1
|
Liu G, Li M, Hua J, Wei J, Zhou Y, Deng S, Long T, Chen N, Fang G, Zhang S. Organic acid-enhanced production of hydroxyl radicals during H 2O 2-based chemical oxidation for the remediation of contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137793. [PMID: 40043391 DOI: 10.1016/j.jhazmat.2025.137793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 04/16/2025]
Abstract
Hydrogen peroxide (H2O2)-based in situ chemical oxidation (ISCO) is widely used for remediating contaminated groundwater and soil. However, its effectiveness can be limited by a low efficiency of H2O2 utilization, leading to increased costs. In this study, we showed that ascorbic acid (AA), citric acid, and hydroxylamine hydrochloride (used for comparison) significantly increased •OH production (by 2.3-108.0-fold) and chlorobenzene degradation (by 6.4-30.5-fold) in H2O2/site soil systems. Further analysis revealed that AA significantly enhanced the formation and oxidation of active Fe(II) species (e.g., 0.5 M HCl-, 5 M HCl-, and HF-Fe(II)) via the mechanisms of acid dissolution, complexation, and reduction. As a result, these processes inhibited the transformation of low-crystallinity Fe phases into high-crystallinity forms, thereby preserving the activity of the Fe phases. The different capacities of these ligands for acidification and complexation or reduction are significantly influenced by their characteristics, such as the presence of specific functional groups, as well as their concentration. This variation, in turn, affects •OH production and the degradation of contaminants in treatment systems. This study provides valuable insights into how low-molecular-weight organic acids enhance the formation of •OH and contaminant degradation during H2O2-based ISCO. These findings also contribute to the development of efficient, environmentally friendly, and cost-effective remediation technologies for the treatment of contaminated groundwater and soil.
Collapse
Affiliation(s)
- Guangxia Liu
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, Jiangsu 210042, China
| | - Mei Li
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, Jiangsu 210042, China
| | - Jing Hua
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, Jiangsu 210042, China
| | - Jing Wei
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, Jiangsu 210042, China
| | - Yan Zhou
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, Jiangsu 210042, China.
| | - Shaopo Deng
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, Jiangsu 210042, China
| | - Tao Long
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, Jiangsu 210042, China
| | - Ning Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu 211135, China.
| | - Guodong Fang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu 211135, China
| | - Shengtian Zhang
- State Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, Jiangsu 210042, China
| |
Collapse
|
2
|
Shi R, Lian Y, Zeb A, Liu J, Yu M, Wang Q, Wang J, Fu X, Liu W. Foliar exposure to microplastics disrupts lettuce metabolism and negatively interferes with symbiotic microbial communities. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 223:109823. [PMID: 40147322 DOI: 10.1016/j.plaphy.2025.109823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/07/2025] [Accepted: 03/21/2025] [Indexed: 03/29/2025]
Abstract
Plant leaves are considered an important sink for atmospheric microplastics (MPs) because they serve as a vital interface between the atmosphere and terrestrial ecosystems. However, there is still a dearth of information regarding how plant-symbiotic microbe-soil systems are affected by foliar exposure to MPs. In this study, MPs (polystyrene (PS), polyethylene (PE), and polypropylene (PP)) were sprayed over soil-cultivated lettuce (Lactuca sativa L.) four occasions, with final sprays containing 0.4 and 4 μg of MPs per plant. MPs had no discernible impact on lettuce growth as compared to the control group. However, MPs led to reductions in relative chlorophyll content from 16.91 to 30.64 % and net photosynthetic rate from 6.64 to 81.41 %. These results validate the phytotoxicity linked to MP exposure through foliar application. The presence of MPs triggered interspecific competition among phyllosphere microbial species and reduced microbial network complexity by forming ecological niches and regulating carbon- and nitrogen-related metabolic pathways. Furthermore, MPs inhibited the growth of beneficial bacteria in the rhizosphere soil, including a variety of plant growth-promoting bacteria (PGPR) such as Rhizobiales, Pseudomonadales, and Bacillales. This study identifies the ecological health risks associated with atmospheric MPs, which may have a detrimental impact on crop production and further compromise soil ecosystem security.
Collapse
Affiliation(s)
- Ruiying Shi
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Yuhang Lian
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Aurang Zeb
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jinzheng Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Miao Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Qi Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jianling Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Xiuping Fu
- Tianjin Engineering Research Center of Environmental Diagnosis and Contamination Remediation, Tianjin, 300350, China.
| | - Weitao Liu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
3
|
Zhao ML, Ji X, Zhang J, He Z, Chen J, Yang GP, Liu CY, Zhuang GC. Photodegradation Mechanism of UV-328 in Natural Organic Matter Contexts Under Simulated Solar Irradiation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:9245-9254. [PMID: 40274543 DOI: 10.1021/acs.est.4c13435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
2-(Benzotriazol-2-yl)-4,6-bis(2-methylbutan-2-yl)phenol (UV-328), a widely utilized UV absorber in plastics and diverse products, has been frequently detected in the environment; yet, research on its photochemical degradation is scarce. Dissolved organic matter (DOM) and particulate organic matter (POM), as important components of natural organic matter, can produce photosensitization by absorbing photons. This study examined the influence of DOM from various sources on the photodegradation of UV-328 under simulated daylight conditions. Experiments revealed that excited triplet DOM (3DOM*) is the primary factor enhancing the photodegradation of UV-328. Utilizing excitation-emission matrix spectroscopy combined with parallel factor analysis (EEMs-PARAFAC) and seawater ultrafiltration experiments, it was demonstrated that high molecular weight DOM, particularly autochthonous DOM produced in seawater, could more rapidly photodegrade UV-328. Additionally, the photodegradation of UV-328 in suspended particulate matter (SPM) was influenced by DOM, inorganic ions, and organic acids, with DOM contributing to a positive feedback effect on the degradation process. The degradation pathways and products of UV-328 were first elucidated using ultraperformance liquid chromatography-quadrupole time-of-flight mass spectrometry (UPLC-Q-TOF-MS), supplemented by density functional theory (DFT) calculations. This study provides novel insights into the photodegradation mechanisms of UV-328 by combining DOM and POM for the first time.
Collapse
Affiliation(s)
- Ming-Liang Zhao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Xuan Ji
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Jing Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Institute of Marine Chemistry, Ocean University of China, Qingdao 266100, China
| | - Zhen He
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Institute of Marine Chemistry, Ocean University of China, Qingdao 266100, China
| | - Junhui Chen
- Qingdao Key Laboratory of Analytical Technology Development and Offshore Eco-Environment Conservation, The First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Gui-Peng Yang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Institute of Marine Chemistry, Ocean University of China, Qingdao 266100, China
| | - Chun-Ying Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- Institute of Marine Chemistry, Ocean University of China, Qingdao 266100, China
| | - Guang-Chao Zhuang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
4
|
Chen N, Liu G, Chen W, Wang J, Zeng Y, Yang Z, Wang Y, Fang G. Agricultural amendments enhanced the redox cycling of iron species and hydroxyl radical formation during redox fluctuation of paddy soil. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137175. [PMID: 39808965 DOI: 10.1016/j.jhazmat.2025.137175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/03/2025] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
Hydroxyl radical (•OH) plays a critical role in accelerating organic contaminant attenuation during water-table decline in paddy soil, but the impacts of widely applied agricultural amendments (e.g., organic manure, rice straw, and biochar) on these processes have been rarely explored. Hence, the effects of agricultural amendments on •OH formation and pollutant degradation were examined based on field experiments. Compared with control, organic fertilizer (supplying more organic carbon (OC) and bioavailable elements that promoted Fe(II) formation by microorganisms) enhanced •OH production by 0.8-1.3 times, while straw returning and biochar have negligible effects, probably due to the decreased pH and inhibition of microorganisms. The increased oxidation of active Fe(II) species (e.g., exchangeable Fe(II) and Fe(II) in lower-crystallinity minerals) mainly contributed to •OH production. Further analyses showed that organic fertilizers significantly enhanced the redox cycling of Fe species mainly through increasing the contents of soil organic carbon and relative abundances of Fe(III)-reducing microorganisms. In addition, the increased •OH formation markedly enhanced imidacloprid degradation by 24.3-42.4 %, with the toxicity of intermediates increased versus the parent compound. This study systematically examined the effects of typical agricultural amendments on the •OH formation and organic contaminant attenuation in paddy soil, which probably provides promising strategies for regulating contaminant remediation in agricultural fields.
Collapse
Affiliation(s)
- Ning Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, PR China
| | - Guangxia Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, PR China
| | - Wentao Chen
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, PR China; School of Environmental and Safety Engineering, Changzhou University, Changzhou, 213164, PR China
| | - Juan Wang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, PR China
| | - Yu Zeng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, PR China
| | - Ziyan Yang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, PR China
| | - Yujun Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, PR China
| | - Guodong Fang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 211135, PR China.
| |
Collapse
|
5
|
Yang R, Tang J, Niu J, Hou B, Zhang L. Dissemination mechanisms of unique antibiotic resistance genes from flowback water to soil revealed by combined Illumina and Nanopore sequencing. WATER RESEARCH 2025; 273:123030. [PMID: 39731837 DOI: 10.1016/j.watres.2024.123030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/03/2024] [Accepted: 12/20/2024] [Indexed: 12/30/2024]
Abstract
As a byproduct of shale gas extraction, flowback water (FW) is produced in large quantities globally. Due to the unique interactions between pollutants and microorganisms, FW always harbor multiple antibiotic resistance genes (ARGs) that have been confirmed in our previous findings, potentially serving as a point source for ARGs released into the environment. However, whether ARGs in FW can disseminate or integrate into the environmental resistome remains unclear. In this study, unique ARGs from FW were identified, and the ARG profiles in soil and FW-spiked soil were compared using a combination of Illumina and Nanopore sequencing. The results indicated that the total abundance of the soil resistome increased by 30.8 % in soil contaminated with FW. Of this increase, 11.1 % was attributable to the integration of exogenous ARGs from FW into the soil resistome. Sequence alignment at the gene level further confirmed the successful integration of 20 unique ARG sequences classified as multidrug and vancomycin resistance genes into the soil resistome. These 20 ARG sequences were detected only in the FW. Multiple lines of evidence indicated that horizontal gene transfer dominated ARG dissemination in soil contaminated by FW. This conclusion is supported by the discrepancy between changes in mobile ARGs and host abundance, the upregulation of oxidative stress-related genes (SOD1 and SOD2) and the SOS response (lexA and recA), as well as the upregulation of genes related to quorum sensing (virD4, virB9, and virB3) and naked DNA uptake (pilD, pilT, and pilQ).
Collapse
Affiliation(s)
- Rui Yang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, PR China
| | - Jialin Tang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Junfeng Niu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Bowen Hou
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Lilan Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China; State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
6
|
Rawat S, Singh KR, Singh J. Synthesis of iron nanoparticles using iron recovered from rust: An application for the catalytic degradation of phenols. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36114-y. [PMID: 40000594 DOI: 10.1007/s11356-025-36114-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
Iron nanoparticles are reported to be synthesised by green route to reduce adverse environmental impacts as well as to reduce the synthesis cost. The present study explores a secondary source of iron, i.e. waste iron rust to prepare iron nanoparticles via green route. The iron nanoparticles synthesised this way were amorphous. The synthesised nanoparticles were used as a heterogeneous catalyst for the purpose of phenol and p-nitrophenol (PNP) degradation in their aqueous solutions by Fenton degradation. More than 95% of phenol and PNP was removed within 120 min using 0.25 g/L amount of catalyst. The degradative removal of both the pollutants was found effective up to pH 6. Pseudo-second-order kinetic was fitted best the degradation data of the pollutants. The dissolution of catalyst iron by corrosion was analysed by testing the amount of iron leached and dissolved into the aqueous solution of phenol and PNP; maximum concentration of total iron was found 11.10 mg/L in phenol and 13.53 mg/L in PNP. The chemical oxygen demand (COD) was decreased to 40 mg/L from 336 mg/L for phenol and COD of PNP solution was decreased up to 56 mg/L from 384 mg/L.
Collapse
Affiliation(s)
- Shalu Rawat
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, Uttar Pradesh, India
| | - Kunwar Raghvendra Singh
- Department of Civil Engineering, National Institute of Technical Teachers' Training and Research (NITTTR), Kolkata, 700106, West Bengal, India
| | - Jiwan Singh
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, 226025, Uttar Pradesh, India.
| |
Collapse
|
7
|
Li Y, Zhang S, Fu H, Sun Y, Tang S, Xu J, Li J, Gong X, Shi L. Immobilization or mobilization of heavy metal(loid)s in lake sediment-water interface: Roles of coupled transformation between iron (oxyhydr)oxides and natural organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 959:178302. [PMID: 39740622 DOI: 10.1016/j.scitotenv.2024.178302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/06/2024] [Accepted: 12/25/2024] [Indexed: 01/02/2025]
Abstract
Iron (Fe) (oxyhydr)oxides and natural organic matter (NOM) are active substances ubiquitously found in sediments. Their coupled transformation plays a crucial role in the fate and release risk of heavy metal(loid)s (HMs) in lake sediments. Therefore, it is essential to systematically obtain relevant knowledge to elucidate their potential mechanism, and whether HMs provide immobilization or mobilization effect in this ternary system. In this review, we summarized (1) the bidirectional effect between Fe (oxyhydr)oxides and NOM, including preservation, decomposition, electron transfer, adsorption, reactive oxygen species production, and crystal transformation; (2) the potential roles of coupled transformation between Fe and NOM in the environmental behavior of HMs from kinetic and thermodynamic processes; (3) the primary factors affecting the remediation of sediments HMs; (4) the challenges and future development of sediment HM control based on the coupled effect between Fe and NOM from theoretical and practical perspectives. Overall, this review focused on the biogeochemical coupling cycle of Fe, NOM, and HMs, with the goal of providing guidance for HMs contamination and risk control in lake sediment.
Collapse
Affiliation(s)
- Yuanhang Li
- Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China; School of Infrastructure Engineering, Nanchang University, Nanchang 330031, China
| | - Shaokang Zhang
- School of Ecology and Environment, Yuzhang Normal University, Nanchang 330103, China
| | - Hang Fu
- Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Yuheng Sun
- Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Shoujuan Tang
- Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Jinwen Xu
- Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China
| | - Jun Li
- Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Xiaofeng Gong
- School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Lei Shi
- Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, Nanchang University, Nanchang 330031, China; School of Resources and Environment, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
8
|
Wu J, Li L, Chen M, Liu M, Tu W. Modulation of irrigation-induced microbial nitrogen‑iron redox to per- and polyfluoroalkyl substances' water-soil interface release in paddy fields: Activation or immobilization? THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177377. [PMID: 39505044 DOI: 10.1016/j.scitotenv.2024.177377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/11/2024] [Accepted: 11/02/2024] [Indexed: 11/08/2024]
Abstract
Understanding the modulation of paddy field irrigation to the migration of per- and polyfluoroalkyl substances (PFAS) at the water-soil interface is pivotal for the management of PFAS pollution in paddy soil and surrounding surface water environments. In flooded soils, soil organic matter was transformed into aromatic protein-like dissolved organic matter (DOM). Meanwhile, Na+, K+, and Mg2+ were translocated into extracellular polymeric substances (EPS) under the catalysis of cation channel enzymes (p < 0.05), provided ion bridging for the binding of DOM and PFAS, and accelerated the accumulation of C4-C9 PFAS in overlying water (41.79-99.14 %). Short-chain PFAS's accumulation in soil solution of drought soils was stimulated by microorganisms secreting soluble microbial by-product-like DOM (53.15-97.96 %). Furthermore, PFAS's distribution in flood soils was dominated by bacterial denitrification and iron-reduction, whereas iron-oxidation and ammoxidation controlled that in drought soils. The transformation of organic carbon including CO and COC caused by irrigation-induced redox modulated PFAS cross-media translocation. Iron‑nitrogen redox in flooded paddy soils immobilized the PFAS's migration into overlying water (p < 0.05). Our findings have profound implications for PFAS's pollution control, surface water environmental protection, and rice production security in paddy fields.
Collapse
Affiliation(s)
- Jianyi Wu
- Key Laboratory of Poyang Lake Watershed Agricultural Resource and Ecology of Ministry of Agriculture and Rural Affairs, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Lingxuan Li
- Key Laboratory of Poyang Lake Watershed Agricultural Resource and Ecology of Ministry of Agriculture and Rural Affairs, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Miao Chen
- Key Laboratory of Poyang Lake Watershed Agricultural Resource and Ecology of Ministry of Agriculture and Rural Affairs, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Meiyu Liu
- Key Laboratory of Poyang Lake Watershed Agricultural Resource and Ecology of Ministry of Agriculture and Rural Affairs, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wenqing Tu
- Key Laboratory of Poyang Lake Watershed Agricultural Resource and Ecology of Ministry of Agriculture and Rural Affairs, College of Land Resource and Environment, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
9
|
Wang X, Yu Q, Gong Y, Zhang Y. Enhancing the production of reactive oxygen species in the rhizosphere to promote contaminants degradation in sediments by electrically strengthening microbial extracellular electron transfer. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135644. [PMID: 39191018 DOI: 10.1016/j.jhazmat.2024.135644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 08/29/2024]
Abstract
The production of reactive oxygen species (ROS) in the rhizosphere is limited by the low extracellular electron transfer capacity of indigenous microorganisms. In the present study, electrical stimulation was used to promote the generation of rhizospheric ROS by accelerating extracellular electron transfer. The result showed that •OH concentrations in the electrically stimulated group (ES group) exceeded the control group by 15.76 %. Accordingly, the removal rate of the target pollutant (i.e., 2,4-dichlorophenol, and sulfamethoxazole) was 20.01 %-24.80 % higher in the ES group than in the control group. The sediment of the ES group had a higher capacity (30.55 %) and a lower electrical resistance (29.15 %) compared to the control group, which subsequently promoted the dissimilatory iron reduction to produce Fe(II) for triggering a Fenton-like process. The increased extracellular respiratory capacity under electrical stimulation could be attributed to the polarization of C-N and CO bonds, which provided more electron storage sites and thus participated in proton-coupled electron transfer. In addition, the concentration of ATP and co-enzymes (NADH/NAD+ and Complex I/Complex III), reflecting electron exchange within respiratory chains, increased distinctly under electrical stimulation. Applying electrical stimulation seemed feasible to increase ROS production and contaminant degradation in the rhizosphere, deepening the understanding of electrical stimulation to promote the production of ROS in the natural system.
Collapse
Affiliation(s)
- Xuepeng Wang
- Dalian University of Technology School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| | - Qilin Yu
- Dalian University of Technology School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| | - Yijing Gong
- Dalian University of Technology School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China
| | - Yaobin Zhang
- Dalian University of Technology School of Environmental Science and Technology, No.2 Linggong Road, Ganjingzi District, Dalian, Liaoning 116024, China.
| |
Collapse
|
10
|
Chen F, Wei X, Gong Y, Chen D, Lu T. Effects of low-molecular-weight organic acids on the transport of polystyrene nanoplastics: An insight at the structure of organic acids. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175204. [PMID: 39098425 DOI: 10.1016/j.scitotenv.2024.175204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/06/2024]
Abstract
Plastic nanoparticles are extensively used in various products, leading to inevitable pollution in soil. Understanding their transport in soils where various organic substances exist is crucial. This study examined the impact of low-molecular-weight organic acids (LMWOAs) on the transport of polystyrene nanoplastics (PS-NPs) through saturated quartz sand. The experiments involved three dibasic acids-malonic acid (MA1), malic acid (MA2) and tartaric acid (TA) - and four monobasic acids- formic acid (FA), acetic acid (AA), propanoic acid (PA) and glycolic acid (GA) -under different pH levels (4.0, 5.5, 7.0) and in the presence of cations (Na+, Ca2+). The results demonstrated that in the presence of Na+, dibasic acids significantly enhanced PS-NPs transport, with TA being the most effective, followed by MA2 and MA1. This enhancement is attributed to the adsorption of LMWOAs onto the nanoparticles and sand, creating a more negative ζ-potential, which increases the electrostatic repulsion and decreases the PS-NPs deposition, thereby facilitating the transport. Applying the Derjaguin-Landau-Verwey-Overbeek theory, higher pH levels increased the energy barrier and secondary energy minimum, decreasing PS-NPs deposition. Moreover, dibasic acids significantly enhanced the hydrophilicity of PS-NPs. Conversely, monobasic acids, except for GA, slightly reduced the hydrophilicity of PS-NPs, as indicated by a small increase in the water contact angle, hereby minimally affecting PS-NPs transport. As for GA, although it is a monobasic acid, the additional -OH group in its molecular structure promoted PS-NPs transport, similar to dibasic acids. For example, GA also significantly enhanced the hydrophilicity of PS-NPs. In the presence of Ca2+, the enhancement of PS-NPs transport by LMWOAs was comparable to that with Na+, primarily due to the complex-forming and bridging effects of Ca2+ with the organic acids and PS-NPs. These findings provide important insights into predicting and analyzing the transport behaviors of PS-NPs.
Collapse
Affiliation(s)
- Feiyu Chen
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Xuan Wei
- Jinjiang Bureau of Hydrology and Water Resources Survey, Changjiang Water Resources Committee, Jinzhou 434020, China
| | - Yi Gong
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China
| | - Dong Chen
- Jiangsu Surveying and Design Institute of Water Resources Co., Ltd, Yangzhou 225009, China
| | - Taotao Lu
- College of Hydraulic Science and Engineering, Yangzhou University, Yangzhou 225009, China; Department of Hydrology, Bayreuth Center of Ecology and Environmental Research (BAYCEER), University of Bayreuth, Bayreuth 95440, Germany.
| |
Collapse
|
11
|
Zhang X, Ye G, Zhao Z, Wu D. Contribution of complexed Fe(Ⅱ) oxygenation to norfloxacin humification and stabilization: Producing and trapping of more humified products. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135251. [PMID: 39068885 DOI: 10.1016/j.jhazmat.2024.135251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/20/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
Organic pollutants polymerization in advanced oxidation processes or environmental matrices has attracted increasing attention, but little is known about stabilization of the polymerization products. The results in this work revealed the contribution of Fe(Ⅱ) oxygenation to stabilization of the products from norfloxacin (NOR) humification. It was found that upon oxygenation of Fe(Ⅱ) complexed by catechol (CT), NOR polymerized into the products with larger molecular weight through nucleophilic addition. Around 83.9-89.7 % organic carbon (OC) can be retained in the reaction solution and the precipitates at different Fe(II)/CT molar ratio. In this system with humification potential, the produced hydroxyl radical (HO•) dominantly modified, instead of decomposed, the structure of transformation products (TPs). TPs with diversified side chains were formed through hydroxylation and ring-opening, leading to the more humified products. In the subsequent Fe(Ⅱ) oxidative precipitation, Fe-TPs composites were formed as spherical particle clusters, which could steadily incorporate OC species with molecular fractionation. Specifically, lignin-like, tannins-like, condensed aromatic and high-molecular-weight TPs were preferentially preserved in the precipitates, while the recalcitrant aliphatic products mainly retained in the solution. These findings shed light on the role of Fe(Ⅱ) oxygenation in stabilizing the products from pollutants humification, which could strengthen both decontamination and organics sequestration.
Collapse
Affiliation(s)
- Xiaomeng Zhang
- Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, China
| | - Guojie Ye
- Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, China
| | - Zhenyu Zhao
- Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, China
| | - Deli Wu
- Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
12
|
Zhang Y, Tong D, Zou L, Ji H, Zhou X, Gustave W, Tang X. Low-molecular-weight organic acids inhibit the methane-dependent arsenate reduction process in paddy soils. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116716. [PMID: 39018734 DOI: 10.1016/j.ecoenv.2024.116716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
Anaerobic methane oxidation (AOM) can drive soil arsenate reduction, a process known as methane-dependent arsenate reduction (M-AsR), which is a critical driver of arsenic (As) release in soil. Low molecular weight organic acids (LMWOAs), an important component of rice root exudates, have an unclear influence and mechanism on the M-AsR process. To narrow this knowledge gap, three typical LMWOAs-citric acid, oxalic acid, and acetic acid-were selected and added to As-contaminated paddy soils, followed by the injection of 13CH4 and incubation under anaerobic conditions. The results showed that LMWOAs inhibited the M-AsR process and reduced the As(III) concentration in soil porewater by 35.1-65.7 % after 14 days of incubation. Among the LMWOAs, acetic acid exhibited the strongest inhibition, followed by oxalic and citric acid. Moreover, LMWOAs significantly altered the concentrations of ferrous iron and dissolved organic carbon in the soil porewater, consequently impacting the release of As in the soil. The results of qPCR and sequencing analysis indicated that LMWOAs inhibited the M-AsR process by simultaneously suppressing microbes associated with ANME-2d and arrA. Our findings provide a theoretical basis for modulating the M-AsR process and enhance our understanding of the biogeochemical cycling of As in paddy soils under rhizosphere conditions.
Collapse
Affiliation(s)
- Yu Zhang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China
| | - Di Tong
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China
| | - Lina Zou
- Zhejiang Institute of Landscape Plants and Flowers, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Haofeng Ji
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China
| | - Xinyao Zhou
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China
| | - Williamson Gustave
- School of Chemistry, Environmental & Life Sciences, University of the Bahamas, Nassau, New Providence, The Bahamas
| | - Xianjin Tang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, China.
| |
Collapse
|
13
|
Wen N, Liu J, Qin W, Wang X, Zhu C, Zhou D. Critical roles of low-molecular-weight organic acid in enhancing hydroxyl radical production by ferrous oxidation on γ-Al 2O 3 mineral surface. WATER RESEARCH 2024; 261:122052. [PMID: 38991245 DOI: 10.1016/j.watres.2024.122052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/23/2024] [Accepted: 07/04/2024] [Indexed: 07/13/2024]
Abstract
Recognizing the pervasive presence of alumina minerals and low-molecular-weight organic acids (LMWOAs) in the environment, this study addressed the gap in the interaction mechanisms within the ternary system involving these two components and Fe(II). Specifically, the impacts of LMWOAs on hydroxyl radicals (•OH) production and iron species transformation during Fe(II) oxidation on γ-Al2O3 mineral surface were examined. Results demonstrated that adding 0.5 mM oxalate (OA) or citrate (CA) to the γ-Al2O3/Fe(II) system (28.1 μM) significantly enhanced •OH production by 1.9-fold (51.9 μM) and 1.3-fold (36.2 μM), respectively, whereas succinate (SA) exhibited limited effect (30.7 μM). Raising OA concentration to 5 mM further promoted •OH yield to 125.0 μM after 24 h. Deeper analysis revealed that CA facilitated the dissolution of adsorbed Fe(II) and its subsequent oxygenation by O2 through both one- and two-electron transfer mechanisms, whereas OA enhanced the adsorption of dissolved Fe(II) and more efficient two-electron transfer for H2O2 production. Additionally, LMWOAs presence favored the formation of iron minerals with poor crystallinity like ferrihydrite and lepidocrocite rather than well-crystallized forms such as goethite. The distinct impacts of various LMWOAs on Fe(II) oxidation and •OH generation underscore their unique roles in the redox processes at mineral surface, consequently modulating the environmental fate of prototypical pollutants like phenol.
Collapse
Affiliation(s)
- Nihong Wen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, PR China
| | - Jinsong Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, PR China
| | - Wenxiu Qin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, PR China; Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and Environment, Anhui Agricultural University, Hefei 230036, Anhui Province, PR China.
| | - Xiaolei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, PR China
| | - Changyin Zhu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, PR China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, Jiangsu Province, PR China.
| |
Collapse
|
14
|
Chen N, Huang D, Zeng Y, Wang J, Liu G, Liu X, Wu T, Gao Y, Fang G, Wang Y, Zhou D. Long-term Application of Agricultural Amendments Regulate Hydroxyl Radicals Production during Oxygenation of Paddy Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39023504 DOI: 10.1021/acs.est.4c03917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Hydroxyl radicals (•OH) play a significant role in contaminant transformation and element cycling during redox fluctuations in paddy soil. However, these important processes might be affected by widely used agricultural amendments, such as urea, pig manure, and biochar, which have rarely been explored, especially regarding their impact on soil aggregates and associated biogeochemical processes. Herein, based on five years of fertilization experiments in the field, we found that agricultural amendments, especially coapplication of fertilizers and biochar, significantly increased soil organic carbon contents and the abundances of iron (Fe)-reducing bacteria. They also substantially altered the fraction of soil aggregates, which consequently enhanced the electron-donating capacity and the formation of active Fe(II) species (i.e., 0.5 M HCl-Fe(II)) in soil aggregates (0-2 mm), especially in small aggregates (0-3 μm). The highest contents of active Fe(II) species in small aggregates were mainly responsible for the highest •OH production (increased by 1.7-2.4-fold) and naphthalene attenuation in paddy soil with coapplication of fertilizers and biochar. Overall, this study offers new insights into the effects of agricultural amendments on regulating •OH formation in paddy soil and proposes feasible strategies for soil remediation in agricultural fields, especially in soils with frequent occurrences of redox fluctuations.
Collapse
Affiliation(s)
- Ning Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P. R. China
| | - Danyu Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Yu Zeng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P. R. China
| | - Juan Wang
- School of Environmental and Municipal Engineering, North China University of Water Resources and Electric Power, Zhengzhou 450046, P. R. China
| | - Guangxia Liu
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, P. R. China
| | - Xiantang Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Tongliang Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P. R. China
| | - Yan Gao
- Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, P.R. China
| | - Guodong Fang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P. R. China
| | - Yujun Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, P. R. China
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
15
|
Gao M, Deng H, Dong Y, Qiu W, Song Z. Effects of sertraline hydrochloride with As(III) or Cd on rhizosphere micro-environment and root endophytes in rice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124149. [PMID: 38735458 DOI: 10.1016/j.envpol.2024.124149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 05/14/2024]
Abstract
This study investigated the effects of the antidepressant sertraline hydrochloride (Ser-HCI) on rice physiology when combined with arsenic (III) or cadmium. Hydroponic experiments revealed that combined lower concentrations (0.2 and 0.6 mg L-1) of Ser-HCl and As (III) or Cd increased rice biomass and reduced pH and low molecular weight organic acids. The fluorescence intensity was enhanced with Ser-HCl and As-only treatments, with a significant difference (p < 0.05) in the dissolved organic matter index. There was a decrease in endophyte-specific operational taxonomic units, with proteobacteria dominating the rice root endophytes. The addition of Ser-HCl resulted in the Verrucomicrobiota increasing by 6.4 times, which was positively correlated with malic acid and negatively correlated with pH. Functional annotation highlighted alterations in carbohydrate metabolism pathways. This study provides insights into the interactive effects of Ser-HCl on rice when combined with As (III) or Cd, addressing gaps in our understanding of the impact of antidepressants on plant systems.
Collapse
Affiliation(s)
- Minling Gao
- Department of Materials and Environmental Engineering, Shantou University, Shantou, 515063, China
| | - Huizhen Deng
- Department of Materials and Environmental Engineering, Shantou University, Shantou, 515063, China
| | - Youming Dong
- Department of Materials and Environmental Engineering, Shantou University, Shantou, 515063, China
| | - Weiwen Qiu
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 3230, Hamilton 3240, New Zealand
| | - Zhengguo Song
- Department of Materials and Environmental Engineering, Shantou University, Shantou, 515063, China.
| |
Collapse
|
16
|
Xie F, Yuan Q, Meng Y, Luan F. Degradation of methylmercury into Hg(0) by the oxidation of iron(II) minerals. WATER RESEARCH 2024; 256:121645. [PMID: 38653093 DOI: 10.1016/j.watres.2024.121645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/25/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Mercury contamination is a global concern, and the degradation and detoxification of methylmercury have gained significant attention due to its neurotoxicity and biomagnification within the food chain. However, the currently known pathways of abiotic demethylation are limited to light-induced photodegradation process and little is known about light-independent abiotic demethylation of methylmercury. In this study, we reported a novel abiotic pathway for the degradation of methylmercury through the oxidation of both mineral structural iron(II) and surface-adsorbed iron(II) in the absence of light. Our findings reveal that methylmercury can be oxidatively degraded by reactive oxygen species, specifically hydroxyl and superoxide radicals, which are generated from the oxidation of iron(II) minerals under dark conditions. Surprisingly, Hg(0) trapping experiments demonstrated that inorganic Hg(II) resulting from the oxidative degradation of methylmercury was rapidly reduced to gaseous Hg(0) by iron(II) minerals. The demethylation of methylmercury, coupled with the generation of Hg(0), suggests a potential natural attenuation process for methylmercury. Our results highlight the underappreciated roles of iron(II) minerals in the abiotic degradation of methylmercury and the release of gaseous Hg(0) into the atmosphere.
Collapse
Affiliation(s)
- Fuyu Xie
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qingke Yuan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Ying Meng
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Fubo Luan
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
17
|
Yuan Y, Wei X, Zhu M, Cai Y, Wang Y, Dang Z, Yin H. Unravelling the removal mechanisms of trivalent arsenic by sulfidated nanoscale zero-valent iron: The crucial role of reactive oxygen species and the multiple effects of citric acid. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170275. [PMID: 38262532 DOI: 10.1016/j.scitotenv.2024.170275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/06/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
The remediation of arsenic-contaminated groundwater by sulfidated nanoscale zero-valent iron (S-nZVI) has raised considerable attention. However, the role of trivalent arsenic (As(III)) oxidation by S-nZVI in oxic conditions (S-nZVI/O2) remains controversial, and the comprehensive effect of citric acid (CA) prevalent in groundwater on As(III) removal by S-nZVI remains unclear. Herein, the mechanisms of reactive oxygen species (ROS) generation and multiple effects of CA on As(III) removal by S-nZVI/O2 were systematically explored. Results indicated that the removal efficiency of As(III) by S-nZVI/O2 (97.81 %) was prominently higher than that by S-nZVI (66.71 %), resulting from the significant production of ROS (mainly H2O2 and OH) under oxic conditions, which played a crucial role in promoting the As(III) oxidation. Additionally, CA had multiple effects on As(III) removal by S-nZVI/O2 system: (i) CA impeded the diffusion of As(III) towards S-nZVI and increased the secondary risk of immobilized As(III) re-releasing into the environment due to the Fe dissolution from S-nZVI; (ii) CA could significantly enhance the yields of OH from 25.29 to 133.00 μM via accelerating the redox cycle of Fe(II)/Fe(III) and increasing the oriented conversion rate of H2O2 to OH; (iii) CA could also enrich the types of ROS (such as O2- and 1O2) in favor of further As(III) oxidation. This study contributed novel findings regarding the control of As(III) contaminated groundwater using S-nZVI technologies.
Collapse
Affiliation(s)
- Yibo Yuan
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China
| | - Xipeng Wei
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Minghan Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China
| | - Yuhao Cai
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China
| | - Yuanzheng Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China
| | - Hua Yin
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China; Key Laboratory of Ministry of Education on Pollution Control and Ecosystem Restoration in Industry Clusters, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, China.
| |
Collapse
|
18
|
Li K, Ma S, Zou C, Latif J, Jiang Y, Ni Z, Shen S, Feng J, Jia H. Unrecognized Role of Organic Acid in Natural Attenuation of Pollutants by Mackinawite (FeS): The Significance of Carbon-Center Free Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20871-20880. [PMID: 38029317 DOI: 10.1021/acs.est.3c07473] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Organic acid is prevalent in underground environments and, against the backdrop of biogeochemical cycles on Earth, holds significant importance in the degradation of contaminants by redox-active minerals. While earlier studies on the role of organic acid in the generation of reactive oxygen species (ROS) primarily concentrated on electron shuttle or ligand effects, this study delves into the combined impacts of organic acid decomposition and Mackinawite (FeS) oxidation in contaminant transformation under dark aerobic conditions. Using bisphenol A (BPA) as a model, our findings showed that oxalic acid (OA) notably outperforms other acids in enhancing BPA removal, attaining a rate constant of 0.69 h-1. Mass spectrometry characterizations, coupled with anaerobic treatments, advocate for molecule-O2 activation as the principal mechanism behind pollutant transformation. Comprehensive results unveiled that carbon center radicals, initiated by hydroxyl radical (•OH) attack, serve as the primary agents in pollutant oxidation, accounting for at least 93.6% of the total •OH generation. This dynamic, driven by the decomposition of organic acids and the concurrent formation of carbon-centered radicals, ensures a steady supply of electrons for ROS generation. The obtained information highlights the importance of OA decomposition in the natural attenuation of pollutants and offers innovative strategies for FeS and organic acid-coupled decontamination.
Collapse
Affiliation(s)
- Kai Li
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, China
| | - Shuanglong Ma
- College of Resources and Environmental Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Chuningrui Zou
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, China
| | - Junaid Latif
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, China
| | - Yuanren Jiang
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, China
| | - Zheng Ni
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, China
| | - Siqi Shen
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, China
| | - Jinpeng Feng
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, Guangxi, China
| | - Hanzhong Jia
- Key Laboratory of Low-carbon Green Agriculture in Northwestern China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A&F University, 3# Taicheng Road, Yangling 712100, China
| |
Collapse
|