1
|
Liang Y, Gu J, Chen K, Zhou H, Peng J, Cai T, Na P, Guo C, Huang W, Yang C, Dang Z. A Quantitative Relationship between Settling and Wettability for Weathered Microplastics in Aquatic Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:11181-11193. [PMID: 40407843 DOI: 10.1021/acs.est.4c11053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
Settling plays a crucial role in determining the residence time, distribution, transport, and ultimate fate of microplastics (MPs) in aquatic environments. The settling dynamics of particles are influenced by their macroscale shape, mesoscale roundness, and microscale surface properties, along with ambient fluid flow conditions. Variations in the wettability of submillimeter MPs affect molecular interactions at the particle-water interface, altering the microscopic flow field and subsequently modifying drag forces during settling. This study examines the impact of wettability on the settling behavior of aged acrylonitrile butadiene styrene MPs by measuring their settling velocities and contact angles. It was shown that increased wettability promotes the settlement of the MPs. A drag model incorporating the Eötvös number─a dimensionless ratio of buoyancy energy to contact angle-derived surface energy─is developed to quantify the relationship between interfacial chemistry and hydrodynamic resistance. Unlike the conventional models, our model considers wettability as a key factor controlling the settling of MP particles. The model was validated using independently measured data and four sets of published data for the MPs. Results demonstrate that the model significantly improves the accuracy of the settling predictions for weathering spherical MPs. Additionally, by integrating the shape factor, it effectively accounts for the settling behavior of irregularly shaped MPs using published data sets. This improvement enhances predictability for MP transport pathways, helping assess MP accumulation zones and potential ecological risks in marine and freshwater systems.
Collapse
Affiliation(s)
- Yi Liang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jingyi Gu
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Ketong Chen
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Hong Zhou
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Jiamin Peng
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Tingting Cai
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Pei Na
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Chenlu Guo
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Weilin Huang
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States
| | - Chen Yang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| | - Zhi Dang
- College of Environment and Energy, South China University of Technology, Guangzhou 510006, China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou 510006, China
| |
Collapse
|
2
|
Jeong J, Thi Quynh Mai N, Moon BS, Choi JK. Impact of polystyrene microplastics (PS-MPs) on the entire female mouse reproductive cycle: Assessing reproductive toxicity of microplastics through in vitro follicle culture. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 297:118228. [PMID: 40315747 DOI: 10.1016/j.ecoenv.2025.118228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 04/05/2025] [Accepted: 04/20/2025] [Indexed: 05/04/2025]
Abstract
This study aims to investigate the effects of polystyrene microplastics (PS-MPs) on the entire female reproductive cycle and to elucidate the molecular mechanisms underlying their adverse impact on female ovaries. Additionally, it develops an in vitro follicle culture system as a novel methodological approach to evaluate reproductive toxicity, mimicking in vivo reproductive outcomes. First, PS-MPs were characterized using FTIR spectroscopy, TEM, and fluorescence microscopy. To assess reproductive toxicity, female mice were exposed to polystyrene microplastics (PS-MPs) at a dose of 30 mg/kg with an average particle size of 1 μm for 35 days. As a result, PS-MPs accumulated in the ovaries, leading to increased follicular atresia and apoptosis of granulosa cells. TEM revealed abnormal mitochondrial morphology in granulosa cells. Post-superovulation treatment, significant differences were noted in the number of ovulated metaphase II (MII) oocytes, spindle chromosome integrity, mitochondrial patterns, and ROS levels compared to controls. Mating with PS-MPs-exposed females led to fewer offspring. The in vitro follicle culture system proved promising for assessing PS-MPs reproductive toxicity. Immunohistochemistry showed increased Cleaved Caspase 3 and decreased Bcl2 levels in PS-MPs-treated groups, indicating apoptosis in granulosa cells. PS-MPs activate JNK and ERK pathways to mediate cell death, while impairing AKT signaling, reducing granulosa cell survival and ovarian function. This study highlights PS-MPs adverse reproductive effects and aids in developing strategies to protect female reproductive health.
Collapse
Affiliation(s)
- Jukyeong Jeong
- Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Nhu Thi Quynh Mai
- Department of Medical Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Byoung-San Moon
- Department of Medical Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| | - Jung Kyu Choi
- Department of Biotechnology, College of Life and Applied Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea.
| |
Collapse
|
3
|
Seghers J, Cella C, Pequeur E, La Spina R, Roncari F, Valsesia A, Mehn D, Gilliland D, Trapmann S, Emteborg H. Approaches for the preparation and evaluation of hydrophilic polyethylene and polyethylene terephthalate microplastic particles suited for toxicological effect studies. Anal Bioanal Chem 2025; 417:2589-2602. [PMID: 39862279 PMCID: PMC12003597 DOI: 10.1007/s00216-024-05726-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/17/2024] [Accepted: 12/18/2024] [Indexed: 01/27/2025]
Abstract
When performing effect studies to investigate the impact of microplastic (MP) on cell lines, algae, or daphnia, it is advantageous if such experiments can be performed without the use of surfactants. The need for surfactants arises from the fact that finely milled pristine MP particles generally are hydrophobic. Methods for the preparation of larger amounts of hydrophilic and hence artificially aged MP particles and approaches for their characterization are of high importance. Here we present methods to artificially age polyethylene terephthalate (PET) and low-density polyethylene (PE) using alkaline and acidic treatments that reproducibly result in large quantities of particles below 5 µm with considerably increased hydrophilicity. The artificially aged MP particles were characterized using particle counting by single-particle extinction and scattering (SPES), particle size by laser diffraction measurements, zeta potential using electrophoretic light scattering, hydrophobicity index (Hy) through dark-field (DF) microscopy, chemical composition by inductively coupled plasma-mass spectrometry (ICP-MS), Fourier transform infrared (FTIR) microscopy, and Raman microscopy. The hydrophobicity index values obtained should allow the aged MP particles to be characterized as qualitative reference materials (RMs) with an ordinal property. Evidence for the maintained integrity and hydrophilicity of the artificially aged MP particles (in powder form) over time was obtained by measurements of zeta potential with a 33-month interval. Uniformity of subsampling with respect to particle number concentration in suspensions within a 10-day period was also investigated. It provided evidence for the possibility of reproducible spiking of a specific number of hydrophilic MP particles with relative standard deviations (RSDs) from 6.2 to 13.6%. For the development of future reference materials of artificially aged microplastics, they should be characterized for an ordinal property (artificial age as Hy-index) and nominal property (identity of PET or PE based on spectral matching).
Collapse
Affiliation(s)
- John Seghers
- European Commission, Joint Research Centre (JRC), Geel, Belgium
| | - Claudia Cella
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Emmy Pequeur
- Laboratory of Environmental Toxicology and Aquatic Ecology, Faculty of Bioscience Engineering, (GhEnToxlab), Ghent University, Ghent, Belgium
| | - Rita La Spina
- European Commission, Joint Research Centre (JRC), Geel, Belgium
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | - Andrea Valsesia
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | - Dora Mehn
- European Commission, Joint Research Centre (JRC), Ispra, Italy
| | | | | | - Håkan Emteborg
- European Commission, Joint Research Centre (JRC), Geel, Belgium.
| |
Collapse
|
4
|
Thanigaivel S, Kamalesh R, Ragini YP, Saravanan A, Vickram AS, Abirami M, Thiruvengadam S. Microplastic pollution in marine environments: An in-depth analysis of advanced monitoring techniques, removal technologies, and future challenges. MARINE ENVIRONMENTAL RESEARCH 2025; 205:106993. [PMID: 39914291 DOI: 10.1016/j.marenvres.2025.106993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/28/2025] [Accepted: 02/01/2025] [Indexed: 03/08/2025]
Abstract
Microplastics, recognized as toxic contaminants, have pervaded terrestrial, atmospheric, and marine environments, transitioning from emerging pollutants to pervasive threats. About 10 % of the plastic produced worldwide enters into the ocean which constitutes 85 % of marine litter. Microplastic distribution holds the highest concentration in the Atlantic Ocean whereas the Southern Ocean holds the lowest. Concerning microplastics, reports state that each year about 1.3 million metric tons of microplastics enter the ocean. The microparticles account for about 90 % of the floating ocean debris and over 75 % of these particles originate from land-based sources which include urban runoff, and mismanaged wastes. This review offers a thorough examination of the sources of microplastics and their environmental consequences and ecological impacts. The ubiquity of microplastics necessitates robust control measures, starting with their monitoring and detection in aquatic ecosystems to assess the effectiveness of mitigation strategies. Current removal methods, including physical, chemical, and bio-based techniques, are detailed, alongside advances in filtration, separation, and integrated hybrid approaches for microplastic control. The review concludes with perspectives on the limitations of existing methods and directions for future research in microplastic monitoring, detection, and removal.
Collapse
Affiliation(s)
- S Thanigaivel
- Department of Biotechnology, Faculty of Science & Humanities, SRM Institute of Science and Technology, Chengalpattu district, Kattankulathur, Tamil Nadu, 603203, India
| | - R Kamalesh
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical And Technical Sciences, Chennai, 602105, India
| | - Y P Ragini
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical And Technical Sciences, Chennai, 602105, India
| | - A Saravanan
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical And Technical Sciences, Chennai, 602105, India.
| | - A S Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical And Technical Sciences, Chennai, 602105, India
| | - M Abirami
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| | - S Thiruvengadam
- Department of Biotechnology, Rajalakshmi Engineering College, Chennai, 602105, India
| |
Collapse
|
5
|
Prasittisopin L. Unveiling the duality of cement and concrete addressing microplastic pollution: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:8717-8742. [PMID: 40100502 DOI: 10.1007/s11356-025-36267-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 03/09/2025] [Indexed: 03/20/2025]
Abstract
Microplastic pollution has emerged as a global environmental concern, with diverse consequences for ecosystems and human health. While the focus has primarily been on the sources and impacts of microplastics, this review paper explores the roles of cement and concrete in potentially mitigating microplastic pollution and addressing their negative impacts with the focus of 165 relevant publications. Cementitious materials, widely used in construction, have unique properties that greatly increase the formation and transport of microplastics in the environment, and affect circular economy practice. This paper gathers all the information we already know about how cement, concrete, and microplastics interact with each other. It also presents the potential opportunities and challenges of using these materials to deal with microplastic pollution, entailing the advancement of porous concrete as a filtering system, exploration of concrete wetting phenomena based on concrete's surface chemistry and characteristics, proper urban water management systems for concrete green spaces, assessment of innovative technologies with concrete for microplastic mitigation, and the formation of standards and guidelines such as precise Life Cycle Assessment (LCA) tools, environmental product declaration (EPD), policy for urban planning, and green finance paradigms.
Collapse
Affiliation(s)
- Lapyote Prasittisopin
- Center of Excellence on Green Tech in Architecture, Faculty of Architecture, Chulalongkorn University, Pathumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
6
|
Chen X, Wu XN, Feng JC, Wang B, Li CR, Lin YL, Huang YJ, Zhong S, Zhang XC, Hu JL, Zhang S. Methane seepage leads to a specific microplastic aging process in the simulated cold seep environment. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136572. [PMID: 39571376 DOI: 10.1016/j.jhazmat.2024.136572] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/10/2024] [Accepted: 11/17/2024] [Indexed: 01/26/2025]
Abstract
Marine microplastics pose a significant threat to ecosystems, and deep-sea regions serve as critical sinks for these pollutants. Among these regions, cold seeps harbor relatively high concentrations of microplastics. However, research on the aging of microplastics under low-temperature, dark, methane-abundant, and high-pressure conditions remains limited. Seawater and sediment were collected from various Haima cold seepage sites to simulate seepage environments in 200-mL high-pressure reactors. Four types of microplastics at high concentrations (approximately 10 %) were cultured and monitored over two months to explore how they aged. The key findings are as follows: (1) Compared to areas of weak seepage, methane seepage accelerated microplastic aging, as evidenced by increased surface roughness, enhanced C-O and (CO)-O bond formation, increased microbial colonization, and reduced contact angles. (2) Microplastic aging is more pronounced in sediments than in seawater, with biodegradable polylactic acid (PLA) exhibiting the most significant aging characteristics and carbon contribution. (3) Aged microplastics induce greater disturbances in inorganic nutrient levels than in organic matter, impacting nitrogen cycle processes involving nitrate, nitrite, and ammonium. This study results reveal the fundamental aging characteristics of microplastics in extremely deep seas and highlight their potential ecological effects.
Collapse
Affiliation(s)
- Xiao Chen
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; School of Ecology, Environment, and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiao-Nan Wu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; School of Ecology, Environment, and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Jing-Chun Feng
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; School of Ecology, Environment, and Resources, Guangdong University of Technology, Guangzhou 510006, China; Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong University of Technology, Guangzhou 510006, China.
| | - Bin Wang
- School of Ecology, Environment, and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Can-Rong Li
- School of Ecology, Environment, and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yi-Lei Lin
- School of Ecology, Environment, and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yong-Ji Huang
- School of Ecology, Environment, and Resources, Guangdong University of Technology, Guangzhou 510006, China; South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Song Zhong
- School of Ecology, Environment, and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiao-Chun Zhang
- School of Ecology, Environment, and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Jun-Lin Hu
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Si Zhang
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China; School of Ecology, Environment, and Resources, Guangdong University of Technology, Guangzhou 510006, China; South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
| |
Collapse
|
7
|
An G, Nam G, Jung J, Na J. Increased adsorption of diflubenzuron onto polylactic acid microplastics after ultraviolet weathering can increase acute toxicity in the water flea (Daphnia magna). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177600. [PMID: 39615170 DOI: 10.1016/j.scitotenv.2024.177600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/09/2024] [Accepted: 11/14/2024] [Indexed: 12/21/2024]
Abstract
The ultraviolet (UV) weathering of microplastics (MPs) can lead to higher adsorption of harmful contaminants, thus increasing the potential risks of their combined effects. Because biodegradable MPs are more susceptible to UV weathering than conventional MPs, concerns have arisen about their ecological toxicity and environmental impact. Therefore, this study investigated the mechanisms associated with the adsorption of the pesticide diflubenzuron (DFB) onto polylactic acid (PLA) MP particles after UV weathering and the acute effects (48 h) of their combination on the water flea Daphnia magna. These effects were also compared with those of the conventional MP polyethylene terephthalate (PET). UV weathering led to a greater number of cracks and pores in the PLA particles compared to PET, as well as a higher number of oxygen-based functional groups and a larger surface area. These surface changes in UV-weathered PLA particles promoted higher DFB adsorption, which in turn led to stronger acute toxicity for D. magna compared to UV-weathered PET particles. Combined exposure to 25 ng L-1 DFB and both UV-weathered and non-UV-weathered MPs significantly reduced the chitin content in D. magna, while combined exposure to 12.5 ng L-1 DFB and the MPs increased the chitin content. This effect was more pronounced for UV-weathered PLA exposure than UV-weathered PET exposure. The expression of the genes for chitinase and endocrine glycoprotein, both of which are closely associated with the toxic mechanisms of DFB, showed no significant changes with the combination of 25 ng L-1 DFB and non-UV-weathered MPs but were significantly downregulated after UV weathering. Overall, the UV weathering of PLA promoted the adsorption of DFB, thus increasing its toxic effects. Our findings demonstrate the importance of considering the effects of UV weathering and interactions with environmental pollutants when assessing the ecological risks associated with biodegradable MPs.
Collapse
Affiliation(s)
- Gersan An
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Gwiwoong Nam
- OJeong Resilience Institute (OJERI), Korea University, Seoul 02841, Republic of Korea
| | - Jinho Jung
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Joorim Na
- OJeong Resilience Institute (OJERI), Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
8
|
Chen H, You H, Cheng J, Wang S, Chong W, Lou X, Kuang S, Liu S, Zheng M, Liu T. Response of denitrifying anaerobic methane oxidation processes in freshwater and marine sediments to polyvinyl chloride microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:176988. [PMID: 39427908 DOI: 10.1016/j.scitotenv.2024.176988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/22/2024]
Abstract
Nitrite/nitrate-dependent anaerobic methane oxidation (n-DAMO) plays a crucial role in mitigating methane (CH4) in natural environments. The increasing presence of microplastics (MPs) in these environments due to human activities is a growing concern. However, the impact of MPs on n-DAMO microorganisms and their role in greenhouse gas regulation, particularly CH4 reduction, remains unclear. This study investigates the effects of polyvinyl chloride (PVC) MPs on n-DAMO activity and the associated microbial communities in freshwater and marine sediments at varying concentrations of (R0/M0-no addition, R1/M1-0.5 %, R2/M2-2%). The results showed that the presence of MPs significantly increased the n-DAMO rate (2.89-3.58 nmol 13CO2 g-1 d-1) compared to the control groups (R0: 1.29 nmol 13CO2 g-1 d-1, M0: 0.11 nmol 13CO2 g-1 d-1), with marine sediments showing a more pronounced response. Additionally, the proportional contribution of nitrate-DAMO processes increased following MP exposure. The presence of PVC MPs also altered the microbial diversity of n-DAMO. Upon the addition of MPs, the microbial community composition of n-DAMO in marine sediments changed more significantly. This study provides the first evidence of a positive impact of PVC MPs on n-DAMO processes, suggesting that the presence of PVC MPs in sediments could potentially contribute to the reduction of CH4 emissions.
Collapse
Affiliation(s)
- Hui Chen
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Hairong You
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jiaxin Cheng
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shaohua Wang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Wei Chong
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xue Lou
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shaoping Kuang
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shuai Liu
- College of Environment and Safety Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Minggang Zheng
- Research Center for Marine Ecology, First Institute of Oceanography, MNR, Qingdao, China.
| | - Tao Liu
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, 999077, Hong Kong Special Administrative Region of China
| |
Collapse
|
9
|
Li C, Bai X, Krause S, Luo D. Prediction of vertical transport of microplastics: Shape- and aging-dependent drag models. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136412. [PMID: 39549398 DOI: 10.1016/j.jhazmat.2024.136412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024]
Abstract
The prediction of vertical transport of microplastics (MPs) is essential for understanding their multidimensional transport, fate, and environmental risks, but drag models applicable to aging MPs are currently understudied. In this study, pristine and UV-aged polyethylene terephthalate (PET) and polystyrene (PS) MPs were used for settling experiments. Combining physicochemical properties and transport data, a shape-dependent drag model based on the Corey shape factor was optimized with average errors of 9.73 % and 10.42 % and coefficients of determination of 0.6878 and 0.8359 for predicting the settling terminal velocities (ut) for PET and PS MPs, respectively. Meanwhile, aging-dependent drag models were constructed by incorporating the carbonyl index as functional forms of the newly defined aging index, which can be used to differentiate the effects of shape and aging characteristics on the vertical transport of MPs. These aging-dependent models showed better predictive abilities with average errors of 3.97 % and 4.56 % in predicting ut for PET MPs, and of 5.89 % and 6.91 % for PS MPs. Additionally, the drag models in this study improved applicability to predict vertical transport of environmentally-collected weathered MPs. With the continuous improvement of the transport database of diverse MPs, this study is expected to provide scientific support for predicting the environmental behaviors of MPs and formulating targeted pollution control strategies.
Collapse
Affiliation(s)
- Chang Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Xue Bai
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China; Yangtze Institute for Conservation and Development, Hohai University, Nanjing 210098, PR China.
| | - Stefan Krause
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA), Université Claude Bernard Lyon 1, Lyon, CNRS, ENTPE, UMR5023, Villeurbanne 69622, France
| | - Dan Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
10
|
Wang D, Zhang L, Li W, Chang M, Liu X, Zhang Z, Tian ZQ. The influence of water conservancy project on microplastics distribution in river ecosystem: A case study of Lhasa River Basin in Qinghai-Tibet Plateau. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136472. [PMID: 39547040 DOI: 10.1016/j.jhazmat.2024.136472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
Water conservancy projects affect the migration, suspension, and deposition of microplastic (MP). However, its impact on MP pollution of river ecosystem remains elusive. Herein, we investigated the MP characteristics and the influence of water conservancy projects on MPs in the Lhasa River Basin of the Qinghai-Tibet Plateau, China. The results demonstrated that the MPs concentration in surface water decreased from upstream to downstream, as more MPs in surface water were settling down and stored in reservoir sediments in the midstream. It is postulated that reservoir sedimentation of MPs occurs at a greater rate due to the barrier effect of reservoirs, steady hydrodynamics, and weak salinity-induced buoyancy. To evaluate the ecological risk of the Lhasa River Basin, the pollution load index, the polymer hazard index, and the potential ecological risk index were analyzed. The upstream exhibits elevated polymer hazard index values (>100), and the potential ecological risk index values in the Lhasa River Basin showed ecological risk similar to those of pollution load index values. This research represents the initial exploration of MP distribution within the entire Lhasa River basin, providing a foundational framework for investigating the impact of water conservancy projects on MP migration.
Collapse
Affiliation(s)
- Dan Wang
- Key Laboratory of Biodiversity and Eco-environmental Protection of the Qinghai-Tibetan Plateau (Ministry of Education), Key Laboratory of Environmental Engineering and Pollution Control On Plateau (Tibet Autonomous Region), School of Ecology and Environment, Tibet University, Lhasa 850000, PR China; School of Bioengineering and Health, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China; College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Le Zhang
- Key Laboratory of Biodiversity and Eco-environmental Protection of the Qinghai-Tibetan Plateau (Ministry of Education), Key Laboratory of Environmental Engineering and Pollution Control On Plateau (Tibet Autonomous Region), School of Ecology and Environment, Tibet University, Lhasa 850000, PR China; College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Wangwang Li
- Key Laboratory of Biodiversity and Eco-environmental Protection of the Qinghai-Tibetan Plateau (Ministry of Education), Key Laboratory of Environmental Engineering and Pollution Control On Plateau (Tibet Autonomous Region), School of Ecology and Environment, Tibet University, Lhasa 850000, PR China; College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Meng Chang
- Key Laboratory of Biodiversity and Eco-environmental Protection of the Qinghai-Tibetan Plateau (Ministry of Education), Key Laboratory of Environmental Engineering and Pollution Control On Plateau (Tibet Autonomous Region), School of Ecology and Environment, Tibet University, Lhasa 850000, PR China
| | - Xiaoning Liu
- State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, PR China.
| | - Zhaowei Zhang
- School of Bioengineering and Health, State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, PR China; Hubei Hongshan Laboratory, Wuhan 430062, PR China.
| | - Zhi-Quan Tian
- Key Laboratory of Biodiversity and Eco-environmental Protection of the Qinghai-Tibetan Plateau (Ministry of Education), Key Laboratory of Environmental Engineering and Pollution Control On Plateau (Tibet Autonomous Region), School of Ecology and Environment, Tibet University, Lhasa 850000, PR China; College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
11
|
Miao L, Deng X, Qin X, Huang Y, Su L, Adyel TM, Wang Z, Lu Z, Luo D, Wu J, Hou J. High-altitude aquatic ecosystems offer faster aging rate of plastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175827. [PMID: 39197763 DOI: 10.1016/j.scitotenv.2024.175827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
While research on the aging behavior of plastics in aquatic systems is extensive, studies focusing on high-altitude ecosystems, characterized by higher solar radiation and lower temperatures, remain limited. This study investigated the long-term aging behavior of non-biodegradable plastics (non-BPs), namely polyethylene terephthalate (PET) and polypropylene (PP) and biodegradable plastics (BPs), specifically polylactic acid plus polybutylene adipate-co-terephthalate (PLA + PBAT) and starch-based plastic (SBP), in a tributary of the Yarlung Zangbo River on the high-altitude Tibetan Plateau. Over 84 days of field aging, all four types of plastics exhibited initial rapid aging followed by deceleration. This aging process can be divided into two phases: rapid surface oxidation aging and an aging plateau phase. Notably, PP aged at a rate comparable to BPs, contrary to expectations of faster aging for BPs. Compared to low-altitude aquatic ecosystems, plastics in this study showed a faster aging rate. This was primarily due to intense ultraviolet radiation causing severe photoaging. Furthermore, the lower temperatures contributed to the formation of thinner biofilms. These thinner biofilms exhibited a reduced capacity to block light, further exacerbating the photoaging process of plastics. Statistical analysis results indicated that temperature, total nitrogen TN, and total phosphorus TP were likely the main water quality parameters influencing plastic aging. The varying effects of water properties and nutrients underscore the complex interaction of water quality parameters in high-altitude environments. Given the delicate nature of the high-altitude environment, the environmental impact of plastics, especially BPs, warrants careful consideration.
Collapse
Affiliation(s)
- Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Xiaoya Deng
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Xiangchao Qin
- Eco-environmental Monitoring and Scientific Research Center, Yellow River Basin Ecology and Environment Administration, Zhengzhou 450004, People's Republic of China.
| | - Yi Huang
- Tibet Agriculture and Animal Husbandry University, No.100, Yucai West Road, Bayi District, Nyingchi City 860006, People's Republic of China.
| | - Libin Su
- Tibet Agriculture and Animal Husbandry University, No.100, Yucai West Road, Bayi District, Nyingchi City 860006, People's Republic of China.
| | - Tanveer M Adyel
- STEM, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia 5095, Australia; Biosciences and Food Technology Discipline, RMIT University, Melbourne, VIC 3000, Australia
| | - Zhiyuan Wang
- Center for Eco-Environmental Research, Nanjing Hydraulic Research Institute, National Energy Administration, Ministry of Transport, Ministry of Water Resources, Nanjing 210029, People's Republic of China
| | - Zhao Lu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Dan Luo
- Tibet Research Academy of Eco-environmental Sciences, No.26, Jinzhu Middle Road, Chengguan District, Lhasa, Tibet Autonomous Region 850030, People's Republic of China.
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|
12
|
Yan Z, Chen Y, Su P, Liu S, Jiang R, Wang M, Zhang L, Lu G, Yuan S. Microbial carbon metabolism patterns of microplastic biofilm in the vertical profile of urban rivers. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122422. [PMID: 39243653 DOI: 10.1016/j.jenvman.2024.122422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/06/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
Microplastics (MPs) can provide a unique niche for microbiota in waters, thus regulating the nutrients and carbon cycling. Following the vertical transport of MPs in waters, the compositions of attached biofilm may be dramatically changed. However, few studies have focused on the related ecological function response, including the carbon metabolism. In this study, we investigated the microbial carbon metabolism patterns of attached biofilm on different MPs in the vertical profile of urban rivers. The results showed that the carbon metabolism capacity of biofilm on the degradable polylactic acid (PLA) MPs was higher than that in the non-degradable polyethylene terephthalate (PET) MPs. In the vertical profile, the carbon metabolism rates of biofilm on two MPs both decreased with water depth, being 0.74 and 0.91 folds in bottom waters of that in surface waters. Specifically, the utilization of polymers, carbohydrate, and amine of PLA biofilm was significantly inhibited in the bottom waters, which were not altered on the PET. Compared with surface waters, the microbial metabolism function index of PLA biofilm was inhibited in deep waters, but elevated in the PET biofilm. In addition, the water quality parameters (e.g., nutrients) in the vertical profile largely shaped carbon metabolism patterns. These findings highlight the distinct carbon metabolism patterns in aquatic environments in the vertical profile, providing new insights into the effects of MPs on global carbon cycle.
Collapse
Affiliation(s)
- Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China.
| | - Yufang Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Pengpeng Su
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China
| | - Shiqi Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Runren Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Min Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Leibo Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing, 210098, China; College of Environment, Hohai University, Nanjing, 210098, China
| | - Saiyu Yuan
- The National Key Laboratory of Water Disaster Prevention, Hohai University, Nanjing, 210098, China
| |
Collapse
|
13
|
Zhang Y, Shi P, Cui L. Microplastics in riverine systems: Recommendations for standardized sampling, separation, digestion and characterization. MARINE POLLUTION BULLETIN 2024; 207:116950. [PMID: 39243470 DOI: 10.1016/j.marpolbul.2024.116950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024]
Abstract
Microplastic (MP) pollution has emerged as a global concern, prompting numerous studies on MP detection. Due to the remaining methodological challenges, it affects the accuracy and reliability of MP's impact assessment on river systems. To address this, the establishment of standardized operating protocols is crucial, encompassing sampling, separation, digestion, and characterization methods. This study evaluates the current tools used for identifying and quantifying MPs in riverine ecosystems, aiming to offer harmonized guidelines for future protocols. Recommendations include adopting a consistent format for reporting MP concentrations and providing improved information on sampling, separation, and digestion for enhanced cross-study comparisons. The importance of quality assurance and quality control is also discussed. Furthermore, we highlight unresolved issues, proposing avenues for further investigation. Suggestions encompass standardizing river sampling methods, optimizing technical steps and analysis processes, and enhancing the accuracy, reliability, and comparability of detection data to advance our understanding of MPs in river environments.
Collapse
Affiliation(s)
- Yan Zhang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Peng Shi
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region, Xi'an University of Technology, Xi'an 710048, China.
| | - Lingzhou Cui
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
14
|
Liu D, Yang Z, Gong Y, Song D, Chen Y. Occurrence and emission characteristics of microplastics in agricultural surface runoff under different natural rainfall and short-term fertilizer application. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135254. [PMID: 39038379 DOI: 10.1016/j.jhazmat.2024.135254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
Land-based microplastics (MPs) are considered the primary source of MPs in aquatic environments, with runoff being a major pathway for their transfer from soil to surface water. However, the transportation characteristics of MPs via agricultural surface runoff remain unclear. In this study, we investigated the occurrence and emission characteristics of MPs in agricultural surface runoff under various short-term fertilizer applications and natural rainfall events using laser direct infrared imaging analysis (LDIR). MPs from fertilizers and soils co-migrated with the agricultural runoff. The abundance and concentration of MPs in runoff were 145.90 ± 22.48-2043.38 ± 89.51 items·L-1 and 39.17 ± 21.94-523.04 ± 47.85 µg·L-1, respectively. Small and low-density MPs, such as polyethylene (PE), chlorinated polyethylene (CPE), and polyurethane (PU) in film/fragment form with 20-50 µm exhibited a higher mobility. No statistical differences were observed in the distribution of runoff MPs with the application of different fertilizers. There was a significant positive relationship between runoff MP abundance and rainfall intensity. The annual emission load in this study area was 116.73 g·hm-2, indicating that the transportation of MPs via agricultural surface runoff cannot be ignored. This study is conducive to understanding the migration behavior of MPs in soil-water environments in a better manner.
Collapse
Affiliation(s)
- Dengping Liu
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Rural Cleaning, Chongqing 400715, China
| | - Zhimin Yang
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Rural Cleaning, Chongqing 400715, China
| | - Yang Gong
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Rural Cleaning, Chongqing 400715, China
| | - Dan Song
- Chongqing Academe of Eco-Environmental Science, Chongqing 401147, China
| | - Yucheng Chen
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Engineering Research Center of Rural Cleaning, Chongqing 400715, China.
| |
Collapse
|
15
|
Taghizadeh Rahmat Abadi Z, Abtahi B, Fathi MB, Mashhadi N, Grossart HP. Size, shape, and elemental composition as predictors of microplastic surface erosion. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134961. [PMID: 38936183 DOI: 10.1016/j.jhazmat.2024.134961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/29/2024]
Abstract
The degradation of surfaces and its possible dependence on shape, size, and elemental composition of plastic particles were subjected. The surfaces of 146 microplastics were classified from smooth to fully eroded (%) by SEM/EDS. Structural elements and various additives were found on microplastics depending on their shapes. The surface of plastic items > 100 µm in length showed a relatively more eroded area than smaller ones, regardless of their shapes. Depending on shape, the percentage of surface erosion of irregularly shaped fragments < 100 µm was significantly enhanced compared to microbeads of the same size. These results may provide insights into assessing potential risks posed by microplastics and improve our understanding of the role of these parameters concerning possible adverse health effects on the environment.
Collapse
Affiliation(s)
| | - B Abtahi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - M B Fathi
- Condensed matter department, Faculty of Physics, Kharazmi University, Tehran, Iran.
| | - N Mashhadi
- Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - H-P Grossart
- Leibniz Institute of Freshwater Ecology and Inland Fisheries, Department of Experimental Limnology, Alte Fischerhuette 2, 16775 Stechlin, Germany; Postdam University, Institute of Biology and Biochemistry, Maulbeerallee 2, D-14469 Potsdam, Germany.
| |
Collapse
|
16
|
Dacewicz E, Łobos-Moysa E, Chmielowski K. Identification Tools of Microplastics from Surface Water Integrating Digital Image Processing and Statistical Techniques. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3701. [PMID: 39124364 PMCID: PMC11313241 DOI: 10.3390/ma17153701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 08/12/2024]
Abstract
The primary objective of this study was to demonstrate the potential of digital image analysis as a tool to identify microplastic (MP) particles in surface waters and to facilitate their characterisation in terms of 2D and 3D morphology. Digital image analysis preceded by microscopic analysis was used for an exhaustive quantitative and qualitative evaluation of MPs isolated from the Vistula River. Using image processing procedures, 2D and 3D shape descriptors were determined. Principal Component Analysis was used to interpret the relationships between the parameters studied, characterising MP particle geometry, type and colour. This multivariate analysis of the data allowed three or four main factors to be extracted, explaining approximately 90% of the variation in the data characterising MP morphology. It was found that the first principal component for granules, flakes and films was largely represented by strongly correlated with 2D shape descriptors (area, perimeter, equivalent area diameter) and 3D shape descriptors (Corey Shape Factor, Compactness, Dimensionality). Considering the scraps, principal component PC1 was represented by only five of the above descriptors, and the Compactness variable had the largest contribution to principal component PC2. In addition, for granules, flakes and films, a relationship between 2D shape and the colour of their particles could be observed. For the most numerous MP group identified of multicoloured scraps, no such association was found. The results of our study can be used for further multivariate analysis regarding the presence of microplastic floating on the river surface, with a particular focus on particles of secondary origin. This is of key importance for optimising future efforts in conducting small-scale and multidimensional monitoring of and reducing plastics in the aquatic environment.
Collapse
Affiliation(s)
- Ewa Dacewicz
- Department of Sanitary Engineering and Water Management, Faculty of Environmental Engineering and Land Surveying, University of Agriculture in Kraków, Adam Mickiewicz Ave. 24/28, 30-059 Kraków, Poland
| | - Ewa Łobos-Moysa
- Department of Water and Wastewater Engineering, Faculty of Power and Environmental Engineering, Silesian University of Technology, Akademicka 2A Str., 44-100 Gliwice, Poland;
| | - Krzysztof Chmielowski
- Department of Natural Gas Engineering, Faculty of Drilling, AGH University of Science and Technology, Oil and Gas, Adam Mickiewicz Ave. 30, 30-059 Kraków, Poland;
| |
Collapse
|
17
|
Junaid M, Hamid N, Liu S, Abbas Z, Imran M, Haider MR, Wang B, Chen G, Khan HK, Yue Q, Xu N, Wang J. Interactive impacts of photoaged micro(nano)plastics and co-occurring chemicals in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172213. [PMID: 38580116 DOI: 10.1016/j.scitotenv.2024.172213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/24/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
In the environment, sunlight or ultraviolet (UV) radiation is considered to be the primary cause of plastic aging, leading to their fragmentation into particles, including micro(nano)plastics (MNPs). Photoaged MNPs possess diverse interactive properties and ecotoxicological implications substantially different from those of pristine plastic particles. This review aims to highlight the mechanisms and implications of UV-induced photoaging of MNPs, with an emphasis on various UV sources and their interactions with co-occurring organic and inorganic chemicals, as well as the associated ecological and health impacts and factors affecting those interactions. Compared to UV-B, UV-A and UV-C were more widely used in laboratory studies for MNP degradation. Photoaged MNPs act as vectors for the transportation of organic pollutants, organic matter, and inorganic chemicals in the environment. Literature showed that photoaged MNPs exhibit a higher sorption capacity for PPCPs, PAHs, PBDEs, pesticides, humic acid, fulvic acid, heavy metals, and metallic nanoparticles than pristine MNPs, potentially causing significant changes in associated ecological and health impacts. Combined exposure to photoaged MNPs and organic and inorganic pollutants significantly altered mortality rate, decreased growth rate, histological alterations, neurological impairments, reproductive toxicity, induced oxidative stress, thyroid disruption, hepatotoxicity, and genotoxicity in vivo, both in aquatic and terrestrial organisms. Limited studies were reported in vitro and found decreased cellular growth and survival, induced oxidative stress, and compromised the permeability and integrity of the cell membrane. In addition, several environmental factors (temperature, organic matter, ionic strength, time, and pH), MNP properties (polymer types, sizes, surface area, shapes, colour, and concentration), and chemical properties (pollutant type, concentration, and physiochemical properties) can influence the photoaging of MNPs and associated impacts. Lastly, the research gaps and prospects of MNP photoaging and associated implications were also summarized. Future research should focus on the photoaging of MNPs under environmentally relevant conditions, exploiting the polydisperse characteristics of environmental plastics, to make this process more realistic for mitigating plastic pollution.
Collapse
Affiliation(s)
- Muhammad Junaid
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Naima Hamid
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Ocean Pollution and Ecotoxicology (OPEC) Research Group, Universiti Malaysia Terengganu, Malaysia
| | - Shulin Liu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Zohaib Abbas
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad 38000, Pakistan
| | - Muhammad Imran
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, China
| | - Muhammad Rizwan Haider
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Bin Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China
| | - Guanglong Chen
- Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China
| | - Hudda Khaleeq Khan
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Qiang Yue
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China
| | - Nan Xu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Jun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou 510641, China.
| |
Collapse
|
18
|
Yao J, Li J, Qi J, Wan M, Tang L, Han H, Tian K, Liu S. Distribution patterns and environmental risk assessments of microplastics in the lake waters and sediments from eight typical wetland parks in Changsha city, China. Front Public Health 2024; 12:1365906. [PMID: 38784569 PMCID: PMC11112001 DOI: 10.3389/fpubh.2024.1365906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
The quality of water in urban parks is closely related to people's daily lives, but the pollution caused by microplastics in park water and sediments has not been comprehensively studied. Therefore, eight typical parks in the urban area of Changsha, China, were selected, and Raman spectroscopy was used to explore the spatial distributions and compositions of the microplastics in the water and sediments, analyze their influencing factors, and evaluate their environmental risks. The results showed that the abundances of surface water microplastics in all parks ranged from 150 to 525 n L-1, and the abundances of sediment microplastics ranged from 120 to 585 n kg-1. The microplastics in the surface water included polyethylene terephthalate (PET), chlorinated polyethylene (CPE), and fluororubber (FLU), while those in the sediments included polyvinyl chloride (PVC), wp-acrylate copolymer (ACR), and CPE. Regression analyses revealed significant positive correlations between human activities and the abundances of microplastics in the parks. Among them, the correlations of population, industrial discharge and domestic wastewater discharge with the abundance of microplastics in park water were the strongest. However, the correlations of car flow and tourists with the abundance of microplastics in park water were the weakest. Based on the potential ecological risk indices (PERI) classification assessment method, the levels of microplastics in the waters and sediments of the eight parks were all within the II-level risk zone (53-8,549), among which the risk indices for Meixi Lake and Yudai Lake were within the IV risk zone (1,365-8,549), which may have been caused by the high population density near the park. This study provides new insights into the characteristics of microplastics in urban park water and sediment.
Collapse
Affiliation(s)
- Junyi Yao
- The Department of Environmental Design, School of Architecture and Art, Central South University, Changsha, China
| | - Jiang Li
- The Department of Environmental Design, School of Architecture and Art, Central South University, Changsha, China
| | - Jialing Qi
- The Department of Environmental Design, School of Architecture and Art, Central South University, Changsha, China
| | - Mengrui Wan
- The Department of Environmental Design, School of Architecture and Art, Central South University, Changsha, China
| | - Liling Tang
- The Department of Environmental Design, School of Architecture and Art, Central South University, Changsha, China
| | - Hui Han
- Henan Field Observation and Research Station of Headwork Wetland Ecosystem of the Central Route of South-to-North Water Diversion Project, School of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, Henan, China
| | - Kai Tian
- Henan Field Observation and Research Station of Headwork Wetland Ecosystem of the Central Route of South-to-North Water Diversion Project, School of Life Sciences and Agricultural Engineering, Nanyang Normal University, Nanyang, Henan, China
| | - Shaobo Liu
- The Department of Environmental Design, School of Architecture and Art, Central South University, Changsha, China
| |
Collapse
|
19
|
Zhang G, Wang B, Jiang N, Pang K, Wu W, Yin X. Effect of water-soluble polymers on the transport of functional group-modified polystyrene nanoplastics in goethite-coated saturated porous media. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134044. [PMID: 38493628 DOI: 10.1016/j.jhazmat.2024.134044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 03/19/2024]
Abstract
The research on the impact of water-soluble polymers (WSPs) on the migration and fate of plastic particles is extremely limited. This article explored the effects of polyacrylic acid (PAA, a common WSP) and physicochemical factors on the transport of polystyrene nanoparticles (PSNPs-NH2/COOH) with different functional groups in QS (quartz sand) and FOS (goethite-modified quartz sand, simulates mineral colloids). Research has shown that PAA can selectively adsorb onto the surface of PSNPs-NH2, forming ecological corona heterogeneous aggregates. This process increased the spatial hindrance and elastic repulsion, resulting in the recovery of PSNPs-NH2 always exceeding that of PSNPs-COOH. Overall, PAA can hinder the migration of PSNPs in QS but can promote their migration in FOS. When multivalent cations coexist with PAA, the transport of PSNPs in the media is primarily affected by cation bridging and CH-cation-π interaction. The presence of oxyanions and PAA prevents PSNPs from following the Hofmeister rule and promotes their migration (PO43-: 82.34 ± 0.16% to 94.63 ± 2.82%>SO42-: 81.38 ± 2.73% to 91.15 ± 0.93%>NO3-: 55.85 ± 0.70%-87.16 ± 3.80%). The findings of this study contribute significantly to a better understanding of the migration of WSPs and group-modified NPs in complex saturated porous media.
Collapse
Affiliation(s)
- Guangcai Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Binying Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Nan Jiang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Kejing Pang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Wenbing Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China
| | - Xianqiang Yin
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture and Rural Affairs, Yangling 712100, China.
| |
Collapse
|
20
|
Jansen MAK, Andrady AL, Bornman JF, Aucamp PJ, Bais AF, Banaszak AT, Barnes PW, Bernhard GH, Bruckman LS, Busquets R, Häder DP, Hanson ML, Heikkilä AM, Hylander S, Lucas RM, Mackenzie R, Madronich S, Neale PJ, Neale RE, Olsen CM, Ossola R, Pandey KK, Petropavlovskikh I, Revell LE, Robinson SA, Robson TM, Rose KC, Solomon KR, Andersen MPS, Sulzberger B, Wallington TJ, Wang QW, Wängberg SÅ, White CC, Young AR, Zepp RG, Zhu L. Plastics in the environment in the context of UV radiation, climate change and the Montreal Protocol: UNEP Environmental Effects Assessment Panel, Update 2023. Photochem Photobiol Sci 2024; 23:629-650. [PMID: 38512633 DOI: 10.1007/s43630-024-00552-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/05/2024] [Indexed: 03/23/2024]
Abstract
This Assessment Update by the Environmental Effects Assessment Panel (EEAP) of the United Nations Environment Programme (UNEP) considers the interactive effects of solar UV radiation, global warming, and other weathering factors on plastics. The Assessment illustrates the significance of solar UV radiation in decreasing the durability of plastic materials, degradation of plastic debris, formation of micro- and nanoplastic particles and accompanying leaching of potential toxic compounds. Micro- and nanoplastics have been found in all ecosystems, the atmosphere, and in humans. While the potential biological risks are not yet well-established, the widespread and increasing occurrence of plastic pollution is reason for continuing research and monitoring. Plastic debris persists after its intended life in soils, water bodies and the atmosphere as well as in living organisms. To counteract accumulation of plastics in the environment, the lifetime of novel plastics or plastic alternatives should better match the functional life of products, with eventual breakdown releasing harmless substances to the environment.
Collapse
Affiliation(s)
- Marcel A K Jansen
- School of Biological, Earth and Environmental Sciences, University College, Cork, Ireland.
| | - Anthony L Andrady
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Janet F Bornman
- Food Futures Institute, Murdoch University, Perth, Australia.
| | | | - Alkiviadis F Bais
- Laboratory of Atmospheric Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anastazia T Banaszak
- Unidad Académica Sistemas Arrecifales, Universidad Nacional Autónoma de México, Puerto Morelos, Mexico
| | - Paul W Barnes
- Department of Biological Sciences and Environment Program, Loyola University New Orleans, New Orleans, LA, USA
| | | | - Laura S Bruckman
- Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, OH, USA
| | - Rosa Busquets
- Chemical and Pharmaceutical Sciences, Kingston University London, Kingston Upon Thames, UK
| | | | - Mark L Hanson
- Department of Environment and Geography, University of Manitoba, Winnipeg, MB, Canada
| | | | - Samuel Hylander
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | - Robyn M Lucas
- National Centre for Epidemiology and Population Health, College of Health and Medicine, Australian National University, Canberra, Australia
| | - Roy Mackenzie
- Centro Universitario Cabo de Hornos, Universidad de Magallanes, Puerto Williams, Chile
- Millennium Institute Biodiversity of Antarctic and Subantarctic Ecosystems BASE, Santiago, Chile
- Cape Horn International Center CHIC, Puerto Williams, Chile
| | - Sasha Madronich
- UV-B Monitoring and Research Program, Colorado State University, Fort Collins, CO, USA
| | - Patrick J Neale
- Smithsonian Environmental Research Center, Edgewater, MD, USA
| | - Rachel E Neale
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- School of Public Health, University of Queensland, Brisbane, Australia
| | - Catherine M Olsen
- Population Health Program, QIMR Berghofer Medical Research Institute, Brisbane, Australia
- Frazer Institute, University of Queensland, Brisbane, Australia
| | - Rachele Ossola
- Department of Chemistry, Colorado State University, Fort Collins, CO, USA
| | | | - Irina Petropavlovskikh
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA
- Ozone and Water Vapor Division, NOAA ESRL Global Monitoring Laboratory, Boulder, CO, USA
| | - Laura E Revell
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand
| | - Sharon A Robinson
- Securing Antarctica's Environmental Future, University of Wollongong, Wollongong, Australia
- School of Earth, Atmospheric and Life Sciences, University of Wollongong, Wollongong, Australia
| | - T Matthew Robson
- UK National School of Forestry, University of Cumbria, Ambleside Campus, Ambleside, UK
- Organismal & Evolutionary Ecology, Viikki Plant Science Centre, Faculty of Biological & Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Kevin C Rose
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Keith R Solomon
- School of Environmental Sciences, University of Guelph, Guelph, Canada
| | - Mads P Sulbæk Andersen
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, CA, USA
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | - Barbara Sulzberger
- Retired From Eawag: Swiss Federal Institute of Aquatic Science and Technology, Dubendorf, Switzerland
| | - Timothy J Wallington
- Center for Sustainable Systems, School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - Qing-Wei Wang
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, China
| | - Sten-Åke Wängberg
- Department of Marine Sciences, University of Gothenburg, Gothenburg, Sweden
| | | | | | - Richard G Zepp
- ORD/CEMM, US Environmental Protection Agency, Athens, GA, USA
| | - Liping Zhu
- State Key Lab for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, China
| |
Collapse
|
21
|
Bihannic I, Gley R, Gallo L, Badura A, Razafitianamaharavo A, Beuret M, Billet D, Bojic C, Caillet C, Morlot P, Zaffino M, Jouni F, George B, Boulet P, Noûs C, Danger M, Felten V, Pagnout C, Duval JFL. Photodegradation of disposable polypropylene face masks: Physicochemical properties of debris and implications for the toxicity of mask-carried river biofilms. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133067. [PMID: 38039813 DOI: 10.1016/j.jhazmat.2023.133067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/18/2023] [Accepted: 11/21/2023] [Indexed: 12/03/2023]
Abstract
COVID-19 outbreak led to a massive dissemination of protective polypropylene (PP) face masks in the environment, posing a new environmental risk amplified by mask photodegradation and fragmentation. Masks are made up of a several kilometres long-network of fibres with diameter from a few microns to around 20 µm. After photodegradation, these fibres disintegrate, producing water dispersible debris. Electrokinetics and particle stability observations support that photodegradation increases/decreases the charge/hydrophobicity of released colloidal fragments. This change in hydrophobicity is related to the production of UV-induced carbonyl and hydroxyl reactive groups detectable after a few days of exposure. Helical content, surface roughness and specific surface area of mask fibres are not significantly impacted by photodegradation. Fragmentation of fibres makes apparent, at the newly formed surfaces, otherwise-buried additives like TiO2 nanoparticles and various organic components. Mortality of gammarids is found to increase significantly over time when fed with 3 days-UV aged masks that carry biofilms grown in river, which is due to a decreased abundance of microphytes therein. In contrast, bacteria abundance and microbial community composition remain unchanged regardless of mask degradation. Overall, this work reports physicochemical properties of pristine and photodegraded masks, and ecosystemic functions and ecotoxicity of freshwater biofilms they can carry.
Collapse
Affiliation(s)
| | - Renaud Gley
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France
| | - Lucas Gallo
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France
| | | | | | | | - David Billet
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France
| | - Clément Bojic
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Céline Caillet
- Université de Lorraine, CNRS, LIEC, F-54000 Nancy, France
| | | | - Marie Zaffino
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Fatina Jouni
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Béatrice George
- Université de Lorraine, INRAE, LERMAB, F-54000 Nancy, France
| | - Pascal Boulet
- Université de Lorraine, CNRS, IJL, F-54000 Nancy, France
| | | | - Michael Danger
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Vincent Felten
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | | | | |
Collapse
|
22
|
Ge A, Zhao S, Sun C, Yuan Z, Liu L, Chen L, Li F. Comparison of three digestion methods for microplastic extraction from aquaculture feeds. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168919. [PMID: 38030012 DOI: 10.1016/j.scitotenv.2023.168919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/08/2023] [Accepted: 11/25/2023] [Indexed: 12/01/2023]
Abstract
Microplastics (MPs) are ubiquitous pollutants found in aquaculture animals that may threaten human health through the food chain. However, there is a lack of effective methods for extracting MPs from aquaculture feeds containing complex components such as organic matter and fish bones. Therefore, in the present study, the extraction efficiency of three digestion methods using 30 % H2O2, Fenton reagent, and 30 % H2O2 + HNO3 for different particle sizes and types of MPs in aquaculture feeds was investigated and compared. The total digestion efficiency of the aquaculture feeds by 30 % H2O2 was 97.3 ± 0.1 %, while the recovery efficiency of MPs was 91.3 ± 1.1 % -103.1 ± 0.9 %. However, there was a large deviation in the extraction efficiency of MPs from aquaculture feeds by the Fenton reagent and 30 % H2O2 + HNO3. Notably, the surface morphology, particle size distribution, and oxidation degree of MPs hardly changed after 30 % H2O2 digestion. More importantly, the changes in the spectral features and carbonyl index of MPs after 30 % H2O2 digestion were smaller than those of the Fenton reagent and 30 % H2O2 + HNO3, which did not affect the identification of MPs. Overall, 30 % H2O2 was more efficient in extracting MPs from aquaculture feeds, and no significant effect on the characteristics of MPs was observed. This work provides novel insights into the effect of chemical pretreatment on the extraction of MPs in aquaculture feeds and provides an optimal protocol for the detection of MPs in aquaculture feeds.
Collapse
Affiliation(s)
- Anqi Ge
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Shasha Zhao
- Shandong Engineering Research Center of Green and High-value Marine Fine Chemical, School of Chemical Engineering and Environment, Weifang University of Science and Technology, Weifang 262700, China
| | - Cuizhu Sun
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Zixi Yuan
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Liuqingqing Liu
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Lingyun Chen
- Faculty of Agricultural, Life and Environmental Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Fengmin Li
- Institute of Coastal Environmental Pollution Control, Ministry of Education Key Laboratory of Marine Environment and Ecology, Marine Ecology and Environmental Science Laboratory, Pilot National Laboratory for Marine Science and Technology, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Sanya Oceanographic Institution, Ocean University of China, Sanya 572000, China.
| |
Collapse
|
23
|
Li Y, Zhang C, Tian Z, Cai X, Guan B. Identification and quantification of nanoplastics (20-1000 nm) in a drinking water treatment plant using AFM-IR and Pyr-GC/MS. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132933. [PMID: 37951177 DOI: 10.1016/j.jhazmat.2023.132933] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/09/2023] [Accepted: 11/03/2023] [Indexed: 11/13/2023]
Abstract
Nanoplastics, owing to their small particle size, pose a significant threat to creatures, deserving heightened attention. Numerous studies have investigated microplastics pollution and their removal efficiency in drinking water treatment plants, none of which have involved nanoplastics due to lacking a suitable analytical method. This study introduced a feasible method of combing AFM-IR and Pyr-GC/MS to identify and quantify nanoplastics (20-1000 nm) for a preliminary understanding of their fate during drinking water treatment processes. Resolving of chemical functional groups and pyrolysis products from AFM-IR and Pyr-GC/MS data demonstrated the presence of PE and PVC nanoplastics in this drinking water treatment plant. The initial influent abundances of PE and PVC nanoplastics were 0.86 μg/L and 137.31 μg/L, with subsequent increase to 4.49 μg/L and 208.64 μg/L in ozonation contact tank unit. Then a gradual decreasing was observed along water process, achieving 98.4% removal of PE nanoplastics and 44.0% removal of PVC nanoplastics, respectively. Although this drinking water treatment plant has exhibited a certain level of nanoplastics removal efficiency, particular attention should be directed to the oxidation unit, which appears to be a significant source of nanoplastics. This study will lay a foundation for revealing nanoplastics pollution in the environment.
Collapse
Affiliation(s)
- Yu Li
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China; Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA.
| | - Chuanming Zhang
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Zhenyu Tian
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Xueyi Cai
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA, USA
| | - Baohong Guan
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|
24
|
Chen Y, Yan Z, Zhang Y, Zhu P, Jiang R, Wang M, Wang Y, Lu G. Co-exposure of microplastics and sulfamethoxazole propagated antibiotic resistance genes in sediments by regulating the microbial carbon metabolism. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132951. [PMID: 37951174 DOI: 10.1016/j.jhazmat.2023.132951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 09/14/2023] [Accepted: 11/06/2023] [Indexed: 11/13/2023]
Abstract
The concerns on the carriers of microplastics (MPs) on co-existing pollutants in aquatic environments are sharply rising in recent years. However, little is known about their interactions on the colonization of microbiota, especially for the spread of pathogens and antibiotic resistance genes (ARGs). Therefore, this study aimed to investigate the influences on the propagation of ARGs in sediments by the co-exposure of different MPs and sulfamethoxazole (SMX). The results showed that the presence of MPs significantly enhanced the contents of total organic carbon, while having no effects on the removal of SMX in sediments. Exposure to SMX and MPs obviously activated the microbial carbon utilization capacities based on the BIOLOG method. The propagation of ARGs in sediments was activated by SMX, which was further promoted by the presence of polylactic acid (PLA) MPs, but significantly lowered by the co-exposed polyethylene (PE) MPs. This apparent difference may be attributed to the distinct influence on the antibiotic efflux pumps of two MPs. Moreover, the propagation of ARGs may be also dominated by microbial carbon metabolism in sediments, especially through regulating the carbon sources of carboxylic acids, carbohydrates, and amino acids. This study provides new insights into the carrier effects of MPs in sediments.
Collapse
Affiliation(s)
- Yufang Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Yan Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Peiyuan Zhu
- College of Environment, Hohai University, Nanjing 210098, China
| | - Runren Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Min Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Yonghua Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
25
|
Mubin AN, Islam ARMT, Hasan M, Islam MS, Ali MM, Siddique MAB, Alam MS, Rakib MRJ, Islam MS, Momtaz N, Senapathi V, Idris AM, Malafaia G. The path of microplastics through the rare biodiversity estuary region of the northern Bay of Bengal. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 260:104271. [PMID: 38056088 DOI: 10.1016/j.jconhyd.2023.104271] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/01/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
Due to its harmful effects on ecosystems and human health, microplastic (MP) pollution has become a significant environmental problem on a global scale. Although MPs' pollution path and toxic effects on marine habitats have been examined worldwide, the studies are limited to the rare biodiversity estuary region of Hatiya Island from the northern Bay of Bengal. This study aimed to investigate the MP pollution path and its influencing factors in estuarine sediments and water in rare biodiversity Hatiya Island in the northern Bay of Bengal. Sixty water and sediment samples were collected from 10 sampling sites on the Island and analyzed for MPs. The abundance of MPs in sediment ranged from 67 to 143 pieces/kg, while the abundance in water ranged from 24.34 to 59 pieces/m3. The average concentrations of MPs in sediment and water were 110.90 ± 20.62 pieces/kg and 38.77 ± 10.09 pieces/m3, respectively. Most identified MPs from sediment samples were transparent (51%), while about 54.1% of the identified MPs from water samples were colored. The fragment was the most common form of MP in both compartments, with a value of 64.6% in sediment samples and 60.6% in water samples. In sediment and water samples, almost 74% and 80% of MP were <0.5 mm, respectively. Polypropylene (PP) was the most abundant polymer type, accounting for 51% of all identified polymers. The contamination factor, pollution load index, polymer risk score, and pollution risk score values indicated that the study area was moderately polluted with MPs. The spatial distribution patterns and hotspots of MPs echoed profound human pathways. Based on the results, sustainable management strategies and intervention measures were proposed to reduce the pollution level in the ecologically diverse area. This study provides important insights into evaluating estuary ecosystem susceptibility and mitigation policies against persistent MP issues.
Collapse
Affiliation(s)
- Al-Nure Mubin
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Abu Reza Md Towfiqul Islam
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh; Department of Development Studies, Daffodil International University, Dhaka 1216, Bangladesh.
| | - Mehedi Hasan
- Department of Disaster Management, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Md Saiful Islam
- Department of Soil Science, Patuakhali Science and Technology University, Dumki, Patuakhali 8602, Bangladesh
| | - Mir Mohammad Ali
- Department of Aquaculture, Sher - e - Bangla Agricultural University, Dhaka 1207, Bangladesh
| | - Md Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Md Sha Alam
- Institute of Mining, Mineralogy & Metallurgy (IMMM), Bangladesh Council of Scientific & Industrial Research (BCSIR), Joypurhat 5900, Bangladesh
| | - Md Refat Jahan Rakib
- Department of Fisheries and Marine Science, Faculty of Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Muhammad Saiful Islam
- Fiber and Polymer Research Division, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | - Nasima Momtaz
- Biological Research Division, BCSIR Laboratories Dhaka, Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Dhaka 1205, Bangladesh
| | | | - Abubakr M Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
| | - Guilherme Malafaia
- Post-Graduation Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Goiânia, GO, Brazil; Post-Graduation Program in Ecology, Conservation, and Biodiversity, Federal University of Uberlândia, Uberlândia, MG, Brazil; Post-Graduation Program in Biotechnology and Biodiversity, Federal University of Goiás, Goiânia, GO, Brazil.
| |
Collapse
|
26
|
Li H, Gu Y, Jiang Y, Ding P, Chen X, Chen C, Pan R, Shi C, Wang S, Chen H. Environmentally persistent free radicals on photoaged nanopolystyrene induce neurotoxicity by affecting dopamine, glutamate, serotonin and GABA in Caenorhabditis elegans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167684. [PMID: 37820818 DOI: 10.1016/j.scitotenv.2023.167684] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/06/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Microplastics are widely detected in the environment and induce toxic effects in various organisms. However, the properties and toxicity associated with environmentally persistent free radicals (EPFRs) in photoaged nanopolystyrene (NPS) remain largely unknown. We investigated the generation of EPFRs on photoaged NPS and their neurotoxicity and underlying mechanism in Caenorhabditis elegans. The results suggested that photoaging induces the generation of EPFRs and reactive oxygen species (O2•-, •OH, and 1O2), which altered the physicochemical properties (morphology, crystallinity, and functional groups) of NPS. Acute exposure to 1 μg/L of NPS-60 (NPS with light irradiation time of 60 d) significantly decreased locomotion behaviors and neurotransmitter contents (e.g., glutamate, serotonin, dopamine, and γ-aminobutyric acid). Treatment with N-acetyl-L-cysteine (NAC) by radical quenching test significantly reduced EPFRs levels on the aged NPS, and the toxicity of NAC-quenching NPS was decreased in nematodes compared to those in photoaged NPS. EPFRs also caused dysfunction of neurotransmission-related gene expression in C. elegans. Thus, EPFRs generated on photoaged NPS contributed to neurotoxicity by affecting dopamine, glutamate, serotonin, and γ-aminobutyric acid neurotransmission. The study highlights the potential risks of photoaged NPS and the contributions of EPFRs to toxicity.
Collapse
Affiliation(s)
- Hui Li
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yulun Gu
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yongqi Jiang
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ping Ding
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xiaoxia Chen
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chao Chen
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ruolin Pan
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chongli Shi
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Susu Wang
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Haibo Chen
- Institute for Environmental pollution and health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
27
|
Sá S, Torres-Pereira A, Ferreira M, Monteiro SS, Fradoca R, Sequeira M, Vingada J, Eira C. Microplastics in Cetaceans Stranded on the Portuguese Coast. Animals (Basel) 2023; 13:3263. [PMID: 37893986 PMCID: PMC10603649 DOI: 10.3390/ani13203263] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/06/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023] Open
Abstract
This study characterises microplastics in small cetaceans on the coast of Portugal and assesses the relationship between several biological variables and the amount of detected microplastics. The intestines of 38 stranded dead cetaceans were processed in the laboratory, with digestion methods adapted to the amount of organic matter in each sample. The influence of several biological and health variables (e.g., species, sex, body condition) on the amount of microplastics was tested in all analysed species and particularly in common dolphins, due to the larger number of available samples. Most of the analysed individuals had microplastics in the intestine (92.11%), with harbour porpoises revealing a significantly higher median number of microplastics than common dolphins, probably due to their different diets, use of habitat and feeding strategies. None of the other tested variables significantly influenced the number of microplastics. Moreover, the microplastics found should not be enough to cause physical or chemical sublethal effects, although the correlation between microplastic ingestion and plastic additive bioaccumulation in cetacean tissues requires further investigation. Future monitoring in biota should rely on improved and standardised protocols for microplastic analyses in complex samples to allow for accurate analyses of larger samples and spatio-temporal comparisons.
Collapse
Affiliation(s)
- Sara Sá
- Department of Biology & CESAM & ECOMARE/CPRAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (A.T.-P.); (S.S.M.); (C.E.)
| | - Andreia Torres-Pereira
- Department of Biology & CESAM & ECOMARE/CPRAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (A.T.-P.); (S.S.M.); (C.E.)
| | - Marisa Ferreira
- Portuguese Wildlife Society (SPVS), Estação de Campo de Quiaios, 3081-101 Figueira da Foz, Portugal; (M.F.); (R.F.); (J.V.)
| | - Sílvia S. Monteiro
- Department of Biology & CESAM & ECOMARE/CPRAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (A.T.-P.); (S.S.M.); (C.E.)
| | - Raquel Fradoca
- Portuguese Wildlife Society (SPVS), Estação de Campo de Quiaios, 3081-101 Figueira da Foz, Portugal; (M.F.); (R.F.); (J.V.)
| | - Marina Sequeira
- Instituto da Conservação da Natureza e Florestas (ICNF), Av. da República 16, 1050-191 Lisboa, Portugal;
| | - José Vingada
- Portuguese Wildlife Society (SPVS), Estação de Campo de Quiaios, 3081-101 Figueira da Foz, Portugal; (M.F.); (R.F.); (J.V.)
| | - Catarina Eira
- Department of Biology & CESAM & ECOMARE/CPRAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; (A.T.-P.); (S.S.M.); (C.E.)
| |
Collapse
|