1
|
Yu Z, Yang L, Liu H, Li T, Chen J, Liu L, Dong S. Harnessing Infinite Coordination Polymers to Eliminate Harmful Environmental DNA for Water Purification. Anal Chem 2025; 97:5546-5553. [PMID: 40053610 DOI: 10.1021/acs.analchem.4c05920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
Harmful environmental DNA (eDNA) contamination in water poses significant health risks, yet traditional treatments fall short of achieving efficient removal. Here, we introduce 1MIA-Zr, a bioinspired infinite coordination polymer catalyst modeled after natural nucleases. 1MIA-Zr achieves a DNA hydrolysis rate approximately 40 times greater than that of UiO-66 REO, the previous best zirconium-based catalyst. It induced a V-shaped cavity similar to the binding domain of natural nucleases and reduced the transition-state energy barrier, enabling it to mimic the natural nucleases' two-step attack, addressing the limitations of prior catalysts. We demonstrate two practical applications of 1MIA-Zr for purifying eDNA-contaminated water: as a water treatment agent and in a portable filtration device. Both methods achieved exceptional removal efficiencies, exceeding 99% for antibiotic resistance genes and over 96% for diverse viral DNAs, including HBV, HPV, MERS-CoV, SARS-CoV-2, Ebola, and Zika. This study establishes 1MIA-Zr as a transformative solution for addressing harmful eDNA contamination, offering a sustainable pathway for the production of clean, healthy water.
Collapse
Affiliation(s)
- Zhixuan Yu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Ling Yang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Hao Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Tianzhi Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jinxing Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Ling Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
2
|
Li YD, Wu YH, Wang HB, Wang RN, Li PH, Huang BH, Hu HY. Microbial community structure and water quality performance in local scrubber reclaim system for water reclamation of the semiconductor industry: A case study of a semiconductor plant in Beijing. ENVIRONMENTAL RESEARCH 2025; 269:120905. [PMID: 39842757 DOI: 10.1016/j.envres.2025.120905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
The local scrubber reclaim (LSR) system plays a critical role in water reclamation and in reducing environmental pollution emissions in semiconductor factories. This study monitored the changes in water quality and assessed the key stages of pollutant removal, with a primary focus on evaluating microbial growth and the shifts in microbial community structure and function in the LSR system. The results showed that activated carbon filtration (ACF) effectively removed total organic carbon (TOC) with a removal rate of 59.35%, while ion exchange (IEX) was essential for reducing conductivity, with a removal rate of 87.33%. Furthermore, severe bacterial growth was observed (more than 1000 CFU/ml) in the system. Bacteria numbers in the MMF and ACF stages grew dramatically, at least four times higher than that in the influent tank. After chlorination in the storage tank, microbial numbers sharply dropped, yet microbial diversity increased. The dominant microbial group in the LSR system was Patescibacteria (average relative abundance was 32.37%), considered part of the "microbial dark matter" and also known as Candidate Phyla Radiation (CPR). Following the effluent from the storage tank, the biofilm-forming potential of bacteria significantly increased (relative abundance rose from 7.19% to 15.20%), along with a varying increase in the abundance of genes related to metabolism. Measures should be implemented to prevent pipeline blockage and improve water reclamation efficiency.
Collapse
Affiliation(s)
- Yu-Di Li
- Environmental Simulation and Pollution Control State Key Joint Laboratory, Key Laboratory of Microorganism Application and Risk Control of the Ministry of Ecology and Environment, School of Environment, Tsinghua University, Beijing, 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing, 100084, PR China
| | - Yin-Hu Wu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, Key Laboratory of Microorganism Application and Risk Control of the Ministry of Ecology and Environment, School of Environment, Tsinghua University, Beijing, 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing, 100084, PR China.
| | - Hao-Bin Wang
- State Environmental Protection Key Laboratory of Quality Control in Environmental Monitoring, China National Environmental Monitoring Centre, Beijing, 100012, PR China
| | - Rui-Ning Wang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, Key Laboratory of Microorganism Application and Risk Control of the Ministry of Ecology and Environment, School of Environment, Tsinghua University, Beijing, 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing, 100084, PR China
| | - Pei-Hua Li
- Environmental Simulation and Pollution Control State Key Joint Laboratory, Key Laboratory of Microorganism Application and Risk Control of the Ministry of Ecology and Environment, School of Environment, Tsinghua University, Beijing, 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing, 100084, PR China
| | - Bang-Hao Huang
- Environmental Simulation and Pollution Control State Key Joint Laboratory, Key Laboratory of Microorganism Application and Risk Control of the Ministry of Ecology and Environment, School of Environment, Tsinghua University, Beijing, 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing, 100084, PR China
| | - Hong-Ying Hu
- Environmental Simulation and Pollution Control State Key Joint Laboratory, Key Laboratory of Microorganism Application and Risk Control of the Ministry of Ecology and Environment, School of Environment, Tsinghua University, Beijing, 100084, PR China; Beijing Laboratory for Environmental Frontier Technologies, Beijing, 100084, PR China; Research Institute for Environmental Innovation (Suzhou), Tsinghua, Suzhou, 215163, PR China
| |
Collapse
|
3
|
Yen CC, Chen KY, Ahmed MMM, Syu CH, Liu YT, Hsieh YC, Jien SH, Tzou YM. Photochemical oxidation of Cr(III) to Cr(VI) in the presence of Fe(III): Influence of Fe(III) concentration and UV wavelength. JOURNAL OF HAZARDOUS MATERIALS 2025; 485:136852. [PMID: 39694014 DOI: 10.1016/j.jhazmat.2024.136852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/01/2024] [Accepted: 12/10/2024] [Indexed: 12/20/2024]
Abstract
The reduction of Cr(VI) to Cr(III) is key to lowering environmental toxicity and mobility, but the reverse process remains less understood. We investigated Cr(III) oxidation mechanisms across various pH levels and light wavelengths (185, 254, and 358 nm) in the presence of Fe(III). At pH 3.0 under 358 nm light, Cr(VI) production peaked at 11.65 μM, driven by photo-reactive Fe(OH)²⁺ producing •OH radicals. While Fe(III) generally promotes Cr(III) oxidation, concentrations above 0.5 mM inhibited the process. Oxidation was most intense under 185 nm light, generating up to 217 μM of Cr(VI), due to Fe(III) and water photolysis. At 254 and 358 nm, •OH was solely produced by Fe(III) photolysis, where •OH oxidized Fe(II), which then reduced Cr(VI), slowing Cr(III) oxidation. Short-wavelength, high-energy light significantly enhances Cr(III) oxidation. Under such UV exposure in the atmosphere, Cr(III)-containing aerosols and particles may undergo harmful transformations, potentially entering ecosystems via acidic deposition and posing health risks.
Collapse
Affiliation(s)
- Chun-Chien Yen
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 40227, Taiwan; Agricultural Chemistry Division, Taiwan Agricultural Research Institute, Ministry of Agriculture, Taichung 413008, Taiwan
| | - Kai-Yue Chen
- Department of Agronomy, National Chiayi University, Chiayi 600355, Taiwan
| | - M M M Ahmed
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 40227, Taiwan; Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chien-Hui Syu
- Agricultural Chemistry Division, Taiwan Agricultural Research Institute, Ministry of Agriculture, Taichung 413008, Taiwan
| | - Yu-Ting Liu
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 40227, Taiwan; Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yi-Cheng Hsieh
- Office of the Texas State Chemist, Texas A&M AgriLife Research, Texas A&M University System, College Station, TX 77843, USA
| | - Shih-Hao Jien
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yu-Min Tzou
- Department of Soil and Environmental Sciences, National Chung Hsing University, Taichung 40227, Taiwan; Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
4
|
Cañon-Tafur LA, Mateus-Maldonado JF, Lozano-Puentes HS, Herrera-Acosta CD, Sánchez-Matiz JJ, Díaz-Ariza LA, Costa GM, Jiménez-Borrego LC, Carrascal-Camacho AK, Pedroza-Rodríguez AM. Guadua angustifolia biochar/TiO 2 composite and biochar as bio-based materials with environmental and agricultural application. Sci Rep 2025; 15:246. [PMID: 39747351 PMCID: PMC11697128 DOI: 10.1038/s41598-024-81761-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 11/28/2024] [Indexed: 01/04/2025] Open
Abstract
Globally, the companies that make commercial use of bamboo culms produce different kinds of solid waste rich in lignocellulosic biomass, which in some cases is not used and is discarded in landfills or incinerated in the open air; losing the possibility of recovering them and using them in other productive sectors. The research objective were to produce a biochar from Guadua agustifolia Kunth sawdust, evaluate its potential environmental and agricultural use, obtain a biochar/TiO2 composite to inactivate Escherichia coli and use the biochar as a soil conditioner in medicinal plants producing phenolic compounds and flavonoids. Biochar composite (produced at 300 °C for 1 h) involved TiO2 at 450 °C for 1 h for inactivation of E. coli (initial concentration: 6.5 ± 0.3 Log10 CFU mL- 1). For agriculture, 2% biochar was used to evaluate B. pilosa L. and G. angustifolia plant growth for 90 days. The biochar/TiO2 composite had a high photocatalytic activity on E. coli, generating a final count of 1.97 ± 0.2 Log10 CFU mL- 1 after 60 min. Biochar (2%) increased the total phenol and flavonoid content in the medicinal plant B. pilosa L. and total phenols in G. angustifolia, tested at the nursery stage. This study provides new information on the conversion and use of G. angustifolia sawdust as an alternative for new bio-based materials with environmental and agricultural applications. In addition, obtaining biochar and composite could positively impact the bamboo production chain in Colombia because of renewable and globally accepted alternatives that help capture gaseous emissions causing the greenhouse effect.
Collapse
Affiliation(s)
- Luis A Cañon-Tafur
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110‑23, Bogotá, DC, Colombia
- Laboratorio de Películas Delgadas y Nanofotónica, Departamento de Física, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110‑23, Bogotá, DC, Colombia
| | - Juan F Mateus-Maldonado
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110‑23, Bogotá, DC, Colombia
- Laboratorio Asociaciones Suelo, Planta Microorganismo (LAMIC), Grupo de Investigación en Agricultura Biológica, Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110‑23, Bogotá, DC, Colombia
| | - Hair Santiago Lozano-Puentes
- Laboratorio Asociaciones Suelo, Planta Microorganismo (LAMIC), Grupo de Investigación en Agricultura Biológica, Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110‑23, Bogotá, DC, Colombia
- Laboratorio de Fitoquímica, Grupo de Investigación Fitoquímica (GIFUJ), Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110‑23, Bogotá, DC, Colombia
| | - Carlos D Herrera-Acosta
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110‑23, Bogotá, DC, Colombia
| | - Juan J Sánchez-Matiz
- Laboratorio Asociaciones Suelo, Planta Microorganismo (LAMIC), Grupo de Investigación en Agricultura Biológica, Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110‑23, Bogotá, DC, Colombia
| | - Lucía A Díaz-Ariza
- Laboratorio Asociaciones Suelo, Planta Microorganismo (LAMIC), Grupo de Investigación en Agricultura Biológica, Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110‑23, Bogotá, DC, Colombia
| | - Geison Modesti Costa
- Laboratorio de Fitoquímica, Grupo de Investigación Fitoquímica (GIFUJ), Departamento de Química, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110‑23, Bogotá, DC, Colombia
| | - Luis C Jiménez-Borrego
- Laboratorio de Películas Delgadas y Nanofotónica, Departamento de Física, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110‑23, Bogotá, DC, Colombia
| | - Ana K Carrascal-Camacho
- Laboratorio de Microbiología de Alimentos. Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110‑23, Bogotá, DC, Colombia
| | - Aura M Pedroza-Rodríguez
- Laboratorio de Microbiología Ambiental y Suelos, Unidad de Investigaciones Agropecuarias (UNIDIA), Departamento de Microbiología, Facultad de Ciencias, Pontificia Universidad Javeriana, P.O. Box 110‑23, Bogotá, DC, Colombia.
| |
Collapse
|
5
|
Zhang H, Li S, Zhang C, Ren X, Zhou M. A critical review of ozone-based electrochemical advanced oxidation processes for water treatment: Fundamentals, stability evaluation, and application. CHEMOSPHERE 2024; 365:143330. [PMID: 39277044 DOI: 10.1016/j.chemosphere.2024.143330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/27/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
In recent years, electrochemical advanced oxidation processes (EAOPs) combined with ozonation have been widely utilized in water/wastewater treatment due to their excellent synergistic effect, high treatment efficiency, and low energy consumption. A comprehensive summary of these ozone-based EAOPs is still insufficient, though some reviews have covered these topics but either focused on a specific integrated process or provided synopses of EAOPs or ozone-based AOPs. This review presents an overview of the fundamentals of several ozone-based EAOPs, focusing on process optimization, electrode selection, and typical reactor designs. Additionally, the service life of electrodes and improvement strategies for the stability of ozone-based EAOPs that are ignored by previous reviews are discussed. Furthermore, four main application fields are summarized, including disinfection, emerging contaminants treatment, industrial wastewater treatment, and resource recovery. Finally, the summary and perspective on ozone-based EAOPs are proposed. This review provides an overall summary that would help to gain insight into the ozone-based EAOPs to improve their environmental applications.
Collapse
Affiliation(s)
- Hanyue Zhang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Shasha Li
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Chaohui Zhang
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xueying Ren
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Minghua Zhou
- Key Laboratory of Pollution Process and Environmental Criteria, Ministry of Education, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Key Laboratory of Environmental Technology for Complex Trans-Media Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China; Tianjin Advanced Water Treatment Technology International Joint Research Center, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
6
|
Rytkönen A, Meriläinen P, Valkama K, Hokajärvi AM, Ruponen J, Nummela J, Mattila H, Tulonen T, Kivistö R, Pitkänen T. Scenario-based assessment of fecal pathogen sources affecting bathing water quality: novel treatment options to reduce norovirus and Campylobacter infection risks. Front Microbiol 2024; 15:1353798. [PMID: 38628869 PMCID: PMC11018956 DOI: 10.3389/fmicb.2024.1353798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/12/2024] [Indexed: 04/19/2024] Open
Abstract
Wastewater discharge and runoff waters are significant sources of human and animal fecal microbes in surface waters. Human-derived fecal contamination of water is generally estimated to pose a greater risk to human health than animal fecal contamination, but animals may serve as reservoirs of zoonotic pathogens. In this study, quantitative microbial risk assessment (QMRA) tools were used to evaluate the hygienic impact of sewage effluents and runoff water from municipalities and animal farms on surface and bathing waters. The human-specific microbial source tracking (MST) marker HF183 was used to evaluate the dilution of fecal pathogens originating from the sewage effluent discharge to the downstream watershed. As novel risk management options, the efficiency of UV-LED disinfection and wetland treatment as well as biochar filtration was tested on-site for the contamination sources. According to the dilution pattern of the MST marker HF183, microbes from wastewater were diluted (2.3-3.7 log10) in the receiving waters. The scenario-based QMRA revealed, that the health risks posed by exposure to human-specific norovirus GII and zoonotic Campylobacter jejuni during the bathing events were evaluated. The risk for gastroenteritis was found to be elevated during wastewater contamination events, where especially norovirus GII infection risk increased (1-15 cases per day among 50 bathers) compared with the business as usual (BAU) situation (1 case per day). The noted C. jejuni infection risk was associated with animal farm contamination (1 case per day, versus 0.2-0.6 cases during BAU). Tertiary treatment of wastewater with wetland treatment and UV-LED disinfection effectively reduced the waterborne gastroenteritis risks associated with bathing. Based on the experiences from this study, a QMRA-based approach for health risk evaluations at bathing sites can be useful and is recommended for bathing site risk assessments in the future. In case of low pathogen numbers at the exposure sites, the MST marker HF183 could be used as a pathogen dilution coefficient for the watershed under evaluation. The full-scale implementation of novel tertiary treatment options at wastewater treatment plants (WWTPs) as well as on-site runoff water treatment options should be considered for infection risk management at locations where scenario-based QMRA implies elevated infection risks.
Collapse
Affiliation(s)
- Annastiina Rytkönen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Päivi Meriläinen
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Kristiina Valkama
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Anna-Maria Hokajärvi
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| | - Josefiina Ruponen
- Lammi Biological Station, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Bio Research Unit, Häme University of Applied Sciences, Hämeenlinna, Finland
| | - Jarkko Nummela
- Bio Research Unit, Häme University of Applied Sciences, Hämeenlinna, Finland
| | - Harri Mattila
- Bio Research Unit, Häme University of Applied Sciences, Hämeenlinna, Finland
| | - Tiina Tulonen
- Lammi Biological Station, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Rauni Kivistö
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Tarja Pitkänen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Department of Health Security, Finnish Institute for Health and Welfare, Kuopio, Finland
| |
Collapse
|
7
|
Wang JJ, Zhou YY, Xiang JL, Du HS, Zhang J, Zheng TG, Liu M, Ye MQ, Chen Z, Du Y. Disinfection of wastewater by a complete equipment based on a novel ultraviolet light source of microwave discharge electrodeless lamp: Characteristics of bacteria inactivation, reactivation and full-scale studies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170200. [PMID: 38296065 DOI: 10.1016/j.scitotenv.2024.170200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/14/2024] [Accepted: 01/14/2024] [Indexed: 02/06/2024]
Abstract
Ultraviolet (UV) light is widely used for wastewater disinfection. Traditional electrode-excited UV lamps, such as low-pressure mercy lamps (LPUV), encounter drawbacks like electrode aging and rapid light attenuation. A novel UV source of microwave discharge electrodeless lamp (MDEL) has aroused attention, yet its disinfection performance is unclear and still far from practical application. Here, we successfully developed a complete piece of equipment based on MDELs and achieved the application for disinfection in wastewater treatment plants (WWTPs). The light emitted by an MDEL (MWUV) shared a spectrum similar to that of LPUV, with the main emission wavelength at 254 nm. The inactivation rate of Gram-negative E. coli by MWUV reached 4.5 log at an intensity of 1.6 mW/cm2 and a dose of 20 mJ/cm2. For Gram-positive B. subtilis, an MWUV dose of 50 mJ/cm2 and a light intensity of 1.2 mW/cm2 reached an inactivation rate of 3.4 log. A higher MWUV intensity led to a better disinfection effect and a lower photoreactivation rate of E. coli. When inactivated by MWUV with an intensity of 1.2 mW/cm2 and a dose of 16 mJ/cm2, the maximum photoreactivation rate and reactivation rate constant Kmax of E. coli were 0.63 % and 0.11 % h-1 respectively. Compared with the photoreactivation, the dark repair of E. coli was insignificant. The full-scale application of the MDEL equipment was conducted in two WWTPs (10,000 m3/d and 15,000 m3/d). Generally 2-3 log inactivation rates of fecal coliforms in secondary effluent were achieved within 5-6 s contact time, and the disinfected effluent met the emission standard (1000 CFU/L). This study successfully applied MDEL for disinfection in WWTPs for the first time and demonstrated that MDEL has broad application prospects.
Collapse
Affiliation(s)
- Jun-Jie Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Yun-Yi Zhou
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Jue-Lin Xiang
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Hai-Sheng Du
- Sichuan Macyouwei Environmental Protection Technology Co., Ltd, Chengdu 610000, China
| | - Jin Zhang
- Sichuan Science City Tianren Environmental Protection Co., Ltd, Mianyang 621022, China
| | - Ti-Gang Zheng
- Sichuan Science City Tianren Environmental Protection Co., Ltd, Mianyang 621022, China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Ming-Qi Ye
- Everbright Water (Shenzhen) Limited, Shenzhen 518000, China
| | - Zhuo Chen
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Ye Du
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China.
| |
Collapse
|
8
|
Li Z, Yang D, Li S, Yang L, Yan W, Xu H. Advances on electrochemical disinfection research: Mechanisms, influencing factors and applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169043. [PMID: 38070567 DOI: 10.1016/j.scitotenv.2023.169043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023]
Abstract
Disinfection, a vital barrier against pathogenic microorganisms, is crucial in halting the spread of waterborne diseases. Electrochemical methods have been extensively researched and implemented for the inactivation of pathogenic microorganisms from water and wastewater, primarily owing to their simplicity, efficiency, and eco-friendliness. This review succinctly outlined the core mechanisms of electrochemical disinfection (ED) and systematically examined the factors influencing its efficacy, including anode materials, system conditions, and target species. Additionally, the practical application of ED in water and wastewater treatment was comprehensively reviewed. Case studies involving various scenarios such as drinking water, hospital wastewater, black water, rainwater, and ballast water provided concrete instances of the expansive utility of ED. Finally, coupling ED with other technologies and the resulting synergies were introduced as pivotal foundations for subsequent engineering advancements.
Collapse
Affiliation(s)
- Zhen Li
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Duowen Yang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Shanshan Li
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Liu Yang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Wei Yan
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China; Research Institute of Xi'an Jiaotong University, Zhejiang, Hangzhou 311200, China
| | - Hao Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China; Research Institute of Xi'an Jiaotong University, Zhejiang, Hangzhou 311200, China.
| |
Collapse
|
9
|
Xiang JL, Wang JJ, Wu ZJ, Xu BJ, Du HS, Chen Y, Liu M, Lee MY, Wang WL, Du Y. Efficient wastewater disinfection using a novel microwave discharge electrodeless ultraviolet system with ozone at an ultra-low dose. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:133011. [PMID: 37988868 DOI: 10.1016/j.jhazmat.2023.133011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/05/2023] [Accepted: 11/12/2023] [Indexed: 11/23/2023]
Abstract
Microwave discharge electrodeless lamp (MDEL) is a novel ultraviolet (UV) light source. Synergistic disinfection using UV light emitted by MDEL (MWUV) coupled with ozone (O3) at an ultra-low dose was investigated. Escherichia coli and Bacillus subtilis were deactivated more effectively by MWUV/O3 than by either MWUV or O3 alone. MWUV/O3 treatment using an O3 concentration of 0.4 mg/L gave an E. coli inactivation rate of 5.52 log. The photoreactivation degree and rate of E. coli were lower after inactivation by MWUV/O3 treatment than after MWUV treatment alone. The maximum photoreactivation rates after the MWUV/O3 and MWUV treatments were 2.90% and 16.08%, respectively. MWUV/O3 disinfection also inhibited dark resurrection of E. coli and gave a maximum dark resurrection rate of 0.0036%. Electron paramagnetic resonance spectroscopy indicated that more hydroxyl radicals were generated during MWUV/O3 treatment. Scanning electron microscopy and laser confocal scanning microscopy observations indicated that O3 played a key role in breaking down the cell structure. MWUV/O3 treatment gave a good disinfection effect on fecal coliform bacteria in actual domestic wastewater. The results indicated that inactivation of bacteria can be more effectively achieved by MWUV treatment with O3.
Collapse
Affiliation(s)
- Jue-Lin Xiang
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Jun-Jie Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Zhi-Jing Wu
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Bao-Jun Xu
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Hai-Sheng Du
- Sichuan Macyouwei Environmental Protection Technology Co., Ltd, Chengdu 610000, China
| | - Ying Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China
| | - Min-Yong Lee
- Division of Chemical Research, National Institute of Environmental Research, Seogu, Incheon 22689, Republic of Korea
| | - Wen-Long Wang
- Key Laboratory of Microorganism Application and Risk Control of Shenzhen, Guangdong Provincial Engineering Research Center for Urban Water Recycling and Environmental Safety, Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ye Du
- College of Architecture and Environment, Sichuan University, Chengdu 610000, China.
| |
Collapse
|
10
|
Iovino P, Lavorgna M, Orlo E, Russo C, De Felice B, Campolattano N, Muscariello L, Fenti A, Chianese S, Isidori M, Musmarra D. An integrated approach for the assessment of the electrochemical oxidation of diclofenac: By-product identification, microbiological and eco-genotoxicological evaluation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168511. [PMID: 37977373 DOI: 10.1016/j.scitotenv.2023.168511] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
Diclofenac (DCF), a contaminant of emerging concern, is a non-steroidal anti-inflammatory drug widely detected in water bodies, which demonstrated harmful acute and chronic toxicity toward algae, zooplankton and aquatic invertebrates, therefore its removal from impacted water is necessary. DCF is recalcitrant toward traditional treatment technologies, thus, innovative approaches are required. Among them, electrochemical oxidation (EO) has shown promising results. In this research, an innovative multidisciplinary approach is proposed to assess the electrochemical oxidation (EO) of diclofenac from wastewater by integrating the investigations on the removal efficiency and by-product identification with the disinfection capacity and the assessment of the effect on environmental geno-toxicity of by-products generated through the oxidation. The electrochemical treatment successfully degraded DCF by achieving >98 % removal efficiency, operating with NaCl 0.02 M at 50 A m-2. By-product identification analyses showed the formation of five DCF parental compounds generated by decarboxylic and CN cleavage reactions. The disinfection capacity of the EO technique was evaluated by carrying out microbiological tests on pathogens generally found in aquatic environments, including two rod-shaped Gram-negative bacteria (Pseudomonas aeruginosa and Escherichia coli), one rod-shaped Gram-positive bacterium (Bacillus atrophaeus), and one Gram-positive coccus (Enterococcus hirae). Eco-toxicity was evaluated in freshwater organisms (algae, rotifers and crustaceans) belonging to two trophic levels through acute and chronic tests. Genotoxicity tests were carried out by Comet assay, and relative expression levels of catalase, manganese and copper superoxide dismutase genes in crustaceans. Results highlight the effectiveness of EO for the degradation of diclofenac and the inactivation of pathogens; however, the downstream mixture results in being harmful to the aquatic ecosystem.
Collapse
Affiliation(s)
- P Iovino
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, Caserta 81100, Italy
| | - M Lavorgna
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, Caserta 81100, Italy
| | - E Orlo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, Caserta 81100, Italy
| | - C Russo
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, Caserta 81100, Italy.
| | - B De Felice
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, Caserta 81100, Italy
| | - N Campolattano
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, Caserta 81100, Italy
| | - L Muscariello
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, Caserta 81100, Italy
| | - A Fenti
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, Aversa 81031, Italy.
| | - S Chianese
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, Aversa 81031, Italy
| | - M Isidori
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Via Vivaldi 43, Caserta 81100, Italy
| | - D Musmarra
- Department of Engineering, University of Campania "Luigi Vanvitelli", Via Roma 29, Aversa 81031, Italy
| |
Collapse
|
11
|
Zhang H, Gong W, Xue Y, Zeng W, Bai L, Li G, Liang H, Ng HY. Simulated-sunlight enhances membrane aerated biofilm reactor performance in sulfamethoxazole removal and antibiotic resistance genes reduction. WATER RESEARCH 2023; 247:120747. [PMID: 37897998 DOI: 10.1016/j.watres.2023.120747] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/05/2023] [Accepted: 10/16/2023] [Indexed: 10/30/2023]
Abstract
Membrane aerated biofilm reactors (MABRs) can be used to treat domestic wastewater containing sulfamethoxazole (SMX) because of their favorable performance in the treatment of refractory pollutants. However, biologics are generally subjected to antibiotics stress, which induces the production of antibiotic resistance genes (ARGs). In this study, a simulated-sunlight assisted MABR (L-MABR) was used to promote SMX removal and reduce ARGs production. The SMX removal efficiency of the l-MABR system was 9.62 % superior to that of the MABR system (83.13 %). In contrast from MABR, in the l-MABR, only 28.75 % of SMX was removed through microbial activity because functional bacteria were inactivated through radiation by simulated sunlight. In addition, photolysis (64.61 %) dominated SMX removal, and the best performing indirect photolysis process was the excited state of effluent organic matters (3EfOMs*). Through photolysis, ultraviolet (UV) and reactive oxygen species (ROS) enriched the SMX removal route, resulting in the SMX removal pathway in the l-MABR no longer being limited by enzyme catalysis. More importantly, because of the inactivation of functional bacteria, whether in the effluent or biofilm, the copy number of ARGs in the l-MABR was 1-3 orders of magnitude lower than that in the MABR. Our study demonstrates the feasibility of utilizing simulated-sunlight to enhance the antibiotic removal efficiency while reducing ARG production, thus providing a novel idea for the removal of antibiotics from wastewater.
Collapse
Affiliation(s)
- Han Zhang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China; Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2 117576, Singapore
| | - Weijia Gong
- School of Engineering, Northeast Agricultural University, 600 Changjiang Street, Xiangfang District, Harbin 150030, PR China
| | - Ying Xue
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Weichen Zeng
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Langming Bai
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Guibai Li
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment (SKLUWRE), Harbin Institute of Technology, 73 Huanghe Road, Nangang District, Harbin 150090, PR China.
| | - How Yong Ng
- Centre for Water Research, Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2 117576, Singapore; Center for Water Research, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, 519087, China.
| |
Collapse
|