1
|
Kumar A, Ahamad A, Prasad B, Bux F, Kumari S. Discerning the role of a site cation in ACoO 3 perovskites for boosting Co 3+/Co 2+ redox cycle for pollutant degradation: DFT calculation, mechanism and toxicity evolution. ENVIRONMENTAL RESEARCH 2024; 259:119533. [PMID: 38960354 DOI: 10.1016/j.envres.2024.119533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/19/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
The degradation of persistent and refractory pollutants, particularly plastic and resins manufacturing wastewater, poses a significant challenge due to their high toxicity and high concentrations. This study developed a novel hybrid ACoO3 (A = La, Ce, Sr)/PMS perovskite system for the treatment of multicomponent (MCs; ACN, ACM and ACY) from synthetic resin manufacturing wastewater. Synthesized perovskites were characterized by various techniques i.e., BET, XRD, FESEM with EDAX, FTIR, TEM, XPS, EIS, and Tafel analysis. Perovskite LaCoO3 exhibited the highest degradation of MCs i.e., ACN (98.7%), ACM (86.3%), and ACY (56.4%), with consumption of PMS (95.2%) under the optimal operating conditions (LaCoO3 dose 0.8 g/L, PMS dose 2 g/L, pH 7.2 and reaction temperature 55 °C). The quantitative contribution (%) of reactive oxygen species (ROS) reveals that SO4•- are the dominating radical species, which contribute to ACN (58.3% for SO4•- radicals) and ACM degradation (46.4% for SO4•- radicals). The tafel plots and EIS spectra demonstrated that perovskites LaCoO3 have better charge transfer rates and more reactive sites that are favorable for PMS activation. Further, four major degradation pathways were proposed based on Fukui index calculations, as well as GC-MS characterization of intermediate byproducts. Based on a stability and reusability study, it was concluded that LaCoO3 perovskites are highly stable, and minimal cobalt leaching occurs (0.96 mg/L) after four cycles. The eco-toxicity assessment performed using QSAR model indicated that the byproducts of the LaCoO3/PMS system are non-toxic nature to common organism (i.e., fish, daphnids and green algae). In addition, the cost of the hybrid LaCoO3/PMS system in a single cycle was estimated to be $34.79 per cubic meter of resin wastewater.
Collapse
Affiliation(s)
- Arvind Kumar
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban, 4001, South Africa; Chemical Engineering Department, Indian Institute of Technology Roorkee, Haridwar, Uttarakhand, 247667, India.
| | - Abdul Ahamad
- Chemical Engineering Department, Indian Institute of Technology Roorkee, Haridwar, Uttarakhand, 247667, India.
| | - Basheshwer Prasad
- Chemical Engineering Department, Indian Institute of Technology Roorkee, Haridwar, Uttarakhand, 247667, India.
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban, 4001, South Africa.
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban, 4001, South Africa.
| |
Collapse
|
2
|
Lv X, Li D, Yu X, McPhedran KN, Huang R. Tungsten sulfide highly boosted Fe(III)/peroxymonosulfate system for rapid degradation of cyclohexanecarboxylic acid: Performance, mechanisms, and applications. CHEMOSPHERE 2024; 361:142556. [PMID: 38851499 DOI: 10.1016/j.chemosphere.2024.142556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
In this study, the Fe(III)/WS2/peroxymonosulfate (PMS) system was found to remove up to 97% of cyclohexanecarboxylic acid (CHA) within 10 min. CHA is a model compound for naphthenic acids (NAs), which are prevalent in petroleum industrial wastewater. The addition of WS2 effectively activated the Fe(III)/PMS system, significantly enhancing its ability to produce reactive oxidative species (ROS) for the oxidation of CHA. Further experimental results and characterization analyses demonstrated that the metallic element W(IV) in WS2 could provide electrons for the direct reduction of Fe(III) to Fe(II), thus rapidly activating PMS and initiating a chain redox process to produce ROS (SO4•-, •OH, and 1O2). Repeated tests and practical exploratory experiments indicated that WS2 exhibited excellent catalytic performance, reusability and anti-interference capacity, achieving efficient degradation of commercial NAs mixtures. Therefore, applying WS2 to catalyze the Fe(III)/PMS system can overcome speed limitations and facilitate simple, economical engineering applications.
Collapse
Affiliation(s)
- Xin Lv
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Dazhen Li
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Xi Yu
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Kerry N McPhedran
- Department of Civil, Geological & Environmental Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada; Global Institute for Water Security, University of Saskatchewan, Saskatoon, SK S7N 5A9, Canada.
| | - Rongfu Huang
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
3
|
Liu L, Hu J, Tang J, Chen S, Wu L, Li Z, Hou H, Liang S, Yang J. Peroxymonosulfate activation by trace iron(III) porphyrin for facile degradation of organic pollutants via nonradical oxidation. CHEMOSPHERE 2024; 349:140847. [PMID: 38043614 DOI: 10.1016/j.chemosphere.2023.140847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 11/07/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Nonradical species with great resistance to interference have shown great advantages in complex wastewater treatment. Herein, a novel system constructed by biodegradable tetrakis-(4-carboxyphenyl)-porphyrinatoiron(III) (FeIII-TCPP) and peroxymonosulfate (PMS) was proposed for facile decontamination. Nonradical pathway is observed in FeIII-TCPP/PMS, where 1O2 and high-valent iron-oxo species play dominant roles. The genres and valence of high-valent iron-oxo species, including iron(IV)-oxo porphyrin radical-cationic species [OFeIV-TCPP•+] and iron(IV)-hydroxide species [FeIV-TCPP(OH)], are ascertained, along with their generation mechanism. The axial ligand on the iron axial site affects the ground spin state of FeIII-TCPP, further influencing the thermodynamic reaction pathway of active species. With trace catalyst in micromoles, FeIII-TCPP exhibits high efficiency by degrading bisphenol S (BPS) completely within 5 min, while Co2+/PMS can only achieve a maximum of 26.2% under identical condition. Beneficial from nonradical pathways, FeIII-TCPP/PMS demonstrates a wide pH range of 3-10 and exhibits minimal sensitivity to interference of concomitant materials. BPS is primarily eliminated through β-scission and hydroxylation. Specifically, 1O2 electrophilically attacks the C-S bond of BPS, while high-valent iron-oxo species interacts with BPS through an oxygen-bound mechanism. This study provides novel insights into efficient activation of PMS by iron porphyrin, enabling the removal of refractory pollutants through nonradical pathway.
Collapse
Affiliation(s)
- Lu Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Technology Research Center of Water Supply Safety and Pollution Control, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Jingping Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Technology Research Center of Water Supply Safety and Pollution Control, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China.
| | - Jianjian Tang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Technology Research Center of Water Supply Safety and Pollution Control, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Sijing Chen
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Technology Research Center of Water Supply Safety and Pollution Control, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Longsheng Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Technology Research Center of Water Supply Safety and Pollution Control, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Zhen Li
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Technology Research Center of Water Supply Safety and Pollution Control, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Technology Research Center of Water Supply Safety and Pollution Control, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Sha Liang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Technology Research Center of Water Supply Safety and Pollution Control, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Technology Research Center of Water Supply Safety and Pollution Control, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| |
Collapse
|
4
|
Zhang B, Chen Y, Wang Y, Zhang IY, Huang R. Utilization of Fe-Ethylenediamine-N,N'-Disuccinic Acid Complex for Electrochemical Co-Catalytic Activation of Peroxymonosulfate under Neutral Initial pH Conditions. Molecules 2023; 28:6290. [PMID: 37687118 PMCID: PMC10488724 DOI: 10.3390/molecules28176290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
The ethylenediamine-N,N'-disuccinic acid (EDDS) was utilized to form Fe-EDDS complex to activate peroxymonosulfate (PMS) in the electrochemical (EC) co-catalytic system for effective oxidation of naphthenic acids (NAs) under neutral pH conditions. 1-adamantanecarboxylic acid (ACA) was used as a model compound to represent NAs, which are persistent pollutants that are abundantly present in oil and gas field wastewater. The ACA degradation rate was significantly enhanced in the EC/PMS/Fe(III)-EDDS system (96.6%) compared to that of the EC/PMS/Fe(III) system (65.4%). The addition of EDDS led to the formation of a stable complex of Fe-EDDS under neutral pH conditions, which effectively promoted the redox cycle of Fe(III)-EDDS/Fe(II)-EDDS to activate PMS to generate oxidative species for ACA degradation. The results of quenching and chemical probe experiments, as well as electron paramagnetic resonance (EPR) analysis, identified significant contributions of •OH, 1O2, and SO4•- in the removal of ACA. The ACA degradation pathways were revealed based on the results of high resolution mass spectrometry analysis and calculation of the Fukui index. The presence of anions, such as NO3-, Cl-, and HCO3-, as well as humic acids, induced nonsignificant influence on the ACA degradation, indicating the robustness of the current system for applications in authentic scenarios. Overall results indicated the EC/PMS/Fe(III)-EDDS system is a promising strategy for the practical treatment of NAs in oil and gas field wastewater.
Collapse
Affiliation(s)
- Bolin Zhang
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yu Chen
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Yongjian Wang
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Igor Ying Zhang
- Shanghai Key Laboratory of Molecular Catalysis and Innovation Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, MOE Laboratory for Computational Physical Science, Shanghai Key Laboratory of Bioactive Small Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| | - Rongfu Huang
- Sichuan Provincial Key Laboratory of Universities on Environmental Science and Engineering, MOE Key Laboratory of Deep Earth Science and Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| |
Collapse
|