilitating chlorophyll synthesis and reducing oxidative stress. These demonstrated a synergistic effect between biochar and PGPB. Furthermore, our study elucidated the specific role of the biochar-PGPB combination in soil microbial communities. Biochar application promoted the survival of PGP5 in the soil. The impact of biochar or PGPB on microbial communities was found to be most significant in the early stage, while the development of plants had a greater influence on rhizosphere microbial communities in later stage. Plants showed a tendency to recruit plant-associated microbes, such as Cyanobacteria, to facilitate growth processes. Notably, the combined application of biochar and PGPB expedited the assembly of microbial communities, enabling them more closely with the rhizosphere microbial communities in late stage of plant development and thus enhancing their effects on promoting plant growth. This study highlights the "accelerating" advantage of the biochar-PGPB combination in the assembly of rhizosphere microbiomes and offers a new strategy for simultaneous soil remediation and safe agricultural production.
Collapse
Affiliation(s)
- Sijia Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yiwen Pan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xinjie Jin
- College of Life and Environmental Science, Wenzhou University, Wenzhou, 325035, Zhejiang, China
| | - Shangjun Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Xiaohong Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Yahua Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Zhenguo Shen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Chen Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China; Jiangsu Collaborative Innovation Centre for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| |
Collapse
|
12
|
Yu C, Meng K, Zhu Z, Liu S, Zhou Z, Zhang H, Xu M. Impacts of cadmium accumulation on the diversity, assembly processes, and co-occurrence patterns of archaeal communities in marine sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171936. [PMID: 38527554 DOI: 10.1016/j.scitotenv.2024.171936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/05/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
There is limited understanding regarding the changes in the ecological processes and the mechanisms of archaeal community in response to heavy metal contamination in the marine sediments. In this study, sediment samples were collected from 46 locations near harbors, and the concentration of heavy metals and the diversity of archaeal communities were investigated to understand the impact of Cd on archaeal communities. The results demonstrated a significant correlation between the diversity of archaeal community and Cd concentration, particularly showing a linear decrease in the species richness with rising Cd concentration. ANME-1b was identified as a significantly enriched archaeal taxon in the higher Cd environment. Null model and neutral community model indicated that the ecological assembly of archaeal communities in marine sediments was primarily governed by the stochastic processes, with dispersal limitation being the primary factor. The contribution of deterministic process to the assembly of archaeal communities in higher Cd environments increased clearly, accompanied by a notable reduction in species migration rates and widths of ecological niche of archaeal populations. Co-occurrence network analysis revealed an obvious increase in species interactions in higher Cd environments, with an apparent rise in the proportion of competitive relationships and an increase in the number of keystone species. Moreover, archaeal species formed a more complex and stable community to cope with Cd stress. This study provides new insights into the impacts of heavy metals on the ecological processes of marine microorganisms and the underlying mechanisms.
Collapse
Affiliation(s)
- Chengfeng Yu
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China; Coastal Zone Resources and Environment Engineering Research Center of Jiangsu Province, Nanjing 210023, China
| | - Kun Meng
- Jiangsu Yunfan Testing Technology Co., Ltd., Nanjing 210033, China
| | - Zhiyong Zhu
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China; Coastal Zone Resources and Environment Engineering Research Center of Jiangsu Province, Nanjing 210023, China
| | - Shengzhi Liu
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China; Coastal Zone Resources and Environment Engineering Research Center of Jiangsu Province, Nanjing 210023, China
| | - Ziyi Zhou
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China; Coastal Zone Resources and Environment Engineering Research Center of Jiangsu Province, Nanjing 210023, China
| | - Huan Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Min Xu
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China; Coastal Zone Resources and Environment Engineering Research Center of Jiangsu Province, Nanjing 210023, China.
| |
Collapse
|
13
|
Huo J, Song B, Lin X, Riaz M, Zhao X, Liu S, She Q. Ecological characteristics of sugar beet plant and rhizosphere soil in response to high boron stress: A study of the remediation potential. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120655. [PMID: 38513589 DOI: 10.1016/j.jenvman.2024.120655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/21/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
High boron (B) stress degrades the soil environment and reduces plant productivity. Sugar beet has a high B demand and potential for remediation of B-toxic soils. However, the mechanism regarding the response of sugar beet plants and rhizosphere soil microbiome to high B stress is not clear. In the potted soil experiment, we set different soil effective B environments (0.5, 5, 10, 30, 50, and 100 mg kg-1) to study the growth status of sugar beets under different B concentrations, as well as the characteristics of soil enzyme activity and microbial community changes. The results showed that sugar beet growth was optimal at 5 mg kg-1 of B. Exceeding this concentration the tolerance index decreased. The injury threshold EC20 was reached at an available B concentration of 35.8 mg kg-1. Under the treatment of 100 mg kg-1, the B accumulation of sugar beet reached 0.22 mg plant-1, and the tolerance index was still higher than 60%, which had not yet reached the lethal concentration of sugar beet. The abundance of Acidobacteriota, Chloroflexi and Patescibacteria increased, which was beneficial to the resistance of sugar beet to high B stress. In summary, under high B stress sugar beet had strong tolerance, enhanced capacity for B uptake and enrichment, and changes in soil microbial community structure. This study provides a theoretical basis for clarifying the mechanism of sugar beet resistance to high B stress and soil remediation.
Collapse
Affiliation(s)
- Jialu Huo
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Baiquan Song
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin, 150080, China; National Sugar Crops Improvement Center & Sugar Beet Engineering Research Center Heilongjiang Province & College of Advanced Agriculture and Ecological Environment, Heilongjiang University, Harbin, 150080, China.
| | - Xiaochen Lin
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Muhammad Riaz
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, China
| | - Xiaoyu Zhao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Shangxuan Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Qingqing She
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| |
Collapse
|
14
|
Li M, Yao J, Wang Y, Sunahara G, Duran R, Liu J, Liu B, Liu H, Ma B, Li H, Pang W, Cao Y. Contrasting response strategies of sulfate-reducing bacteria in a microbial consortium to As 3+ stress under anaerobic and aerobic environments. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133052. [PMID: 38056257 DOI: 10.1016/j.jhazmat.2023.133052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/05/2023] [Accepted: 11/19/2023] [Indexed: 12/08/2023]
Abstract
The sulfate-reducing efficiency of sulfate-reducing bacteria (SRB) is strongly influenced by the presence of oxygen, but little is known about the oxygen tolerance mechanism of SRB and the effect of oxygen on the metalliferous immobilization by SRB. The performance evaluation, identification of bioprecipitates, and microbial and metabolic process analyses were used here to investigate the As3+ immobilization mechanisms and survival strategies of the SRB1 consortium under different oxygen-containing environments. Results indicated that the sulfate reduction efficiency was significantly decreased under aerobic (47.37%) compared with anaerobic conditions (66.72%). SEM analysis showed that under anaerobic and aerobic conditions, the morphologies of mineral particles were different, whereas XRD and XPS analyses showed that the most of As3+ bioprecipitates under both conditions were arsenic minerals such as AsS and As4S4. The abundances of Clostridium_sensu_stricto_1, Desulfovibrio, and Thiomonas anaerobic bacteria were significantly higher under anaerobic than aerobic conditions, whereas the aerobic Pseudomonas showed an opposite trend. Network analysis revealed that Desulfovibrio was positively correlated with Pseudomonas. Metabolic process analysis confirmed that under aerobic conditions the SRB1 consortium generated additional extracellular polymeric substances (rich in functionalities such as Fe-O, SO, CO, and -OH) and the anti-oxidative enzyme superoxide dismutase to resist As3+ stress and oxygen toxicity. New insights are provided here into the oxygen tolerance and detoxification mechanism of SRB and provide a basis for the future remediation of heavy metal(loid)-contaminated environments.
Collapse
Affiliation(s)
- Miaomiao Li
- Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Jun Yao
- Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China.
| | - Yating Wang
- Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Geoffrey Sunahara
- Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China; Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Drive, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Robert Duran
- Université de Pau et des Pays de l'Adour, UPPA/E2S, IPREM CNRS, 5254 Pau, France
| | - Jianli Liu
- Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Bang Liu
- Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China; Université de Pau et des Pays de l'Adour, UPPA/E2S, IPREM CNRS, 5254 Pau, France
| | - Houquan Liu
- Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Bo Ma
- Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Hao Li
- Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Wancheng Pang
- Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Ying Cao
- Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China
| |
Collapse
|
15
|
Wang W, Lei J, Li M, Zhang X, Xiang X, Wang H, Lu X, Ma L, Liu X, Tuovinen OH. Archaea are better adapted to antimony stress than their bacterial counterparts in Xikuangshan groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:166999. [PMID: 37714340 DOI: 10.1016/j.scitotenv.2023.166999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/17/2023]
Abstract
Archaea are important ecological components of microbial communities in various environments, but are currently poorly investigated in antimony (Sb) contaminated groundwater particularly on their ecological differences in comparison with bacteria. To address this issue, groundwater samples were collected from Xikuangshan aquifer along an Sb gradient and subjected to 16S rRNA gene amplicon sequencing and bioinformatic analysis. The results demonstrated that bacterial communities were more susceptibly affected by elevated Sb concentration than their archaeal counterparts, and the positive stimulation of Sb concentration on bacterial diversity coincided with the intermediate disturbance hypothesis. Overall, the balance of environmental variables (Sb, pH, and EC), competitive interactions, and stochastic events jointly regulated bacterial and archaeal communities. Linear fitting analysis revealed that Sb significantly drove the deterministic process (heterogeneous selection) of bacterial communities, whereas stochastic process (dispersal limitation) contributed more to archaeal community assembly. In contract, the assembly of Sb-resistant bacteria and archaea was dominated by the stochastic process (undominated), which implied the important role of diversification and drift instead of selection. Compared with Sb-resistant microorganisms, bacterial and archaeal communities showed lower niche width, which may result from the constraints of Sb concentration and competitive interaction. Moreover, Sb-resistant archaea had a higher niche than that of Sb-resistant bacteria via investing on flexible metabolic pathways such as organic metabolism, ammonia oxidation; and carbon fixation to enhance their competitiveness. Our results offered new insights into the ecological adaptation mechanisms of bacteria and archaea in Sb-contaminated groundwater.
Collapse
Affiliation(s)
- Weiqi Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Jingwen Lei
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Min Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xinyue Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xing Xiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; College of Life Science, Shangrao Normal University, Shangrao 334000, China
| | - Hongmei Wang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China.
| | - Xiaolu Lu
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Liyuan Ma
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Xiaoyan Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China; School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
| | - Olli H Tuovinen
- Department of Microbiology, Ohio State University, Columbus 43210, USA
| |
Collapse
|
16
|
Liang X, Wang H, Wang C, Yao Z, Qiu X, Ju H, Wang J. Disentangling the impact of biogas slurry topdressing as a replacement for chemical fertilizers on soil bacterial and fungal community composition, functional characteristics, and co-occurrence networks. ENVIRONMENTAL RESEARCH 2023; 238:117256. [PMID: 37775013 DOI: 10.1016/j.envres.2023.117256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/21/2023] [Accepted: 09/23/2023] [Indexed: 10/01/2023]
Abstract
The application of biogas slurry topdressing with drip irrigation systems can compensate for the limitation of traditional solid organic fertilizer, which can only be applied at the bottom. Based on this, we attempted to define the response of soil bacterial and fungal communities of maize during the tasseling and full maturity stages, by using a no-topdressing control and different ratios of biogas slurry nitrogen in place of chemical fertilizer topdressing. The application of biogas slurry resulted in the emergence of new bacterial phyla led by Synergistota. Compared with pure urea chemical topdressing, the pure biogas slurry topdressing treatment significantly enriched Firmicutes and Basidiomycota communities during the tasseling stage, in addition to affecting the separation of bacterial and fungal α-diversity indices between the tasseling and full maturity stages. Based on the prediction of community composition and function, the changes in bacterial and fungal communities caused by biogas slurry treatment stimulated the ability of microorganisms to decompose refractory organic components, which was conducive to turnover in the soil carbon cycle, and improved multi-element (such as sulfur) cycles; however it may also bring potential risks of heavy metal and pathogenic microbial contamination. Notably, the biogas slurry treatment reduced the correlation and aggregation of bacterial and fungal symbiotic networks, and had a dual effect on ecological randomness. These findings contribute to a deeper comprehension of the alterations occurring in soil microbial communities when substituting chemical fertilizers treated with biogas slurry topdressing, and promote the efficient and sustainable utilization of biogas slurry resources.
Collapse
Affiliation(s)
- Xiaoyang Liang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, 831100, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Haitao Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Chuanjuan Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, Xinjiang, 831100, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Zonglu Yao
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Xuefeng Qiu
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China
| | - Hui Ju
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiandong Wang
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Key Laboratory of Low-carbon Green Agriculture in North China, Ministry of Agriculture and Rural Affairs, Beijing, 100081, China.
| |
Collapse
|
17
|
Wang A, He M, Liu H, Ouyang W, Liu X, Li Q, Lin C, Liu X. Distribution heterogeneity of sediment bacterial community in the river-lake system impacted by nonferrous metal mines: Diversity, composition and co-occurrence patterns. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 338:122715. [PMID: 37821043 DOI: 10.1016/j.envpol.2023.122715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/03/2023] [Accepted: 10/07/2023] [Indexed: 10/13/2023]
Abstract
Metal(loid) pollution caused by mining activities can affect microbial communities. However, knowledge of the diversity, composition, and co-occurrence patterns of bacterial communities in aquatic systems impacted by nonferrous metal mines. Here, the metal(loid) contents and bacterial communities in sediments from the Zijiang River (tributary to mainstream) to Dongting Lake were investigated by geochemical and molecular biology methods. The results indicated that the river sediments had lower pH and higher ecological risk of metal(loid)s than the lake sediment. The diversity and composition of bacterial communities in river sediments significantly (p < 0.05) differed from those in lake sediments, showing distributional heterogeneity. The biomarkers of tributary, mainstream, and lake sediments were mainly members of Deltaproteobacteria, Firmicutes, and Nitrospirae, respectively, reflecting species sorting in different habitats. Multivariate statistical analysis demonstrated that total and bioavailable Sb, As, and Zn were positively correlated with bacterial community richness. pH, TOC, TN, and Zn were crucial factors in shaping the distribution difference of bacterial communities. Environment-bacteria network analysis indicated that pH, SO42-, and total and bioavailable As and Sb greatly influenced the bacterial composition at the genus level. Bacteria-bacteria network analysis manifested that the co-occurrence network in mainstream sediments with a higher risk of metal(loid) pollution exhibited higher modularity and connectivity, which might be the survival mechanism for bacterial communities adapted to metal(loid) pollution. This study can provide a theoretical basis for understanding the ecological status of aquatic systems.
Collapse
Affiliation(s)
- Aihua Wang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Mengchang He
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Huiji Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Wei Ouyang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China; Advanced Interdisciplinary Institute of Environment and Ecology, Beijing Normal University, Zhuhai, 519087, China.
| | - Xinyi Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Qin Li
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Chunye Lin
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Xitao Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
18
|
Chen Y, Zhou X, Wang Z, Su X, Liu F, Tian X, Ye Y, Shao Y, Yuan Z. Cd contamination determined assembly processes and network stability of AM fungal communities in an urban green space ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:166372. [PMID: 37598964 DOI: 10.1016/j.scitotenv.2023.166372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/24/2023] [Accepted: 08/15/2023] [Indexed: 08/22/2023]
Abstract
The effects of cadmium (Cd) contamination on the assembly mechanism and co-occurrence patterns of arbuscular mycorrhizal (AM) fungal communities remain unclear, especially in urban green spaces. This study sequenced AM fungal communities in greenbelt soils in Zhengzhou (China). The effects of Cd contamination on the AM fungal diversity, community assembly processes, and co-occurrence patterns were explored. We found that (1) an increase in Cd contamination changed the community composition, which resulted in a significant improvement in the diversity of specialists of AM fungi and a significant decrease in the diversity of generalists. (2) Deterministic processes dominated the community assembly of specialists and stochastic processes dominated the community assembly of generalists. (3) Specialists played a more important role than generalists in maintaining the stability of AM fungal networks under Cd contamination. Overall, Cd contamination affected the ecological processes of AM fungi in urban green space ecosystems. However, the effects on the assembly processes and network stability of different AM fungi taxa (specialists and generalists) differed significantly. The present study provides deeper insight into the effect of Cd contamination on the ecological processes of AMF and is helpful in further exploring the ecological risk of Cd contamination in urban green spaces.
Collapse
Affiliation(s)
- Yun Chen
- College of Life Sciences, Henan Agricultural University, No.63 Agricultural Road, Zhengzhou 450002, China
| | - Xiayan Zhou
- College of Life Sciences, Henan Agricultural University, No.63 Agricultural Road, Zhengzhou 450002, China
| | - Zhao Wang
- College of Life Sciences, Henan Agricultural University, No.63 Agricultural Road, Zhengzhou 450002, China
| | - Xiao Su
- College of Life Sciences, Henan Agricultural University, No.63 Agricultural Road, Zhengzhou 450002, China
| | - Fengqin Liu
- College of Life Sciences, Henan Agricultural University, No.63 Agricultural Road, Zhengzhou 450002, China
| | - Xiangyu Tian
- College of Life Sciences, Henan Agricultural University, No.63 Agricultural Road, Zhengzhou 450002, China
| | - Yongzhong Ye
- College of Life Sciences, Henan Agricultural University, No.63 Agricultural Road, Zhengzhou 450002, China
| | - Yizhen Shao
- College of Life Sciences, Henan Agricultural University, No.63 Agricultural Road, Zhengzhou 450002, China.
| | - Zhiliang Yuan
- College of Life Sciences, Henan Agricultural University, No.63 Agricultural Road, Zhengzhou 450002, China.
| |
Collapse
|
19
|
Yu C, Zhu Z, Meng K, Zhang H, Xu M. Unveiling the impact and mechanisms of Cd-driven ecological assembly and coexistence of bacterial communities in coastal sediments of Yellow Sea. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132309. [PMID: 37639798 DOI: 10.1016/j.jhazmat.2023.132309] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/30/2023] [Accepted: 08/13/2023] [Indexed: 08/31/2023]
Abstract
The microbial community assembly processes and underlying mechanisms in response to heavy metal accumulation in coastal sediments remain underexplored. In this study, the heavy metal concentration in samples were found below the marine sediment quality standards. Through partial Mantel tests and linear regression analysis, Cd was identified as the major influencing factor, displaying strongest correlation with the bacterial community in the sediments. The class Desulfuromonadia was identified as a biomarker which showed enrichment in the sediments with high Cd content. Additionally, the results of null model and the neutral community model demonstrated the prominent role of stochastic processes in the assembly of bacterial community. However, with the increase in Cd concentration, the influence of selection processes intensified, resulting in a decline in species migration rate and subsequent reduction in ecological niche width. Furthermore, the intensified competition and an increase in keystone species among bacterial populations further enhanced the stability of the microbial co-occurrence network in response to high Cd concentration. This study offers an insight into the effects of heavy metal on microbial assembly and coexistence, which are conducive to marine ecosystem management and conservation.
Collapse
Affiliation(s)
- Chengfeng Yu
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China; Coastal Zone Resources and Environment Engineering Research Center of Jiangsu Province, Nanjing 210023, China
| | - Zhiyong Zhu
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China; Coastal Zone Resources and Environment Engineering Research Center of Jiangsu Province, Nanjing 210023, China
| | - Kun Meng
- Jiangsu Yunfan Testing Technology Co., Ltd., Nanjing 210033, China
| | - Huan Zhang
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China; Coastal Zone Resources and Environment Engineering Research Center of Jiangsu Province, Nanjing 210023, China.
| | - Min Xu
- College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China; Coastal Zone Resources and Environment Engineering Research Center of Jiangsu Province, Nanjing 210023, China.
| |
Collapse
|
20
|
Li H, Yao J, Min N, Sunahara G, Duran R. New insights on the effect of non-ferrous metal mining and smelting activities on microbial activity characteristics and bacterial community structure. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131301. [PMID: 37043852 DOI: 10.1016/j.jhazmat.2023.131301] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 05/03/2023]
Abstract
Mining and smelting activities have brought potentially serious heavy metal(loid)s pollution to their surrounding locale. However, studies on microbial metabolic activities, community structure, and adaptation in soils proximal to non-ferrous metal mining and smelting areas are still lacking. Here the effects of biotic and abiotic characteristics of soil taken from sites surrounding inactive and active non-ferrous metal mine smelting facilities on microbial enzyme activity, microcalorimetry, and high-throughput sequencing of 16S rRNA gene barcoding were studied. Data indicated that the soils were heavily polluted by toxic metal(loid)s, of which As and Cd were the main contaminants. Microbial acid phosphatase activity and microcalorimetric total heat value were sensitive metabolic indicators in the studied areas. Actinobacteriota had the highest relative abundance, followed by Proteobacteria, Chloroflexi, and Acidobacteria. Microbial metabolic activity, bacterial community structure and phenotype varied between inactive and active sites (p < 0.05). Such analyses indicated that electrical conductivity, total As, Cu, and Mn contents, and bioavailable As, Cu, Cd, and Mn concentrations were key factors determining microbial activities, bacterial community structure, and phenotypes. Knowledge of microbial adaptation to heavy metal stressors is important for better understanding the aerial transfer of fugitive heavy metal(loid)s (and possibly microbes) and for designing future strategies for improved soil bioremediation.
Collapse
Affiliation(s)
- Hao Li
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Jun Yao
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China.
| | - Ning Min
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China
| | - Geoffrey Sunahara
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China; Department of Natural Resource Sciences, McGill University, 21111 Lakeshore Drive, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Robert Duran
- School of Water Resources and Environment, Research Center of Environmental Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083, Beijing, China; Universite de Pau et des Pays de l'Adour, E2S-UPPA, IPREM 5254, BP 1155, 64013 Pau Cedex, France
| |
Collapse
|