1
|
Zhang Z, Li L, Qiu S, Sun Y, Zhang R, Chen D, Chen P, Song Y, Zeng R, Lu L. BAHD acyltransferase OsSLG mediates rice cadmium tolerance by integrating the brassinosteroid and salicylic acid pathway. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 356:112503. [PMID: 40222390 DOI: 10.1016/j.plantsci.2025.112503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/25/2025] [Accepted: 04/06/2025] [Indexed: 04/15/2025]
Abstract
Cadmium (Cd) is a highly toxic element that significantly threatens plant growth and human health. Brassinosteroids (BRs) and salicylic acid (SA) are crucial phytohormones involved in plant growth and defense. While the mechanisms by which BRs and SA individually regulate various plant biological processes have been extensively studied, their interaction with Cd in rice (Oryza sativa L.) remains poorly understood. In this study, we demonstrated that SLENDER GRAIN (OsSLG), a BR biosynthesis-related gene, plays a critical role in regulating in rice. Overexpression of OsSLG enhanced Cd tolerance, whereas OsSLG RNA interference (RNAi) lines (OsSLG-Ri) exhibited hypersensitivity to Cd stress. Exogenous BR treatment improved the Cd tolerance of the wild type and rescued the Cd-sensitive phenotype of OsSLG-Ri. Furthermore, OsSLG overexpression significantly reduced reactive oxygen species (ROS) and Cd accumulation, this reduction was attributed to the downregulation of genes involved in Cd absorption and transport, as well as the upregulation of genes associated with Cd detoxification and ROS scavenging. In addition, OsSLG enhanced the photosynthetic capacity and mineral element content in rice plants, improving their ability to cope with Cd stress. Gene expression analysis showed that OsSLG promoted the expression of the SA pathway genes, and phenotypic analysis confirmed that SA positively regulates Cd tolerance in rice. Notably, BR-induced Cd tolerance was diminished in SA biosynthesis-deficient rice plants overexpressing SA hydroxylase genes OsS5H1 and OsS5H2, suggesting that the SA pathway is necessary for BR-mediated Cd tolerance. In conclusion, our findings highlight OsSLG as a key player in elucidating the interplay between BR and SA under Cd stress.
Collapse
Affiliation(s)
- Zaoli Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Long Li
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Shunjiao Qiu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Yanyan Sun
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Rongjun Zhang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Dongmei Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Pinghua Chen
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, PR China
| | - Yuanyuan Song
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Rensen Zeng
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| | - Long Lu
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China.
| |
Collapse
|
2
|
Yan Q, Lin S, Wei F, Deng T, Yang Y, Zhang Z, Wang D. Effects of different eco-stoichiometric ratios of calcium and cadmium on the detoxification mechanisms of Capsicum annuum L. under cadmium stress. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137059. [PMID: 39787927 DOI: 10.1016/j.jhazmat.2024.137059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/10/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
The eco-stoichiometry of Ca/Cd in soil significantly affects Cd uptake and accumulation by plants in carbonate regions. In this study, the physiological responses and detoxification mechanisms of Capsicum annuum L. (capsicum) were investigated based on the eco-stoichiometric relationship of Ca/Cd in production substrates under varying pH levels (5, 6, and 7). The results revealed that increased Ca/Cd ratio enhanced the Cd accumulation in roots at pH values of 5 and 6. The enrichment of Cd in stems and leaves gradually decreased with varying Ca/Cd ratios at different pH levels. In addition, root vigor, relative chlorophyll content, biomass, and catalase and peroxidase activities increased across various pH levels, while the concentration of protein carbonyl and malondialdehyde decreased. The ability of pectin and cellulose in the cell wall and that of soluble components within the cell to adsorb and partition Cd improved as the Ca/Cd ratio increased at different pH values. Notably, the effects of varying Ca/Cd ratios were most significant at pH 6. Overall, Ca enhanced the tolerance of capsicum to Cd stress, thereby promoting the fixation of Cd in root cells, reducing its transfer to aboveground tissues, and improving both the growth and antioxidant stress response. The effect was attributed to different Ca/Cd stoichiometric ratios, pH levels, and their interactions. These findings enhance the understanding of the mechanism of the interaction between Ca and Cd on crops in the karst agroecosystem.
Collapse
Affiliation(s)
- Qiuxiao Yan
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, China; Natural Products Research Center of Guizhou Province, Guiyang, China; Guizhou Medical University Key Laboratory of Chemistry for Natural Products, Guiyang, China
| | - Shaoxia Lin
- Natural Products Research Center of Guizhou Province, Guiyang, China; Guizhou Medical University Key Laboratory of Chemistry for Natural Products, Guiyang, China
| | - Fuxiao Wei
- Natural Products Research Center of Guizhou Province, Guiyang, China; Guizhou Medical University Key Laboratory of Chemistry for Natural Products, Guiyang, China
| | - Tingfei Deng
- Natural Products Research Center of Guizhou Province, Guiyang, China; Guizhou Medical University Key Laboratory of Chemistry for Natural Products, Guiyang, China
| | - Yin Yang
- Natural Products Research Center of Guizhou Province, Guiyang, China; Guizhou Medical University Key Laboratory of Chemistry for Natural Products, Guiyang, China
| | - Zhenming Zhang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, China.
| | - Daoping Wang
- Natural Products Research Center of Guizhou Province, Guiyang, China; Guizhou Medical University Key Laboratory of Chemistry for Natural Products, Guiyang, China.
| |
Collapse
|
3
|
Deng J, Fu L, Wang Y, Zhang C, Deng Y, Luo X, Mailhot G. The Effect of [Glu][H 2PO 4] via Foliar Spraying on Cadmium and Arsenic Absorption and Translocation in Rice Plants. TOXICS 2025; 13:133. [PMID: 39997948 PMCID: PMC11860629 DOI: 10.3390/toxics13020133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/06/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025]
Abstract
Rice is the main source of cadmium (Cd) and arsenic (As) in Chinese diet. The formulation of targeted agronomic interventions for mitigating Cd and As bioaccumulation in rice grains constitutes a critical pathway toward ensuring food safety and public health security. Foliar spraying technology with ionic liquids, effectively reduces Cd/As content in rice. In this study, an ionic liquid of amino acids ([Glu][H2PO4]) as a foliar conditioner was applied to two varieties of rice (X24 and Z35) to explore the mechanism of reducing the accumulation of Cd/As in rice. The results showed that [Glu][H2PO4] reduced Cd/As levels by up to 58.57% and 44.09%, respectively. [Glu][H2PO4] reduced the transfer factor from the root system to flag leaves, nodes, and other organs, thus reducing the Cd/As content in them. [Glu][H2PO4] promoted amino acid synthesis in seeds, increased Ca2+ level, increased OsGLR3.1-3.5 expression, and decreased OsLsi1-3 expression in flag leaves, thereby Cd/As was inhibited from being absorbed and transported by rice. The results demonstrated that the foliar application of [Glu][H2PO4] significantly mitigated the accumulation of Cd/As in rice. This study introduces a novel and effective strategy for reducing Cd/As accumulation in rice, hoping to enhance the safety and quality of rice crops.
Collapse
Affiliation(s)
- Jiawei Deng
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute of Ministry of Agriculture and Rural Affairs (MARA), Tianjin 300191, China; (J.D.); (L.F.); (Y.W.); (X.L.)
| | - Lin Fu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute of Ministry of Agriculture and Rural Affairs (MARA), Tianjin 300191, China; (J.D.); (L.F.); (Y.W.); (X.L.)
| | - Yanan Wang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute of Ministry of Agriculture and Rural Affairs (MARA), Tianjin 300191, China; (J.D.); (L.F.); (Y.W.); (X.L.)
| | - Changbo Zhang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute of Ministry of Agriculture and Rural Affairs (MARA), Tianjin 300191, China; (J.D.); (L.F.); (Y.W.); (X.L.)
| | - Yun Deng
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China;
| | - Xin Luo
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute of Ministry of Agriculture and Rural Affairs (MARA), Tianjin 300191, China; (J.D.); (L.F.); (Y.W.); (X.L.)
| | - Gilles Mailhot
- Institut de Chimie de Clermont-Ferrand, CNRS, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France;
| |
Collapse
|
4
|
Li Y, Xu X, Pan Y, Sun Y, Zou G, Li S, Liao S. Tomato sprayed monocalcium phosphate had production-phytoremediation dual function with high soil Cd extraction and safer fruit production. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125382. [PMID: 39615575 DOI: 10.1016/j.envpol.2024.125382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 09/12/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024]
Abstract
In order to make use of the large biomass of tomato plant to fulfill the purpose of remediating-while-producing, two commercial tomato varieties, 'Baiguoqiangfeng' (BG) and 'Ouguan' (OG) were grown in Cd contaminated acidic soil to compare their performance on Cd phytoextraction, and monocalcium phosphate (Ca) was foliar applied to reduce their fruit Cd concentration. The results showed that the BG was a more Cd tolerant variety, comparing with OG, it suffered lighter tissue peroxidation and photosynthesis obstacle, owning weaker amino acid metabolism, secondary metabolism and stress signal transduction under Cd stress. The Ca application reduced its ABA level but increased the GSH, IAA, ZR and GA3 level, and enhanced its lysine degradation, tyrosine metabolism, alanine, asparagine and glutamate metabolism, plant hormone signal transduction and phenylpropanoid biosynthesis under Cd stress. With these metabolic regulations, the Ca application promoted its leaf biomass accumulation, guaranteeing the total Cd extraction amount (0.88 mg pot-1 as 0.20 mg kg -1), and reduced the fruit Cd partition, decreasing the fruit Cd concentration by 71.4% with higher yield. Meanwhile, the OG had lower Cd phytoextraction capacity than the BG, and Ca spray enhanced its cell energy generation, flavonoids biosynthesis and photosynthetic carbon fixation, but had no effect on fruit Cd concentration. The two tomato varieties had different responses to Ca application under Cd stress in their hormone signaling, energy metabolism, secondary metabolism and amino acids metabolism, which furtherly differed their Cd phytoextraction capacity and production safety. Therefore, the monocalcium phosphate spray combined 'Baiguoqiangfeng' tomato realized the dual function of production-phytoremediation, and the mechanism of plant Cd sensitivity adjustment through phenylpropanoid biosynthesis and amino acids metabolism deserved further study.
Collapse
Affiliation(s)
- Yanmei Li
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Xiangnan Xu
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Yingjie Pan
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China; College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yanxin Sun
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Guoyuan Zou
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Shunjiang Li
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Shangqiang Liao
- Institute of Plant Nutrition, Resources and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China.
| |
Collapse
|
5
|
Gao B, Yu B, Huang X, Li H, Jia Y, Wang M, Lu Y, Zhang X, Li W. Cadmium and calcium ions' effects on the growth of Pleurotus ostreatus mycelia are related to phosphatidylethanolamine content. Fungal Biol 2024; 128:2190-2196. [PMID: 39384288 DOI: 10.1016/j.funbio.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/26/2024] [Accepted: 08/29/2024] [Indexed: 10/11/2024]
Abstract
Heavy metal Cd2+ can easily be accumulated by fungi, causing significant stress, with the fungal cell membrane being one of the primary targets. However, the understanding of the mechanisms behind this stress remains limited. This study investigated the changes in membrane lipid molecules of Pleurotus ostreatus mycelia under Cd2+ stress and the antagonistic effect of Ca2+ on this stress. Cd2+ in the growth media significantly inhibited mycelial growth, with increasing intensity at higher concentrations. The addition of Ca2+ mitigated this Cd2+-induced growth inhibition. Lipidomic analysis showed that Cd2+ reduced membrane lipid content and altered lipid composition, while Ca2+ counteracted these changes. The effects of both Cd2+ and Ca2+ on lipids are dose dependent and phosphatidylethanolamine appeared most affected. Cd2+ also caused a phosphatidylcholine/phosphatidylethanolamine ratio increase at high concentrations, but Ca2+ helped maintain normal levels. The acyl chain length and unsaturation of lipids remained unaffected, suggesting Cd2+ doesn't alter acyl chain structure of lipids. These findings suggest that Cd2+ may affect the growth of mycelia by inhibiting the synthesis of membrane lipids, particular the synthesis of phosphatidylethanolamine, providing novel insights into the mechanisms of Cd2+ stress in fungi and the role of Ca2+ in mitigating the stress.
Collapse
Affiliation(s)
- Bo Gao
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China; University of Chinese Academy of Sciences, Beijing, 100039, China; College of Biological and Agricultural Sciences, Honghe University, Mengzi, 661199, Yunnan, China
| | - Buzhu Yu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China; Yuxi Normal University, Yuxi, 653100, Yunnan, China
| | - Xing Huang
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - He Li
- College of Biological and Agricultural Sciences, Honghe University, Mengzi, 661199, Yunnan, China
| | - Yanxia Jia
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Mulan Wang
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China; Key Laboratory of Chemistry in Ethnic Medicinal Resources, Ministry of Education of China, Yunnan Minzu University, Kunming, 650504, China
| | - Yuanxue Lu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Xudong Zhang
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| | - Weiqi Li
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China.
| |
Collapse
|
6
|
Yi S, Hang S, Li F, Zhu L, Li F, Zhong S, Wu C, Ge F, Ji X, Tian J, Wu Y. Hydroxamate Siderophores Intensify the Co-Deposition of Cadmium and Silicon as Phytolith-Like Particulates in Rice Stem Nodes: A Natural Strategy to Mitigate Grain Cadmium Accumulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:23747-23757. [PMID: 39377800 DOI: 10.1021/acs.jafc.4c07183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/09/2024]
Abstract
Sequestration of cadmium (Cd) in rice phytolith can effectively restrict its migration to the grains, but how hydroxamate siderophore (HDS) affects phytolith formation within rice plants especially the fate of Cd and silicon (Si) remains poorly understood. Here, we found that the addition of HDS increased the content of dissolved Si and Cd in soil pore water as well as its absorption by the rice roots during the reproductive growth stage. HDS effectively trapped orthosilicic acid and Cd ions at the third stem nodes of rice plants via hydrogen bonds and chelation interactions, which then rapidly deposited on the xylem cell wall through hydrophobic interactions. Ultimately, Cd was immobilized as phytolith-like particulates in the form of CdSiO3. Field experiments verified that Cd accumulation was significantly reduced by 46.4% in rice grains but increased by 41.2% in rice stems after HDS addition. Overall, this study advances our understanding of microbial metabolites enhancing the instinctive physiological barriers within rice plants.
Collapse
Affiliation(s)
- Shengwei Yi
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
- Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China
- Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Sicheng Hang
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
- Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China
- Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Feng Li
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
- Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China
- Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fangbai Li
- Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Songxiong Zhong
- Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, China
| | - Chen Wu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
- Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China
- Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Fei Ge
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
- Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China
- Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Xionghui Ji
- Hunan Institute of Agro-Environment and Ecology, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Jiang Tian
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
- Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China
- Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| | - Yujun Wu
- College of Environment and Resources, Xiangtan University, Xiangtan 411105, China
- Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan 411105, China
- Hunan Provincial University Key Laboratory for Environmental Behavior and Control Principle of New Pollutants, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
7
|
Yan Q, Lin S, Wei F, Wang D, Tu C, Deng T, Yang Y, Liang G. Different stoichiometric ratios of Ca and Cd affect the Cd tolerance of Capsicum annuum L. by regulating the subcellular distribution and chemical forms of Cd. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117089. [PMID: 39332204 DOI: 10.1016/j.ecoenv.2024.117089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/11/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024]
Abstract
The effect of calcium (Ca)-cadmium (Cd) interactions on the plant Cd bioaccumulation process may be closely related to the ecological Ca/Cd stoichiometry in the substrate. However, owing to the complexity of plant absorption, accumulation mechanisms and influencing factors, the mechanism of Ca-mediated Cd bioaccumulation and Cd tolerance in Capsicum is still unclear. In this study, the bioaccumulation, subcellular distribution and chemical forms of Cd in Capsicum were analysed via pot experiments to reveal the Ca-mediated Cd bioaccumulation process and its detoxification mechanism under different Ca/Cd stoichiometric ratios. The results revealed that an increase in the substrate Ca/Cd ratio promoted the accumulation of Cd in the roots; restricted the transport of Cd to the stems, leaves and peppers; and promoted the accumulation of Cd in the aboveground leaves but decreased its accumulation in edible parts. Cd was enriched mainly in the cell wall and cell-soluble fraction in each tissue and was enriched in only 1 %-13 % of the organelles. The accumulation of Cd in the cell wall and cell-soluble fractions of roots treated with different Ca concentrations increased by 56.57 %-236.98 % and 64.41 %-442.14 %, respectively. The carboxyl, hydroxyl and amino groups on the root cell wall play important roles in binding and fixing Cd2+. Moreover, the increase in the Ca content also increased the proportion of pectin and protein-bound Cd (F-NaCl), insoluble phosphate-bound Cd (F-C) and insoluble oxalate-bound Cd (F-HCl) in the roots, stems and leaves and reduced the proportion of highly active chemical forms such as inorganic acid salt-bound Cd (F-E) and water-soluble phosphate-bound Cd (F-W). Our study revealed that the bioaccumulation of Cd in Capsicum was influenced by the Ca/Cd ratio and that Ca could alleviate Cd stress by regulating the subcellular distribution and chemical form ratio of Cd in different tissues where the cell wall plays an important role in Cd tolerance and detoxification.
Collapse
Affiliation(s)
- Qiuxiao Yan
- Guizhou Medical University Key Laboratory of Chemistry for Natural Products, Guiyang, China; Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Shaoxia Lin
- Guizhou Medical University Key Laboratory of Chemistry for Natural Products, Guiyang, China; Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Fuxiao Wei
- Guizhou Medical University Key Laboratory of Chemistry for Natural Products, Guiyang, China; Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Daoping Wang
- Guizhou Medical University Key Laboratory of Chemistry for Natural Products, Guiyang, China; Natural Products Research Center of Guizhou Province, Guiyang, China.
| | - Chenglong Tu
- Toxicity Testing Center of Guizhou Medical University, Guiyang, China.
| | - Tingfei Deng
- Guizhou Medical University Key Laboratory of Chemistry for Natural Products, Guiyang, China; Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Yin Yang
- Guizhou Medical University Key Laboratory of Chemistry for Natural Products, Guiyang, China; Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Guangyan Liang
- Guizhou Medical University Key Laboratory of Chemistry for Natural Products, Guiyang, China; Natural Products Research Center of Guizhou Province, Guiyang, China
| |
Collapse
|
8
|
Fu L, Deng J, Liu S, Zhang C, Xue W, Mailhot G, Vione D, Deng Y, Wang C, Wang L. Efficient regulation of cadmium accumulation by carboxymethylammonium chloride in rice: Correlation analysis and expression of transporter gene OsGLR3. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 930:172861. [PMID: 38685417 DOI: 10.1016/j.scitotenv.2024.172861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/11/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
The mechanism of carboxymethylammonium chloride (CC) regulating cadmium (Cd) accumulation in rice was studied in field and hydroponic experiments. Field experiments showed that 0.2-1.2 mmol L-1 CC spraying effectively reduced Cd accumulation by 44 %-77 % in early rice grains and 39 %-78 % in late rice grains, significantly increased calcium (Ca) content and amino acids content in grains, as well as alleviated Cd-induced oxidative damage in leaves. Hydroponic experiments further verified the inhibition effect of CC on Cd accumulation. 1.2 mmol L-1 CC made the highest decrease of Cd content in shoots and roots of hydroponic seedlings by 45 % and 53 %, respectively. Exogenous CC significantly increased glutamate (Glu), glycine (Gly) and glutathione (GSH) content, and improved the activities of catalase (CAT) and superoxide dismutase (SOD) by 41-131 % and 11-121 % in shoots of hydroponic seedlings, respectively. Exogenous CC also increased the relative expression of OsGLR3.1-3.5 in the shoots and roots of hydroponic seedlings. The quantum computational chemistry was used to clarify that the Gly radical provided by CC could form various complexes with Cd through carboxyl oxygen atoms. These results showed that exogenous application of CC improved the tolerance to Cd by enhancing the antioxidant capacity; inhibited the absorption, transport and accumulation of Cd in rice by (1) promoting chelation, (2) increasing the GLRs activity through upregulating the content of Glu, Gly, as well as the expression of OsGLR3.1-3.5.
Collapse
Affiliation(s)
- Lin Fu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute of Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Jiawei Deng
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute of Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Shuangyue Liu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute of Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Changbo Zhang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute of Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Weijie Xue
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute of Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| | - Gilles Mailhot
- Université Clermont Auvergne, CNRS, Institut de Chimie de Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| | - Davide Vione
- Università degli Studi di Torino, Dipartimento di Chimica, Via P. Giuria 5, 10125 Torino, Italy
| | - Yun Deng
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China
| | - Changrong Wang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute of Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Lei Wang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
9
|
Fu L, Deng J, Lao DR, Zhang C, Xue W, Deng Y, Luo X. Effects of Foliar Spraying of Dicarboxylicdimethylammonium Chloride on Cadmium and Arsenic Accumulation in Rice Grains. TOXICS 2024; 12:418. [PMID: 38922098 PMCID: PMC11209034 DOI: 10.3390/toxics12060418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/27/2024]
Abstract
A field experiment with double cropping rice was carried out to study the foliar application effects of dicarboxylicdimethylammonium chloride (DDAC) on cadmium (Cd) and arsenic (As) accumulation in rice grains. The results showed that the spraying of DDAC could significantly reduce the accumulation of Cd and As in rice grains. The highest reductions in Cd and As content were observed when 1.5 mmol L-1 DDAC was sprayed, with 49.1% and 27.4% reductions in Cd and As content in early rice grains and 56.5% and 28.1% reductions in Cd and As content in late rice grains, respectively. In addition, the content of calcium (Ca) in rice grains increased significantly after DDAC foliar application, which was also conducive to the synthesis of amino acids such as glutamate (Glu), glycine (Gly) and cysteine (Cys) in rice grains. The results indicated that the foliar spraying of DDAC can inhibit the absorption, transport, accumulation and toxicity of Cd and As in rice grains by increasing amino acid synthesis and regulating the absorption and transport of essential elements.
Collapse
Affiliation(s)
- Lin Fu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (L.F.); (J.D.); (D.R.L.); (X.L.)
| | - Jiawei Deng
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (L.F.); (J.D.); (D.R.L.); (X.L.)
| | - Dayliana Ruiz Lao
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (L.F.); (J.D.); (D.R.L.); (X.L.)
| | - Changbo Zhang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (L.F.); (J.D.); (D.R.L.); (X.L.)
| | - Weijie Xue
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (L.F.); (J.D.); (D.R.L.); (X.L.)
| | - Yun Deng
- School of Environment and Ecology, Jiangnan University, Wuxi 214122, China;
| | - Xin Luo
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Ministry of Agriculture and Rural Affairs, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China; (L.F.); (J.D.); (D.R.L.); (X.L.)
| |
Collapse
|
10
|
Xin J. Enhancing soil health to minimize cadmium accumulation in agro-products: the role of microorganisms, organic matter, and nutrients. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123890. [PMID: 38554840 DOI: 10.1016/j.envpol.2024.123890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/03/2024] [Accepted: 03/27/2024] [Indexed: 04/02/2024]
Abstract
Agro-products accumulate Cd from the soil and are the main source of Cd in humans. Their use must therefore be minimized using effective strategies. Large soil beds containing low-to-moderate Cd-contamination are used to produce agro-products in many developing countries to keep up with the demand of their large populations. Improving the health of Cd-contaminated soils could be a cost-effective method for minimizing Cd accumulation in crops. In this review, the latest knowledge on the physiological and molecular mechanisms of Cd uptake and translocation in crops is presented, providing a basis for developing advanced technologies for producing Cd-safe agro-products. Inoculation of plant growth-promoting rhizobacteria and arbuscular mycorrhizal fungi, application of organic matter, essential nutrients, beneficial elements, regulation of soil pH, and water management are efficient techniques used to decrease soil Cd bioavailability and inhibiting the uptake and accumulation of Cd in crops. In combination, these strategies for improving soil health are environmentally friendly and practical for reducing Cd accumulation in crops grown in lightly to moderately Cd-contaminated soil.
Collapse
Affiliation(s)
- Junliang Xin
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Heng Hua Road 18, Hengyang 421002, China.
| |
Collapse
|
11
|
Xue W, Wang C, Pan S, Zhang C, Huang Y, Liu Z. Effects of elevation and geomorphology on cadmium, lead and chromium enrichment in paddy soil and rice: A case study in the Xiangtan basin of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168613. [PMID: 37984659 DOI: 10.1016/j.scitotenv.2023.168613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 11/22/2023]
Abstract
The distributions of heavy metals in paddy fields and rice along river valleys were studied to explore the key factors affecting the accumulation of heavy metals in the upstream terraces and downstream plains. Results from 975 sampling sites showed that elevation, growing season and soil organic matter (OM) had significant effects on the content of Cd and Pb in topsoil and rice. The content of Cd (0.47-0.66 mg kg-1) and Pb (49.9-68.6 mg kg-1) in paddy fields with low elevation (30-60 m) in the downstream plains was significantly higher than the content of Cd (0.29-0.38 mg kg-1) and Pb (43.9-56.3 mg kg-1) in the upstream terraces with high altitude (60-90 m). In the double-rice production area, late rice generally produced grains with higher Cd and Pb content than early rice. Soil Cd was positively increased with the content of OM, especially in the downstream plains. When elevation was used for principal component analysis, plains with low elevation were grouped together with high content of total and soluble Cd, OM and Pb in soil, as well as high content of Cd and Pb in late rice. Altitude is one of the key factors affecting Cd content in rice. Although content of Cr (93.7-138.0 mg kg-1) was significantly higher than that of Cd and Pb in soil, content of Cr was lower than that of Cd in rice. These results indicate that paddy fields with elevation of 30-60 m in the downstream plains had high risk to produce late rice with Cd and Pb content exceeding the food safety standard 0.2 mg kg-1, which may be resulted from the driving force of runoff on soil soluble Cd and Pb from terraces to alluvial plains in river valleys.
Collapse
Affiliation(s)
- Weijie Xue
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Changrong Wang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Shufang Pan
- Hunan Institute of Agricultural Environment and Ecology, Changsha 410125, China
| | - Changbo Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Yongchun Huang
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China
| | - Zhongqi Liu
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin 300191, China.
| |
Collapse
|
12
|
Zhang X, Xue W, Qi L, Zhang C, Wang C, Huang Y, Wang Y, Peng L, Liu Z. Malic acid inhibits accumulation of cadmium, lead, nickel and chromium by down-regulation of OsCESA and up-regulation of OsGLR3 in rice plant. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122934. [PMID: 37967709 DOI: 10.1016/j.envpol.2023.122934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/26/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023]
Abstract
Malic acid (MA) plays an important role in plant tolerance to toxic metals, but its effect in restricting the transport of harmful metals remains unclear. In this study, japonica rice NPB and its fragile-culm mutant fc8 with low cellulose and thin cell wall were used to investigate the influence of MA on the accumulation of 4 toxic elements (Cd, Pb, Ni, and Cr) and 8 essential elements (K, Mg, Ca, Fe, Mn, Zn, Cu and Mo) in rice. The results showed that fc8 accumulated less toxic elements but more Ca and glutamate in grains and vegetative organs than NPB. After foliar application with MA at rice anthesis stage, the content of Cd, Pb, Ni significantly decreased by 27.9-41.0%, while those of Ca and glutamate significantly increased in both NPB and fc8. Therefore, the ratios between Cd and Ca in grains of NPB (3.4‰) and fc8 (1.5‰) were greatly higher than that in grains of NPB + MA (1.1‰) and fc8+MA (0.8‰) treatments. Meanwhile, the expression of OsCEAS4,7,8,9 for the cellulose synthesis in secondary cell walls were down-regulated and cellulose content in vegetative organs of NPB and fc8 decreased by 16.7-21.1%. However, MA application significantly up-regulated the expression of GLR genes (OsGLR3.1-3.5) and raised the activity of glutamic-oxalacetic transaminease for glutamate synthesis in NPB and fc8. These results indicate that hazard risks of toxic elements in foods can be efficiently reduced through regulating cellulose biosynthesis and GLR channels in plant by combining genetic modification in vivo and malic acid application in vitro.
Collapse
Affiliation(s)
- Xin Zhang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China; Hainan Research Academy of Environmental Sciences, Haikou, 571126, China
| | - Weijie Xue
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China
| | - Lin Qi
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China
| | - Changbo Zhang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China
| | - Changrong Wang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China
| | - Yongchun Huang
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China
| | - Yanting Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), College of Biotechnology & Food Science, Hubei University of Technology, Wuhan, 430068, China
| | - Liangcai Peng
- Key Laboratory of Fermentation Engineering (Ministry of Education), College of Biotechnology & Food Science, Hubei University of Technology, Wuhan, 430068, China
| | - Zhongqi Liu
- Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, P.R. China, Tianjin, 300191, China.
| |
Collapse
|