1
|
Ren C, Zhang M, Zheng N, Liu B, Tang J, Tang J, Zhang F, Chen G. Green synthesis of carbon dots and their application as fluorescent probes for rutin detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 337:126084. [PMID: 40147392 DOI: 10.1016/j.saa.2025.126084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 03/13/2025] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
Rutin has antioxidant, antitumor, antibacterial, antiviral, anti-aging, and analgesic effects, and it is a drug used to treat various circulatory disorders. However, rutin overdosage can seriously harm the health. The rutin detection method has drawbacks, including expensive costs, low sensitivity, and complicated steps. Therefore, given that carbon dots have superior fluorescence characteristics, the development of nanofluorescent probes for rutin detection is the research motivation of this article. N-CDs and N, B-CDs were produced by a hydrothermal approach using o-phenylenediamine, glucose, urea, and boron oxide, commonly available in the laboratory. The morphology and composition of CDs have been analyzed. According to the findings, the surfaces of the N-CDs and N, B-CDs were abundant in functional groups that contained oxygen, and they were spherical, uniform in size, and well distributed, which is beneficial for enhancing its fluorescence response to the detection object. In addition, two kinds of CDs emit bright yellow and blue-green fluorescence under the ultraviolet lamp at 365 nm. Rutin was detected in solution using synthesized N-CDs and N, B-CDs as fluorescent probes. Rutin was discovered to have a fluorescence quenching effect on N-CDs and N, B-CDs. Within a specific concentration range, the N-CDs and N, B-CDs fluorescence intensities demonstrated an excellent linear relationship with the rutin concentration, and the corresponding correlation coefficients R2 were 0.9897 and 0.9409, respectively. To verify the detection accuracy of the experiment, we used the random forest algorithm to predict the detection model. The results showed that the experimental and predicted values were coincident, suggesting the possibility of using N-CDs and N, B-CDs as fluorescent probes to detect rutin. This work offers experimental procedures and data references to create doping CDs with superior fluorescence qualities. It broadens the use of doped CDs in the detection of rutin.
Collapse
Affiliation(s)
- Chunxiao Ren
- Kunming Key Laboratory of Energy Materials Chemistry, Yunnan Minzu University, PR China
| | - Meng Zhang
- Kunming Key Laboratory of Energy Materials Chemistry, Yunnan Minzu University, PR China
| | - Na Zheng
- Kunming Key Laboratory of Energy Materials Chemistry, Yunnan Minzu University, PR China
| | - Benhua Liu
- Kunming Key Laboratory of Energy Materials Chemistry, Yunnan Minzu University, PR China
| | - Ju Tang
- Kunming Key Laboratory of Energy Materials Chemistry, Yunnan Minzu University, PR China; Yumnan Key Laboratory of Unmanned Autonomous System, School of Electrical and Information Technology, Yumnan Minzu University, Kunming 650500 Yumna, PR China; Yunnan Provincial Department of Education Engineering Research Center for Building Digital and Energy Saving Technology, Yunnan Minzu University, Kunming 650500 Yunnan, PR China.
| | - Jianing Tang
- Yumnan Key Laboratory of Unmanned Autonomous System, School of Electrical and Information Technology, Yumnan Minzu University, Kunming 650500 Yumna, PR China.
| | - Fan Zhang
- Kunming Key Laboratory of Energy Materials Chemistry, Yunnan Minzu University, PR China; Yumnan Key Laboratory of Unmanned Autonomous System, School of Electrical and Information Technology, Yumnan Minzu University, Kunming 650500 Yumna, PR China; Yunnan Provincial Department of Education Engineering Research Center for Building Digital and Energy Saving Technology, Yunnan Minzu University, Kunming 650500 Yunnan, PR China.
| | - Guo Chen
- Kunming Key Laboratory of Energy Materials Chemistry, Yunnan Minzu University, PR China.
| |
Collapse
|
2
|
Chen S, Xie R, Tian M, Yan R, Wang Z, Xie R, Chai F. The controllable fabrication of AIE gold nanoclusters and utilizing as portable ultrasensitive detection sensor for silver ions via smartphone. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 332:125862. [PMID: 39923710 DOI: 10.1016/j.saa.2025.125862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/18/2025] [Accepted: 02/03/2025] [Indexed: 02/11/2025]
Abstract
Heavy metal pollution is life-threatening, the detection of heavy metals is crucial to human health and environment. In this work, AIE featured LA-stabilized gold nanoclusters (NL-AuNCs) were designed and fabricated by modulating precursors in various reaction conditions, and utilized as an efficient fluorescent sensor for portable detecting Ag+ with high sensitivity and selectivity. The NL-AuNCs exhibited intense red fluorescence at 625 nm via the secondary reducing agent N-acetyl-L-cysteine (NAC), achieving a quantum yield (QY) of 15.7 %. Notably, the introduction of Ag+ enhanced the red fluorescence intensity of NL-AuNCs on account of the aggregation-induced emission (AIE) process, rendering NL-AuNCs uniquely capable of detecting Ag+ with the ultralow detection limit of 1.3 nM within a wide concentration range of 0.002-200 μM. Furthermore, the handheld intelligent sensing strategy was constructed by integrating the smartphone App, which enabled swift portable monitoring and convenient readout by visual assessment of color evolution. The acceptable recoveries of 94.6 % to 114.9 % were attained from testing real water, indicating the excellent environmental tolerance of NL-AuNCs, which allowed the possibility for practical in-situ detection.
Collapse
Affiliation(s)
- Siqi Chen
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Ruyan Xie
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Miaomiao Tian
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Rui Yan
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China
| | - Zizhun Wang
- Electron Microscopy Center, Jilin University, Changchun 130012, China.
| | - Ruifeng Xie
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| | - Fang Chai
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
3
|
Shang K, Chen H, Yang W, He Y, Liu B, Yi X, Tan X, Fang M. Surface-modified carbon quantum dot for enhanced fluorescent-sensing of hexagonal valent chromium. ANAL SCI 2025; 41:427-437. [PMID: 39838232 DOI: 10.1007/s44211-025-00716-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 01/06/2025] [Indexed: 01/23/2025]
Abstract
As one of the most harmful heavy metal pollutants, hexavalent chromium Cr(VI) is becoming a serious threat to human health. Thus pursuing a remarkably sensitive method to monitor the Cr(VI) concentration in natural conditions is favored for the fast response to prevent harm. In the present work, an ethylenediamine (En) and SiO2-modified wool keratin-based carbon quantum dot (CQD)(En@CQDs@SiO2) fluorescent sensor is prepared, and the En is found to improve the discrimination ability by binding the Cr(VI) with the surface carboxyl groups. Based on these designs, the En@CQDs@SiO2 achieves a significant improvement in the Cr(VI) detection ability, with a detection limit of 6.08 × 10-4 mg/L, which succeeded 6 times over CQDs, and is better than conventional UV-Vis and flame atomic absorption (AAS) techniques. Furthermore, the fluorescent sensor has good relative sensitivity, selectivity, good spectral reproducibility, and excellent structural stability. These properties make the sensor suitable for environmental Cr(VI) detection, which undoubtedly improves the economy and environmental friendliness of the fluorescent sensor.
Collapse
Affiliation(s)
- Kangle Shang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, People's Republic of China
- Xingzhi College, Zhejiang Normal University, Lanxi, 321000, People's Republic of China
| | - Hansong Chen
- Xingzhi College, Zhejiang Normal University, Lanxi, 321000, People's Republic of China
| | - Wenwen Yang
- Xingzhi College, Zhejiang Normal University, Lanxi, 321000, People's Republic of China
| | - Yucheng He
- Xingzhi College, Zhejiang Normal University, Lanxi, 321000, People's Republic of China
| | - Baoyi Liu
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, People's Republic of China
| | - Xuxin Yi
- Xingzhi College, Zhejiang Normal University, Lanxi, 321000, People's Republic of China
| | - Xiaoli Tan
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, People's Republic of China
| | - Ming Fang
- MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, People's Republic of China.
| |
Collapse
|
4
|
Shen F, Meng X, Zhang W, Sun J, Hou J. Ratiometric fluorescent detection of Hg 2+ using dual-emissive carbon dots in an immiscible system. Mikrochim Acta 2025; 192:257. [PMID: 40133546 DOI: 10.1007/s00604-025-07097-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/05/2025] [Indexed: 03/27/2025]
Abstract
A facile one-pot hydrothermal method was established to simultaneously prepare blue and yellow emissive carbon dots (BCDs and YCDs) in an immiscible system. This method eliminated the need for complex purification steps. The resulting BCDs and YCDs exhibited uniform sizes and excellent fluorescence properties. A ratiometric fluorescent probe based on B/YCDs was designed for the rapid and selective detection of Hg2+ with a detection limit of 15 nM. The probe was capable of reliable detection in real water samples with recoveries of 92.42 ~ 110.02%. To further enhance practicality, we incorporated fluorescent papers and hydrogels for visual Hg2+ detection, making it ideal for on-site applications. Additionally, a smartphone-based sensing platform, integrating RGB value analysis, was also developed for accurate Hg2+ detection. This work represents a significant advancement in the field by providing a user-friendly and cost-effective approach for sensitive on-site detection of hazardous mercury pollution.
Collapse
Affiliation(s)
- Fei Shen
- School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-Functional Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, China
| | - Xiangzhi Meng
- School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-Functional Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, China
| | - Wenxi Zhang
- School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-Functional Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, China
| | - Jing Sun
- School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-Functional Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, China.
| | - Juan Hou
- School of Chemistry and Environmental Engineering, Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, Jilin Provincial International Joint Research Center of Photo-Functional Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, China.
| |
Collapse
|
5
|
Huang Z, Ren L. Large Scale Synthesis of Carbon Dots and Their Applications: A Review. Molecules 2025; 30:774. [PMID: 40005085 PMCID: PMC11857885 DOI: 10.3390/molecules30040774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/01/2025] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Carbon dots (CDs), a versatile class of fluorescent carbon-based nanomaterials, have attracted widespread attention due to their exceptional optical properties, biocompatibility, and cost-effectiveness. Their applications span biomedicine, optoelectronics, and smart food packaging, yet large-scale synthesis remains a significant challenge. This review categorizes large-scale synthesis methods into liquid-phase (hydrothermal/solvothermal, microwave-assisted, magnetic hyperthermia, aldol condensation polymerization), gas-phase (plasma synthesis), solid-phase (pyrolysis, oxidation/carbonization, ball milling), and emerging techniques (microfluidic, ultrasonic, molten-salt). Notably, microwave-assisted and solid-state synthesis methods show promise for industrial production due to their scalability and efficiency. Despite these advances, challenges persist in optimizing synthesis reproducibility, reducing energy consumption, and developing purification methods and quality control strategies. Addressing these issues will be critical for transitioning CDs from laboratory research to real-world applications.
Collapse
Affiliation(s)
| | - Lili Ren
- School of Chemistry & Chemical Engineering, Southeast University, Nanjing 211189, China;
| |
Collapse
|
6
|
Gao F, Fu Q, Ruan Y, Li C, Wang Y, Li H, Li J, Jiang Y. Elucidating Manganese Single-Atom Doping: Strategies for Fluorescence Enhancement in Water-Soluble Red-Emitting Carbon Dots and Applications for FL/MR Dual Mode Imaging. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414895. [PMID: 39746856 PMCID: PMC11848584 DOI: 10.1002/advs.202414895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Indexed: 01/04/2025]
Abstract
The absence of the enhancement of fluorescence in carbon dots (CDs) through doping with transition metal atoms (TMAs) hinders the advancement of multi-modal bio-imaging CDs with high photoluminescence quantum yield (PLQY). Herein, Mn-atomically-doped R-CDs (R-Mn-CDs) with a high PLQY of 41.3% in water is presented, enabling efficient in vivo dual-mode fluorescence/magnetic resonance (MR) imaging. The comprehensive characterizations reveal that the incorporation of Mn atoms leads to a Mn-N2O2 coordinating structure, resulting in five significant effects: an increase in sp2 conjugation domains, a reduction in band gap, a decreased oxidation level, an increase in photo-excited electron numbers, and the suppression of non-radiative electron relaxation pathways. Collectively, these factors contribute to the remarkable PLQY of R-Mn-CDs. Additionally, the doping of Mn atoms also endows R-Mn-CDs with superior MR imaging capabilities due to, which highlights their promising prospect as a dual-modal bio-imaging platform for fluorescence/MR imaging. Furthermore, the findings indicate that the introduction of various TMAs, such as Mn, Zn, Ni, and Cu, can universally improve the PLQY of water-soluble CDs through the construction of TMAs─O bonds. This research provides valuable theoretical insights into the mechanisms underlying the fluorescence enhancement induced by TMAs doping and offers guidance for the future design of high PLQY CDs.
Collapse
Affiliation(s)
- Fucheng Gao
- Key Laboratory for Liquid‐Solid Structural Evolution and Processing of MaterialsMinistry of EducationShandong UniversityJinan250061China
| | - Qiang Fu
- Department of UrologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinan250100China
- Key Laboratory of Urinary Diseases in Universities of Shandong (Shandong First Medical University)Jinan250100China
| | - Ying Ruan
- MOE Key Laboratory of Materials Physics and Chemistry Under Extraordinary ConditionsSchool of Physical Science and TechnologyNorthwestern Polytechnical UniversityXian710072China
| | - Can Li
- Key Laboratory for Liquid‐Solid Structural Evolution and Processing of MaterialsMinistry of EducationShandong UniversityJinan250061China
| | - Yandong Wang
- Key Laboratory for Liquid‐Solid Structural Evolution and Processing of MaterialsMinistry of EducationShandong UniversityJinan250061China
| | - Hui Li
- Key Laboratory for Liquid‐Solid Structural Evolution and Processing of MaterialsMinistry of EducationShandong UniversityJinan250061China
| | - Jichao Li
- School of Physics Shandong UniversityJinan250100China
| | - Yanyan Jiang
- Key Laboratory for Liquid‐Solid Structural Evolution and Processing of MaterialsMinistry of EducationShandong UniversityJinan250061China
| |
Collapse
|
7
|
Bavya V, Rajan TPD, Suresh KI. Design of Fluorescence Enhancing Sensor for Mercury Detection via Bamboo Cellulose-Derived Carbon Dots. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1333-1343. [PMID: 39791473 DOI: 10.1021/acs.langmuir.4c03942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Mercury contamination of the environment is extremely hazardous to human health because of its significant toxicity, especially in water. Biomass-derived fluorophores such as carbon dots (CDs) have emerged as eco-friendly and cost-effective alternative sensors that provide comparable efficacy while mitigating the environmental and economic drawbacks of conventional methods. In this work, we report the fabrication of a selective fluorescence-enhancing sensor based on sulfur-doped carbon dots (SCDs) using waste bamboo-derived cellulose and sodium thiosulfate as the soft base dopant, which actively complexes with mercury ions for detection. SCDs with an average size of 4 nm were synthesized hydrothermally, and the sulfur doping was confirmed quantitatively with an atomic percentage of 6.5%. Optical studies reveal an abnormal fluorescence enhancement of SCD in the presence of mercury due to the aggregation of carbon dots via sulfur-containing functional groups. The fabricated sensor exhibits a low detection limit of 5.16 nM, suggesting its application potential as a reliable mercury sensor. Real-time analyses carried out using tap water samples spiked with mercury and industry samples showed high efficiency for Hg(II) detection. The sensing performance was also demonstrated by using SCD-coated filter paper strips.
Collapse
Affiliation(s)
- Vallil Bavya
- Materials Science and Technology Division, CSIR─National Institute for Interdisciplinary Science and Technology, Pappanamcode, Thiruvananthapuram 695019, Kerala, India
- Research Centre, University of Kerala, Thiruvananthapuram 695034, Kerala, India
| | - Thazhavilai Ponnu Devaraj Rajan
- Materials Science and Technology Division, CSIR─National Institute for Interdisciplinary Science and Technology, Pappanamcode, Thiruvananthapuram 695019, Kerala, India
- Research Centre, University of Kerala, Thiruvananthapuram 695034, Kerala, India
| | - Kattimuttathu Ittara Suresh
- Materials Science and Technology Division, CSIR─National Institute for Interdisciplinary Science and Technology, Pappanamcode, Thiruvananthapuram 695019, Kerala, India
- Research Centre, University of Kerala, Thiruvananthapuram 695034, Kerala, India
| |
Collapse
|
8
|
Jia Y, Ke Y, Liu Z, Yang H, Miao M, Guo L. Signal switching electrochemical and fluorescence dual-mode sensing platform for carbendazim determination based on "two-in-one" magneto-fluorescent Cdots. Food Chem 2025; 463:141494. [PMID: 39366095 DOI: 10.1016/j.foodchem.2024.141494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/18/2024] [Accepted: 09/29/2024] [Indexed: 10/06/2024]
Abstract
An innovative method for carbendazim (CBZ) detection was developed, consisting of an electrochemical-fluorescence dual-mode biosensor based on magneto-fluorescent composite M-CDs. M-CDs, as the fluorescent probe of this sensor, could combine the electrical signal-ferrocene to achieve the "signal switching" by specifically recognizing CBZ through aptamers, of which magnetic property was used to quickly separate from complex substrates without interference. The dual-mode sensor based on M-CDs demonstrated excellent linear responses in both electrochemical and fluorescence assays. It achieved detection ranges of 10 fg/mL - 300 ng/mL and 60 fg/mL - 100 ng/mL with detection limits (LODs) of 1.4 fg/mL and 2.3 fg/mL. The sensor exhibited exceptional detection performance, stability and anti-interference. In addition, the results of the sensor in actual samples were consistent with those of enzyme-linked immunosorbent assay (ELISA), which further demonstrated that the sensor could accurately trace detecting CBZ in real samples and had a certain application prospect.
Collapse
Affiliation(s)
- Yuzhen Jia
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China
| | - Yuanmeng Ke
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China
| | - Zhixiang Liu
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China
| | - Huaixia Yang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China.
| | - Mingsan Miao
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China; Collaborative Innovation Center of Research and Development on the Whole Industry Chain of Yu-Yao, Henan Province, People's Republic of China.
| | - Liang Guo
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, People's Republic of China.
| |
Collapse
|
9
|
Wang L, Wang W, Zhang S, Wei J, Chen Q, Jiao T, Lin A, Chen Q, Chen XM. G-Quadruplex DNAzyme-Based Biocatalysis Combined with an Intelligent Electromagnetic-Actuated Microfluidic Chip for Tetracycline Detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1598-1607. [PMID: 39811934 DOI: 10.1021/acs.jafc.4c09976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
In this study, we present an intelligent electromagnetic-actuated microfluidic chip integrated with a G-quadruplex DNAzyme-based biocatalysis platform for rapid and sensitive tetracycline (TC) detection. In this sensing system, TC significantly quenches fluorescent magnetic carbon dots (M-CDs) via the internal filtration effect and dynamic quenching (the excitation and emission wavelength at 350 and 440 nm, respectively). Then, the G-quadruplex on the M-CDs-Aptamer is exposed and bound with hemin to form hemin-G-quadruplex DNAzyme, catalyzing the conversion of 3,3',5,5'-tetramethylbenzidine to produce blue color. This enables the fluorescence/colorimetric detection of TC. Importantly, an automatic electromagnet-integrated microfluidic chip was designed to control the shuttling of magnetic materials in each function slot according to a programmed sequence. Under the optimal conditions, the detection limits of TC for fluorescence and colorimetric methods were 11 and 43 μmol/L, respectively. The detection results for tilapia (Oreochromis nilotica) were comparable to those of traditional high-performance liquid chromatography. This platform offers excellent performance for TC determination and potential for portable, intelligent detection of trace pollutants in food and the environment.
Collapse
Affiliation(s)
- Li Wang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Wanwan Wang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Shumin Zhang
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Jie Wei
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Qingmin Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Tianhui Jiao
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Anhui Lin
- School of Marine Engineering, Jimei University, Xiamen 361021, China
| | - Quansheng Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| | - Xiao-Mei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China
| |
Collapse
|
10
|
Zhao X, Chen C, Hou J, Jia Z, Chen C, Lv X. Graphitic carbon @ silver nanoparticle @ porous silicon Bragg mirror composite SERS substrate for gallic acid detection. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124861. [PMID: 39089071 DOI: 10.1016/j.saa.2024.124861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/07/2024] [Accepted: 07/20/2024] [Indexed: 08/03/2024]
Abstract
Graphite carbon (G) @ silver (Ag) @ porous silicon Bragg mirror (PSB) composite SERS substrate was successfully synthesized using electrochemical etching (ec) and hydrothermal carbonization (HTC) techniques with silver nitrate as the source of silver and glucose as the source of carbon. The PSB was used as a functional scaffold for the synthesis of graphite-carbon and silver composite nanoparticles (G@AgNPs) on its surface, thereby combining SERS activity and antioxidant properties. To our knowledge, this is the first time that G@AgNPs has been synthesized on the PSB using glucose as a carbon source. The synthesized G@Ag@PSB was utilized as a SERS platform for the detection of gallic acid (GA). Test results demonstrated that the substrate exhibited a remarkable SERS enhancement capability for GA, with the enhancement factor (EF) reaching 2 × 105. The reproducibility of the SERS spectral signal was excellent, with a relative standard deviation (RSD) of 7.5 %. The sensitivity test results showed that the linear range of GA detection based on G@Ag@PSB composite SERS substrate was 2 × 10-3-2 × 10-12M. The relationship between GA concentration and SERS signal intensity exhibited a strong linear correlation, with a linear correlation coefficient (R2) of 0.97634. Moreover, even with an extended storage period, only a marginal decline in the signal intensity of GA on the substrate was observed. The results of this study demonstrate that the prepared G@Ag@PSB composite SERS substrate had good potential application performance as a low-cost SERS detection platform suitable for commercial use. In addition, this advance facilitates the further exploration of more nanomaterials with ultra-high sensitivity in SERS technology.
Collapse
Affiliation(s)
- Xin Zhao
- College of Materials Science and Engineering, Xinjiang University, Urumqi 830046, China.
| | - Chen Chen
- College of Computer Science and Technology, Xinjiang University, Urumqi 830046, China.
| | - JunWei Hou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing at Karamay, Karamay 834000, China.
| | - Zhenhong Jia
- College of Computer Science and Technology, Xinjiang University, Urumqi 830046, China.
| | - Cheng Chen
- College of Software, Xinjiang University, Urumqi 830046, China; The Key Laboratory of Signal Detection and Processing, Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi 840046, China.
| | - Xiaoyi Lv
- College of Software, Xinjiang University, Urumqi 830046, China; The Key Laboratory of Signal Detection and Processing, Xinjiang Uygur Autonomous Region, Xinjiang University, Urumqi 840046, China.
| |
Collapse
|
11
|
Tang W, Chen S, Song Y, Tian M, Yan R, Mao B, Chai F. Controllable fabrication of high-quantum-yield bimetallic gold/silver nanoclusters as multivariate sensing probe for Hg 2+, H 2O 2, and glutathione based on AIE and peroxidase mimicking activity. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136254. [PMID: 39471624 DOI: 10.1016/j.jhazmat.2024.136254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 10/08/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
The grave threat posed by heavy metals and food hazards has increased the urgency of rapid and precise detection for food security and human health. Efficient multivariate sensing probes are imperatively required for sensing heavy metals and tumor markers, which are still facing great challenge in terms of multi-functional integration. Here, bimetallic gold-silver nanoclusters (NG-AuAgNCs) were developed with unique aggregation-induced-emission (AIE) property and peroxidase (POD) mimicking activity towards the efficient multivariate sensing via optimization of the precursors. The NG-AuAgNCs emitted at 614 nm and enable AIE feature with lifetime of 12.61 μs and high quantum yield of 40.5%. Possessing AIE and POD activity, the NG-AuAgNCs show great potential as fluorimetric and colorimetric dual-mode probe for multivariate sensing Hg2+, H2O2 and GSH, with good recoveries in real samples. The NG-AuAgNCs paper sensors further integrating with smartphone, achieved portable detection of Hg2+ with limit of detection (LOD) of 19 nM, while the colorimetric-mode presented consecutive response to H2O2 and GSH via a reversible oxidase tetramethylbenzidine process with LODs of 7.02 and 0.45 μM, respectively. This work not only demonstrates a multivariate probe for environment and human health, but also provides valuable insights for the function integration of the nanocluster via synthetic manipulation.
Collapse
Affiliation(s)
- Wei Tang
- Key Laboratory for Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Key Laboratory of Molecular Cytogenetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Siqi Chen
- Key Laboratory for Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Key Laboratory of Molecular Cytogenetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Ying Song
- Key Laboratory for Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Key Laboratory of Molecular Cytogenetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Miaomiao Tian
- Key Laboratory for Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Key Laboratory of Molecular Cytogenetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China
| | - Rui Yan
- Key Laboratory for Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Key Laboratory of Molecular Cytogenetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China.
| | - Baodong Mao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Fang Chai
- Key Laboratory for Photochemical Biomaterials and Energy Storage Materials of Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Key Laboratory of Molecular Cytogenetics and Genetic Breeding, College of Life Science and Technology, Harbin Normal University, Harbin 150025, China.
| |
Collapse
|
12
|
Zhou M, Zheng M, Deng W, Kong N, Hu J, Wang P, Yang X. A highly sensitive and selective fluorescent "on-off-on" peptide-based probe for sequential detection of Hg 2+ and S 2- ions: Applications in living cells and zebrafish imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124514. [PMID: 38805991 DOI: 10.1016/j.saa.2024.124514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 05/15/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Mercury ions (Hg2+) and sulfur ions (S2-), have caused serious harm to the ecological environment and human health as two kinds of highly toxic pollutants widely used. Therefore, the visual quantitative determination of Hg2+ and S2- is of great significance in the field of environmental monitoring and medical therapy. In this study, a novel fluorescent "on-off-on" peptide-based probe DNC was designed and synthesized using dipeptide (Asn-Cys-NH2) as the raw material via solid phase peptide synthesis (SPPS) technology with Fmoc chemistry. DNC displayed high selectivity in the recognition of Hg2+, and formed non-fluorescence complex (DNC-Hg2+) through 2:1 binding mode. Notably, DNC-Hg2+ complex generated in situ was used as relay response probe for highly selective sequential detection of S2- through reversible formation-separation. DNC achieved highly sensitive detection of Hg2+ and S2- with the detection limits (LODs) of 8.4 nM and 5.5 nM, respectively. Meanwhile, DNC demonstrated feasibility for Hg2+ and S2- detections in two water samples, and the considerable recovery rate was obtained. More importantly, DNC showed excellent water solubility and low toxicity, and was successfully used for consecutive discerning Hg2+ and S2- in test strips, living cells and zebrafish larvae. As an effective visual analysis method in the field, smartphone RGB Color Picker APP realized semi-quantitative detections of Hg2+ and S2- without the need for complicated device.
Collapse
Affiliation(s)
- Miao Zhou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Maoyue Zheng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Weiliang Deng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Na Kong
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Jinglan Hu
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China.
| | - Xiupei Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China.
| |
Collapse
|
13
|
Hu C, Guo W, Zhen S, Li Y, Huang C, Zhan L. Bimetallic Ag/Fe-MOG derived flake-like Ag 2O/Fe 2O 3 p-n heterojunction for efficient photodegradation organic pollutants within a wide pH range. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121686. [PMID: 38971057 DOI: 10.1016/j.jenvman.2024.121686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
In this paper, we reported a facile and clean strategy to prepare the flake-like Ag2O/Fe2O3 bimetallic p-n heterojunction composites for photodegradation organic pollutants. The surface morphology, crystal structure, chemical composition and optical properties of Ag2O/Fe2O3 were characterized by SEM, high-resolution TEM images with EDX spectra, XRD, XPS, FT-IR and UV-vis DRS spectra respectively. The formation of Ag2O/Fe2O3 p-n heterojunction facilitated the interfacial transfer of electrons as well as the separation of charge carries. Hence, the as-synthesized Ag2O/Fe2O3-3 composites exhibited ultra-high photocatalytic activity. Under the experimental conditions of catalyst dosage of 0.4 mg mL-1 and irradiation time of 60 min, the degradation conversion rate of rhodamine B reached 96.1 %, which was 5.0 and 2.8 times of pure phase Ag2O and Fe2O3, respectively. Meanwhile, the degradation performance of Ag2O/Fe2O3-3 was not limited by pH, and it can achieve high degradation efficiency under 3-11. In addition, Ag2O/Fe2O3-3 also showed superb degradation ability for other common anionic dyes, cationic dyes and antibiotics. XPS and FT-IR spectra showed that Ag2O/Fe2O3-3 retained a carbon skeleton that facilitated electron transport and light absorption conversion. And the analyses of quenching experiment and EPR demonstrated •O2-, •OH and h+ were crucial reactive oxidant species contributing to the rapid organic pollutant degradation. This work provides new insights into obtaining p-n photocatalysts heterojunction with excellent catalytic activity for removing organic pollutants from wastewater.
Collapse
Affiliation(s)
- Congyi Hu
- Key Laboratory of Luminescence and Real-Time Analysis System, Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Wan Guo
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Shujun Zhen
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Yuanfang Li
- College of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, PR China
| | - Chengzhi Huang
- Key Laboratory of Luminescence and Real-Time Analysis System, Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China
| | - Lei Zhan
- Key Laboratory of Luminescence and Real-Time Analysis System, Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, PR China.
| |
Collapse
|
14
|
Hao Y, Ji F, Li T, Tian M, Han X, Chai F. Portable smartphone platform utilizing AIE-featured carbon dots for multivariate visual detection for Cu 2+, Hg 2+ and BSA in real samples. Food Chem 2024; 446:138843. [PMID: 38422643 DOI: 10.1016/j.foodchem.2024.138843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
Heavy metals cause serious toxic threats to both environment and human health. The multivariate, instrument-free, portable, and rapid detection strategy is crucial for determination of heavy metals. Herein, aggregation-induced emission (AIE) featured carbon dots (SN-CDs) were fabricated hydrothermally by optimizing co-doping precursors. With bright yellow emission at 560 nm, the SN-CDs were utilized for multivariate sensing Cu2+, Hg2+ and bovine serum albumin (BSA) based on AIE behavior and static quenching effect, with detection limits of 0.46 μmol·L-1, 25.8 nmol·L-1 and 1.52 μmol·L-1. A portable smartphone platform was constructed to enable portable, prompt, and sensitive analysis for Cu2+, Hg2+, and BSA via different strategies in real water and food samples with satisfied recovery. Moreover, a logic gate circuit was designed to provide the possibilities for utilization of intelligent facility. The proposed AIE SN-CDs possessing great contribution in preferable sensing performance, present promising prospects in real-time monitoring of environment and food safety.
Collapse
Affiliation(s)
- Yunqi Hao
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, Heilongjiang Province, China
| | - Fangyan Ji
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, Heilongjiang Province, China
| | - Tingting Li
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, Heilongjiang Province, China
| | - Miaomiao Tian
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, Heilongjiang Province, China
| | - Xu Han
- College of Computer Science and Information Engineering, Harbin Normal University, Harbin, Heilongjiang 150025, Heilongjiang Province, China.
| | - Fang Chai
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, Heilongjiang Province, China.
| |
Collapse
|
15
|
Yang L, An Y, Xu D, Dai F, Shao S, Lu Z, Liu G. Comprehensive Overview of Controlled Fabrication of Multifunctional Fluorescent Carbon Quantum Dots and Exploring Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309293. [PMID: 38342681 DOI: 10.1002/smll.202309293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/24/2024] [Indexed: 02/13/2024]
Abstract
In recent years, carbon dots (CDs) have garnered increasing attention due to their simple preparation methods, versatile performances, and wide-ranging applications. CDs can manifest various optical, physical, and chemical properties including quantum yield (QY), emission wavelength (Em), solid-state fluorescence (SSF), room-temperature phosphorescence (RTP), material-specific responsivity, pH sensitivity, anti-oxidation and oxidation, and biocompatibility. These properties can be effectively regulated through precise control of the CD preparation process, rendering them suitable for diverse applications. However, the lack of consideration given to the precise control of each feature of CDs during the preparation process poses a challenge in obtaining the requisite features for various applications. This paper is to analyze existing research and present novel concepts and ideas for creating CDs with different distinct features and applications. The synthesis methods of CDs are discussed in the first section, followed by a comprehensive overview of the important properties of CDs and the modification strategy. Subsequently, the application of CDs and their requisite properties are reviewed. Finally, the paper outlines the current challenges in controlling CDs properties and their applications, discusses potential solutions, and offers suggestions for future research.
Collapse
Affiliation(s)
- Lijuan Yang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Yibo An
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Dazhuang Xu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Fan Dai
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Shillong Shao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Zhixiang Lu
- School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
16
|
Sun P, Shang M, Xie R, Gao Y, Tian M, Dai Q, Zhang F, Chai F. Dual-mode fluorimetric and colorimetric sensors based on iron and nitrogen co-doped carbon dots for the detection of dopamine. Food Chem 2024; 445:138794. [PMID: 38394907 DOI: 10.1016/j.foodchem.2024.138794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024]
Abstract
Determination of dopamine (DA) is crucial for its intimate relationship with clinical trials and biological environment. Herein, Fe, N co-doped carbon dots (AFC-CDs) were fabricated by optimizing precursors and reaction conditions for fluorimetric/colorimetric dual-mode sensing of DA. With synergistic influence of Förster resonance energy transfer and static quenching effect, DA significantly quenched the blue luminescence of AFC-CDs at 442 nm, the production of recognizable tan-brown complex caused evident colorimetric response, achieved the dual-mode fluorimetric/colorimetric sensing for DA. The excellent selectivity and satisfied sensitivity can be confirmed with the limit of detection at 0.29 μM and 2.31 μM via fluorimetric/colorimetric mode respectively. The reliability and practicability were proved by recovery of 94.81-101.61% in real samples. Notably, the proposed electron transfer way between AFC-CDs and DA was hypothesized logically, indicated dual-mode probe provided a promising platform for the sensing of trace DA, and could be expanded in environment and food safety.
Collapse
Affiliation(s)
- Peng Sun
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, Heilongjiang Province, China
| | - Mingzhao Shang
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, Heilongjiang Province, China
| | - Ruyan Xie
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, Heilongjiang Province, China
| | - Yu Gao
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, Heilongjiang Province, China
| | - Miaomiao Tian
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, Heilongjiang Province, China
| | - Qijun Dai
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, Heilongjiang Province, China
| | - Fang Zhang
- Purple Mountain Laboratories, Mozhou East Road, Nanjing, Jiangsu Province, 211111, China.
| | - Fang Chai
- Key Laboratory of Photochemical Biomaterials and Energy Storage Materials, Heilongjiang Province, Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, College of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, Heilongjiang Province, China.
| |
Collapse
|
17
|
Zhu Y, Ji L, Li C, Zhang C, Zhang J. Fluorescence Enhancement of CdS:Ag Quantum Dots Co-Assembled with Au Nanoparticles in a Hollow Nanosphere Form. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:11642-11649. [PMID: 38761148 DOI: 10.1021/acs.langmuir.4c00918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2024]
Abstract
Colloidal quantum dots (QDs) have exceptional fluorescence properties. Overcoming aggregation-induced quenching and enhancing the fluorescence of colloidal QDs have remained a challenging issue in this field. In this study, composite hollow nanospheres composed of Au nanoparticles (NPs) and CdS:Ag-doped QDs were successfully constructed through controlled microemulsion-based cooperative assembly. This method harnessed the localized surface plasmon resonance (LSPR) effect of Au NPs nearby doped QDs, resulting in enhanced doped QD fluorescence and the observation of the Purcell effect. The composite hollow nanospheres show a fluorescence enhancement compared to that of the pure CdS:Ag QDs. The enhanced fluorescence was demonstrated to come from the synergetic enhancement of the absorption and emission transition of the doped QDs. This approach provides a feasible technological pathway to address the challenge of improving the fluorescence performance of the doped QDs.
Collapse
Affiliation(s)
- Yibin Zhu
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Lei Ji
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Chenying Li
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Chunhuan Zhang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Jiatao Zhang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- Key Laboratory of Medical Molecule Science and Pharmaceutical Engineering, Ministry of Industry and Information Technology, MOE Key Laboratory of Cluster Science, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| |
Collapse
|
18
|
Zhang Y, Li J, Li X, Lv J, Xu Q, Li H. Self-validating photothermal and electrochemical dual-mode sensing based on Hg 2+ etching Ti 3C 2 MXene. Anal Chim Acta 2024; 1303:342525. [PMID: 38609266 DOI: 10.1016/j.aca.2024.342525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
Mercury ions can cause serious damage to the ecological environment, and it is necessary to develop reliable and elegant mercury ion sensors. In this protocol, a label-free photothermal/electrochemical dual-mode strategy for Hg2+ is proposed based on delaminated Ti3C2 MXene nanosheets (DL-Ti3C2 MXene). Hg2+ exists in water in the form of HgCl2, Hg(OH)2, and HgClOH, and the electron-rich elements O and Cl can specifically bind to the positively charged DL-Ti3C2 MXene at the edge, and further oxidation-reduction reaction occurs to obtain TiO2/C and Hg2Cl2. In view of the reduction activity and the performance of photothermal conversion of DL-Ti3C2 MXene itself, the electrochemical and photothermal responses decrease with the increase of the logarithm of Hg2+ concentration. The corresponding linear ranges are 50 pmol L-1-500 nmol L-1 and 1 nmol L-1-50 μmol L-1, and their detection limits calculated at 3 S/N are 17.2 pmol L-1 and 0.43 nmol L-1, respectively. DL-Ti3C2 MXene has the characteristics of a wide range of raw materials, low cost, and easy preparation. In addition, the design takes full advantage of the properties of the material itself, avoids the complex assembly and detection process of conventional sensors, and enables high selectivity and sensitivity for mercury detection. In particular, the dual-mode sensing endows self-confirmation of mercury ion detection results, thereby improving the reliability of the sensor.
Collapse
Affiliation(s)
- Yanxin Zhang
- School of Chemistry and Chemical Engineering & College of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Jing Li
- School of Chemistry and Chemical Engineering & College of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, 224051, PR China.
| | - Xiaobing Li
- School of Chemistry and Chemical Engineering & College of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Jingchun Lv
- School of Chemistry and Chemical Engineering & College of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, 224051, PR China
| | - Qin Xu
- Institute of Innovation Materials and Energy, Yangzhou University, Yangzhou, 225002, PR China
| | - Hongbo Li
- School of Chemistry and Chemical Engineering & College of Textiles and Clothing, Yancheng Institute of Technology, Yancheng, 224051, PR China.
| |
Collapse
|
19
|
Hou Y, Feng H, He J, Meng F, Sun J, Li X, Wang X, Su Z, Sun C. Terbium alginate encapsulated CsPbI 3@Pb-MOF: a ratiometric fluorescent bead for detection and adsorption of Fe 3. Dalton Trans 2024; 53:2541-2550. [PMID: 38234224 DOI: 10.1039/d3dt04187e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Halide perovskite nanocrystals are innovative luminescent materials for fluorescent probes with high quantum yield and narrow emission bandwidth. However, the limited stability, single-signal response, and separation challenges obstruct their widespread use in water ion detection. Herein, a ratiometric fluorescence sensor based on terbium alginate gel beads (green fluorescent, namely Tb-AG) embedded with powdered CsPbI3@Pb-MOF (red fluorescent) was prepared for fluorescent determination and adsorption of Fe3+. Pb-MOF's protection notably enhances the water stability of CsPbI3, while the energy transfer between CsPbI3@Pb-MOF and Tb3+ elevates the optical performance of CsPbI3@Pb-MOF@Tb-AG. Significantly, Fe3+ markedly suppresses CsPbI3@Pb-MOF red fluorescence at 647 nm, while not noticeably affecting Tb-AG green emission at 528 nm. The sensor exhibited a strong linear response to Fe3+ concentrations ranging from 0 to 90 μM, with a detection limit of 0.44 μM and high selectivity. The CsPbI3@Pb-MOF@Tb-AG-based sensor has been effectively validated through its successful use in detecting Fe3+ in tap and river water samples. Furthermore, CsPbI3@Pb-MOF@Tb-AG demonstrates a notable adsorption capacity of 325.4 mg g-1 Fe3+. Finally, the mechanism of Fe3+ detection and adsorption was determined.
Collapse
Affiliation(s)
- Yangwen Hou
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022 Jilin, China
| | - Hua Feng
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, School of Chemistry and Environmental Engineering, Changchun University of Science and Technology Changchun, Changchun, 130022 Jilin, China.
| | - Jingting He
- School of Materials Science and Engineering, Changchun University of Science and Technology, Changchun, 130022 Jilin, China
| | - Fanfei Meng
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, School of Chemistry and Environmental Engineering, Changchun University of Science and Technology Changchun, Changchun, 130022 Jilin, China.
| | - Jing Sun
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, School of Chemistry and Environmental Engineering, Changchun University of Science and Technology Changchun, Changchun, 130022 Jilin, China.
| | - Xiao Li
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, School of Chemistry and Environmental Engineering, Changchun University of Science and Technology Changchun, Changchun, 130022 Jilin, China.
| | - Xinlong Wang
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun, 130024 Jilin, China.
| | - Zhongmin Su
- Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry, School of Chemistry and Environmental Engineering, Changchun University of Science and Technology Changchun, Changchun, 130022 Jilin, China.
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130021 Jilin, China
| | - Chunyi Sun
- Key Laboratory of Polyoxometalate Science of Ministry of Education, Northeast Normal University, Changchun, 130024 Jilin, China.
| |
Collapse
|
20
|
Qin L, Yu Q, Huang Y, Zhang L, Yan X, Wu W, Liao F, Zhang J, Cui H, Zhang J, Fan H. A novel fluorescent sensor with an overtone peak reference for highly sensitive detection of mercury (II) ions and hydrogen sulfide: Mechanisms and applications in environmental monitoring and bioanalysis. Anal Chim Acta 2024; 1287:342086. [PMID: 38182341 DOI: 10.1016/j.aca.2023.342086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 01/07/2024]
Abstract
The present study introduces a novel fluorescent sensor with an overtone peak reference designed for the detection of mercury (Ⅱ) ions (Hg2+) and hydrogen sulfide (H2S). The study proposes two novel response mechanisms that hinges on the synergistic effect of cation exchange dissociation (CED) and photo-induced electron transfer (PET). This sensor exhibits a remarkable detection limit of 2.9 nM for Hg2+. Additionally, the sensor reacts with H2S to generate nickel sulfide (NiS) semiconductor nanoparticles, which amplify the fluorescence signal and enable a detection limit of 3.1 nM for H2S. The detection limit for H2S is further improved to 29.1 pM through the surface functionalization of the nanomaterial with pyridine groups (increasing reactivity) and chelation of gold nanoparticles (AuNPs), which enhances the sensor's specificity. This improvement is primarily due to the surface plasmon resonance (SPR) of AuNPs and their affinity for H2S. The single-emission strategy can yield skewed results due to environmental changes, whereas the overtone peak reference strategy enhances result accuracy and reliability by detecting environmental interference through reference emission peaks. In another observation, the low-toxicity dihydropyrene-bipyridine nanorods (TPP-BPY) has been successfully utilized for both endogenous and exogenous H2S detection in vivo using a mouse model. The successful development of TPP-BPY is expected to provide an effective tool for studying the role of H2S in biomedical systems.
Collapse
Affiliation(s)
- Longshua Qin
- Affiliated Hospital and College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Qiangqiang Yu
- Affiliated Hospital and College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Yong Huang
- Affiliated Hospital and College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Leichang Zhang
- Affiliated Hospital and College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Xinying Yan
- Affiliated Hospital and College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Wenqi Wu
- Affiliated Hospital and College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Fusheng Liao
- Affiliated Hospital and College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Jie Zhang
- Affiliated Hospital and College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China
| | - Hanfeng Cui
- Affiliated Hospital and College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| | - Jing Zhang
- Affiliated Hospital and College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| | - Hao Fan
- Affiliated Hospital and College of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, China.
| |
Collapse
|
21
|
Zhang L, Wei S, Zhang L, Yin X, Yang R. A novel type of fluorescence modulation mechanism of carbon dots derived from the competition of photoinduced electron transfer and fluorescence. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123276. [PMID: 37633101 DOI: 10.1016/j.saa.2023.123276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/30/2023] [Accepted: 08/17/2023] [Indexed: 08/28/2023]
Abstract
A series of nitrogen-doped carbon dots (N-CDs) are prepared under different solvent conditions from citric acid and different nitrogen sources, and a novel principle for modulating their fluorescence (FL) properties has been proposed. The nitrogen-doped carbon core can act as a fluorophore, causing diverse FL properties of N-CDs to a certain extent restricting electron delocalization. The solvent effect experiments show that the FL originates from the local emission (LE) of the carbon core. Significantly, the electron-rich substituents linked directly to the carbon core can act as electron donors, which lead N-CDs to undergo a normal "surface substituents-excited" photoinduced electron transfer (S-PET) or a nontypical "carbon core-excited" PET (C-PET) under alkaline or acidic conditions, respectively, causing an uncommon pH-sensitivity FL quenching of N-CDs. Since C-PET or S-PET dominated by pH could further regulate the surface charges of N-CDs, unseparated dual-channel specific recognition and the "AND" logic gate detection for Cu2+ and Chlorpromazine hydrochloride (CPH) in neutral conditions have been established.
Collapse
Affiliation(s)
- Lingqiao Zhang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Siqi Wei
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Limei Zhang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Xinghang Yin
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China
| | - Rui Yang
- School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
22
|
Zhang Y, Hu X, Wang H, Li J, Fang S, Li G. Magnetic Fe 3O 4/bamboo-based activated carbon/UiO-66 composite as an environmentally friendly and effective adsorbent for removal of Bisphenol A. CHEMOSPHERE 2023; 340:139696. [PMID: 37557996 DOI: 10.1016/j.chemosphere.2023.139696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/18/2023] [Accepted: 07/30/2023] [Indexed: 08/11/2023]
Abstract
The magnetic Fe3O4/bamboo-based activated carbon/Zr-based metal-organic frameworks composite (Fe3O4/BAC/UiO-66) was prepared by hydrothermal method. The as-prepared material was analyzed via TEM, XRD, FT-IR, BET-BJH, VSM and XPS techniques, the results showed that it had good dispersion and magnetic separation capacity (Ms = 44.06 emu∙g-1). Then, the adsorption properties of materials for bisphenol A (BPA) were studied. The results revealed that the removal efficiency of 50 mg·L-1 BPA by 0.1 g of adsorbent can reach 87.18-95% in a wide pH range. Langmuir isotherm model and pseudo-second-order kinetic well fitted the adsorption data. The thermodynamic data indicated that the adsorption process was spontaneous and endothermic. Moreover, BAC as a supporter and UiO-66 as the functional part in the ternary composite may have a synergistic effect, which was beneficial for the removal of contaminants. The Fe3O4/BAC/UiO-66 can be simply separated from the water using its strong magnetism after finish adsorption process, which effectively avoids secondary contamination.
Collapse
Affiliation(s)
- Yao Zhang
- Laboratory of Environmental Functional Materials of Yunnan Province Education Department School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Xinyu Hu
- Laboratory of Environmental Functional Materials of Yunnan Province Education Department School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Hongbin Wang
- Laboratory of Environmental Functional Materials of Yunnan Province Education Department School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Jiaxiong Li
- Laboratory of Environmental Functional Materials of Yunnan Province Education Department School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Shuju Fang
- Laboratory of Environmental Functional Materials of Yunnan Province Education Department School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, PR China.
| | - Guizhen Li
- Laboratory of Environmental Functional Materials of Yunnan Province Education Department School of Chemistry and Environment, Yunnan Minzu University, Kunming, 650500, PR China.
| |
Collapse
|
23
|
Li J, Peng W, Wang A, Wan M, Zhou Y, Zhang XG, Jin S, Zhang FL. Highly sensitive and selective SERS substrates with 3D hot spot buildings for rapid mercury ion detection. Analyst 2023; 148:4044-4052. [PMID: 37522852 DOI: 10.1039/d3an00827d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Heavy metal ions, which are over-emitted from industrial production, pose a major threat to the ecological environment and human beings. Among the present detection technologies, achieving rapid and on-site detection of contaminants remains a challenge. Herein, capillaries with three-dimensional (3D) hot spot constructures are fabricated to achieve repaid and ultrasensitive mercury ion (Hg2+) detection in water based on surface-enhanced Raman scattering (SERS). The 4-mercapto pyridine (4-Mpy) serves as the Raman reporter with high selectivity, enabling the detection of Hg2+ by changes in adsorption configuration at the trace level. Under optimized conditions, the SERS response of 4-Mpy for Hg2+ exhibits good linearity, ranging from 1 pM to 0.1 μM in a few minutes, and the detection limit of 0.2 pM is much lower than the maximum Hg2+ concentration of 10 nM allowed in drinking water, as defined by the US Environmental Protection Agency (EPA). Simultaneously, combined with the theoretical simulation and experimental results, the above results indicate that the SERS substrates possess outstanding performances in specificity, recovery rate and stability, which may hold great potential for achieving rapid and on-site environmental pollutant detection using a portable Raman spectrometer.
Collapse
Affiliation(s)
- Jia Li
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China.
| | - Wei Peng
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - An Wang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China.
| | - Mingjie Wan
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China.
| | - Yadong Zhou
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China.
| | - Xia-Guang Zhang
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, 453007, China.
| | - Shangzhong Jin
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China.
| | - Fan-Li Zhang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, China.
| |
Collapse
|