1
|
Zhang H, Xie J, Luo Z, Shen L, Sun L, Li G, Ji J, Liu W, Peng H. Synergy of F-Fe dual sites in KFeF 3 promoting Fenton-like cycle and refractory organics degradation through direct electron transfer. J Colloid Interface Sci 2025; 691:137406. [PMID: 40138806 DOI: 10.1016/j.jcis.2025.137406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 03/05/2025] [Accepted: 03/20/2025] [Indexed: 03/29/2025]
Abstract
The electron cycling of single active site on catalyst was commonly restrict in Fenton-like reactions, thus limits the degradation of refractory organics in water treatment. In this work, a novel strategy for inducing efficient Fenton-like reaction through F-Fe dual sites on the surface of perovskite fluoride KFeF3 was practiced. The KFeF3 and a series of perovskite fluoride material were synthesized by simple hydrothermal method. The KFeF3 exhibited very high performance for remove of multiple refractory organics and chemical oxygen demand in lignin wastewater. Rhodamine B and phenol could be completely removed within 2 s and 16 s respectively and the mineralization rate of phenol reached ∼90 % within 5 min. Detection of ROS and in situ analysis combining density functional theory calculation of the interface proved that the rapid degradation of phenol was attribute to the synergistic effect of F-Fe dual sites and degradation pathway through direct electron transfer. F site serves as the activation site of H2O2 and reduce H2O2 to form OH, whereas, OH attacking was not the dominating pathway for degradation. The redox reaction between F site and H2O2 triggered the direct electron transfer from the Fe-phenol (or hydroxylation intermediates of phenol) complex to F site thus avoided the passivation of Fe site and accelerated Fenton-like cycle. This work revealed a fire-new mechanism of Fenton-like reaction and was expected to impulse treatment of refractory wastewater.
Collapse
Affiliation(s)
- Hongxiang Zhang
- School of Resources and Environment, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, PR China
| | - Jiaqi Xie
- School of Resources and Environment, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, PR China
| | - Zehao Luo
- School of Resources and Environment, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, PR China
| | - Leizhen Shen
- School of Resources and Environment, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, PR China
| | - Lu Sun
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Guobo Li
- School of Resources and Environment, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, PR China
| | - Jian Ji
- School of Resources and Environment, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, PR China
| | - Wenming Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, PR China
| | - Honggen Peng
- School of Resources and Environment, Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031, PR China.
| |
Collapse
|
2
|
Wu L, Li H, Gu Y, Shen Z, Zhou Y, Zuo J. Integrating dual-stage gas permeable membranes and humic acid recovery to optimize fenton oxidation of landfill leachate: Insights into full-process performance and DOM molecular-level transformation. WATER RESEARCH 2025; 280:123525. [PMID: 40174423 DOI: 10.1016/j.watres.2025.123525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 03/02/2025] [Accepted: 03/19/2025] [Indexed: 04/04/2025]
Abstract
This research introduces an innovative full-process treatment technology that integrates dual-stage gas permeable membranes (GPM) and humic acid (HA) recovery to enhance Fenton oxidation of landfill leachate (LFL). In terms of full-process performance, this integrated approach (LFL-GPM-HA (Fenton)) synergistically combines LFL concentration, ammonia recovery, HA recovery, purified water reclamation, and efficient Fenton oxidation, thereby achieving holistic minimization, detoxification, and resource recovery of LFL. Specifically, under the conditions of low-intensity aeration and a temperature gradient of 65-55-25 °C, the GPM achieved an ammonia recovery rate exceeding 96 %, while the LFL was concentrated by a factor of 4.72 within 12 h. During HA recovery at pH 2, the HA yield from the concentrated LFL reached 3.68 g/L, representing an 88.72 % increase compared to the raw LFL. Due to the significant consumption of bicarbonate alkalinity during the GPM process, the required dosage of H₂SO₄ per gram of HA recovered was reduced by 86.72 %. Under different dimensionless oxidant dosages, the LFL-GPM-HA (Fenton) demonstrated a significant improvement in COD removal efficiency compared to standalone Fenton oxidation. In terms of dissolved organic matter (DOM) molecular-level transformation, ESI FT-ICR-MS analysis showed a significant enhancement in the removal of CHOS and CHONS in LFL-GPM-HA (Fenton), with a concurrent reduction in the produced sulfurous byproducts. Additionally, the LFL-GPM-HA (Fenton) notably increased the frequency of decarboxylation, desulfurization, and dealkylation reactions. In terms of operational stability and economic feasibility, this integrated system demonstrates excellent long-term stability and robust membrane fouling-cleaning recovery properties, achieving LFL treatment at a cost of approximately 12.142 $/m³, which is significantly more cost-effective than conventional full-process advanced treatment technologies (20-30 $/m³). In conclusion, the findings offer a pathway for developing more efficient and cost-effective strategies for LFL management.
Collapse
Affiliation(s)
- Linjun Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Huan Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yanyue Gu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zhiqiang Shen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Yuexi Zhou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environment Sciences, Beijing 100012, China; Research Center of Environmental Pollution Control Engineering Technology, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Jiane Zuo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Tsinghua Shenzhen International Graduate School, Shenzhen 518055, China.
| |
Collapse
|
3
|
Tang C, Jiang J, Bao Y, Gao M, Qin S, Qin Z, Shen XC, Ruan C. 1T/2H-MoS 2-Decorated Carbon Felts as Excellent Co-Catalysts in Advanced Oxidation Processes for the Degradation of Organic Pollutants. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:10501-10515. [PMID: 40233225 DOI: 10.1021/acs.langmuir.5c00469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
The Fenton reaction is restricted by the sluggish Fe(II)/Fe(III) cycle and the low activation efficiency of oxidants. Herein, 1T/2H MoS2 nanoflowers with abundant defects and a multiphase structure, loaded on carbon felts (denoted as THMC), have been prepared to boost catalytic activity in Fenton-like oxidation. The defects and ultrathin nanosheets promote the adsorption of iron ions and pollutants, while the unsaturated S atoms and exposed Mo(IV) sites facilitate the conversion of Fe(III) to Fe(II). Additionally, the 1T phase accelerates electron transfer in Fe(II)/Fe(III) cycling, thereby synergistically enhancing catalytic activity in Fenton-like oxidation and improving the efficiency of pollutant elimination. Moreover, the loading of MoS2 nanoflowers on carbon felts not only overcomes the limitations of powder in separation and recycling but also offers robust stability for long-term applications. Thanks to these structural characteristics, the degradation efficiencies of rhodamine B and bisphenol A in the THMC cocatalyzed system reach 99.3% and 98.1%, respectively, and the corresponding rate constants (kobs) are 10.3 and 10.1 times higher than those of the traditional Fe2+-catalyzed system. Impressively, THMC still maintains excellent cocatalytic performance after 5 cycles and exhibits high degradation efficiencies across wide pH ranges. The cocatalytic system can efficiently eliminate a variety of organic pollutants and adapt to natural water samples. Furthermore, the performance of several MoS2 nanoflowers with varied phase structures and phase ratios has been investigated to probe the effect of phase structure. Interestingly, the kobs value of MoS2 with 52.4% 1T phase was 5.9 and 3.4 times higher than that of 5.6%-1T MoS2 in the degradation of RhB and BPA, respectively. Moreover, the cocatalytic performance of MoS2 could be further improved with an increase in the 1T phase to 66.6%. These observations reveal the significant role of phase effects on the cocatalytic activity of MoS2 in AOPs.
Collapse
Affiliation(s)
- Cong Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Jingjing Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Yusheng Bao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Manling Gao
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Sikai Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - ZhuFeng Qin
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| | - Changping Ruan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, People's Republic of China
| |
Collapse
|
4
|
Xiao M, Jiang R, Xu Z, Wang Q, Fu Y, Jiang S, Long Y, Zhu H. Floatable and magnetic MoS 2/NiFe 2O 4/chitosan nanocomposite integrated melamine sponges with hybrid photothermal and photocatalytic enhancement for pollutant removal. Int J Biol Macromol 2025; 291:138965. [PMID: 39706447 DOI: 10.1016/j.ijbiomac.2024.138965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Magnetic chitosan-based materials with good adsorption-photocatalysis and magnetic properties have great prospect in wastewater treatment. In this paper, a floating magnetic molybdenum disulfide/NiFe2O4/chitosan integrated melamine sponges (m-MoS2/CS@MS) was fabricated using chitosan as absorbent and adhesive, MoS2 and NiFe2O4 as photocatalysts, and melamine sponge as support material. The m-MoS2/CS@MS has a rich light-water-air-material interaction interface and can float on the water surface. The light absorbance of m-MoS2/CS@MS had dramatically increased by 55.77 % with the introduction of MoS2 and NiFe2O4 nanoparticles. The m-MoS2/CS@MS can effectively remove Congo red dye at pH = 2-10 under different coexisting inorganic salts (Cl-, SO42-) and water matrices (ultrapure water, tap water, Lake water, and mineral water). The m-MoS2/CS@MS had excellent photocatalytic degradation ability, reaching a degradation rate of 98.88 % under simulated solar light irradiation. Furthermore, the m-MoS2/CS@MS composite exhibited excellent stability, convenient magnetic recycling performance, reusability and its suitability for dye wastewater treatment under different conditions. This research provided a new insight into the practical application of sustainable and clean chitosan-based materials.
Collapse
Affiliation(s)
- Mei Xiao
- College of Life Science, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Ru Jiang
- College of Life Science, Taizhou University, Taizhou, Zhejiang 318000, PR China; Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000, PR China.
| | - Zeen Xu
- College of Life Science, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Qi Wang
- School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, Zhejiang 310018, PR China.
| | - Yongqian Fu
- Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Shengtao Jiang
- College of Life Science, Taizhou University, Taizhou, Zhejiang 318000, PR China
| | - Yangke Long
- Department of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen 518172, PR China
| | - Huayue Zhu
- College of Life Science, Taizhou University, Taizhou, Zhejiang 318000, PR China; Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, Zhejiang 318000, PR China; Zhejiang Key Laboratory for Island Green Energy and New Materials, Taizhou University, Taizhou, Zhejiang 318000, PR China.
| |
Collapse
|
5
|
Yan C, Cai X, Zhou X, Luo Z, Deng J, Tian X, Shi J, Li W, Luo Y. Boosting peroxymonosulfate activation via Fe-Cu bimetallic hollow nanoreactor derived from copper smelting slag for efficient degradation of organics: The dual role of Cu. J Colloid Interface Sci 2025; 678:858-871. [PMID: 39222606 DOI: 10.1016/j.jcis.2024.08.203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/23/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
Valorization of iron-rich metallurgical slags in the construction of Fenton-like catalysts has an appealing potential from the perspective of sustainable development. For the first time, copper smelting slag (CSS) was utilized as the precursor to synthesize hollow sea urchin-like Fe-Cu nanoreactors (Cu1.5Fe1Si) to activate peroxymonosulfate (PMS) for chlortetracycline hydrochloride (CTC) degradation. The hyper-channels and nano-sized cavities were formed in the catalysts owing to the induction and modification of Cu, not only promoting the in-situ growth of silicates and the formation of cavities due to the etching of SiO2 microspheres, but also resulting the generation of nanotubes through the distortion and rotation of the nanosheets. It was found that 100 % CTC degradation rate can be achieved within 10 min for Cu1.5Fe1Si, 75 times higher than that of Cu0Fe1Si (0.0024 up to 0.18 M-1‧min-1). The unique nanoconfined microenvironment structure could enrich reactants in the catalyst cavities, prolong the residence time of molecules, and increase the utilization efficiency of active species. Density functional theory (DFT) calculations show that Cu1.5Fe1Si has strong adsorption energy and excellent electron transport capacity for PMS, and Fe-Fe sites are mainly responsible for the activation of PMS, while Cu assists in accelerating the Fe(II)/Fe(Ⅲ) cycle and promotes the catalytic efficiency. The excellent mineralization rate (83.32 % within 10 min) and efficient treatment of CTC in consecutive trials corroborated the high activity and stability of the Cu1.5Fe1Si. This work provides a new idea for the rational design of solid waste-based eco-friendly functional materials, aiming at consolidating their practical application in advanced wastewater treatment.
Collapse
Affiliation(s)
- Cuirong Yan
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China; Faculty of Environmental and Chemical Engineering, Kunming Metallurgy College, Kunming, Yunnan 650033, China
| | - Xiunan Cai
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Xintao Zhou
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Zhongqiu Luo
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Jiguang Deng
- Department of Chemical Engineering and Technology, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Xincong Tian
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Jinyu Shi
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Wenhao Li
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| | - Yongming Luo
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650500, China
| |
Collapse
|
6
|
Tian Q, Chang J, Yu B, Jiang Y, Gao B, Yang J, Li Q, Gao Y, Xu X. Co-catalysis strategy for low-oxidant-consumption Fenton-like chemistry: From theoretical understandings to practical applications and future guiding strategies. WATER RESEARCH 2024; 267:122488. [PMID: 39306932 DOI: 10.1016/j.watres.2024.122488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 11/28/2024]
Abstract
Recently, great effects have been made for the co-catalysis strategy to solve the bottlenecks of Fenton system. A series of co-catalysis strategies using various inorganic metal co-catalysts and organic co-catalysts have been developed in various oxidant (i.e., hydrogen peroxide (H2O2) and persulfate) systems with significantly promotion of catalytic performances and lower oxidant consumption (only 5-10 % of conventional Fenton/Fenton-like systems). However, the developments of these co-catalysis strategies from theoretical understandings to practical applications and future guiding strategies were overlooked, which was an essential problem that must be considered for the future scale-up applications of co-catalysis systems. In this paper, these co-catalysis strategies with low-oxidant-consumption characteristics have been reviewed by the comparison of their co-catalysis mechanisms, as well as their advantages and disadvantages. We also discussed the recent developments of amplifying devices based on the co-catalysis systems. The scale-up performances of co-catalysis strategies based on these amplifying devices have also been assessed. In addition, future guiding strategies for the development of co-catalysis strategy with low-oxidant-consumption characteristics have also been first time outlined by the combination of the technical-economic analysis (TEA), life cycle assessment (LCA) and machine learning (ML). Finally, the paper systematically discusses the development opportunities, technical bottlenecks and future development directions of co-catalysis strategies with the prospect of large-scale applications. Basically, this work provides a systematic review on co-catalysis strategy with low-oxidant-consumption characteristic from theoretical understandings to practical applications and future guiding strategies.
Collapse
Affiliation(s)
- Qingbai Tian
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Jiale Chang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Bingliang Yu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Yue Jiang
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Jingren Yang
- State Environmental Protection Key Laboratory of Environmental Health Impact Assessment of Emerging Contaminants, Shanghai Academy of Environmental Sciences, Shanghai 200233, China
| | - Qian Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Yue Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
7
|
Lu H, Hou L, Zhang Y, Cao X, Xu X, Shang Y. Pilot-scale and large-scale Fenton-like applications with nano-metal catalysts: From catalytic modules to scale-up applications. WATER RESEARCH 2024; 266:122425. [PMID: 39265214 DOI: 10.1016/j.watres.2024.122425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Recently, great efforts have been made to advance the pilot-scale and engineering-scale applications of Fenton-like processes using various nano-metal catalysts (including nanosized metal-based catalysts, smaller nanocluster catalysts, and single-atom catalysts, etc.). This step is essential to facilitate the practical applications of advanced oxidation processes (AOPs) for these highly active nano-metal catalysts. Before large-scale implementation, these nano-metal catalysts must be converted into the effective catalyst modules (such as catalytic membranes, fluidized beds, or polypropylene sphere suspension systems), as it is not feasible to use suspended powder catalysts for large-scale treatment. Therefore, the pilot-scale and engineering applications of nano-metal catalysts in Fenton-like systems in recent years is exciting. In addition, the combination of life cycle assessment (LCA) and techno-economic analysis (TEA) can provide a useful support tool for engineering scale Fenton-like applications. This paper summarizes the designs and fabrications of various advanced modules based on nano-metal catalysts, analyzes the advantages and disadvantages of these catalytic modules, and further discusses their Fenton-like pilot scale or engineering applications. Concepts of future Fenton-like engineering applications of nano-metal catalysts were also discussed. In addition, current challenges and future expectations in pilot-scale or engineering applications are assessed in conjunction with LCA and TEA. These challenges require further technological advances to enable larger scale engineering applications in the future. The aim of these efforts is to increase the potential of nanoscale AOPs for practical wastewater treatment.
Collapse
Affiliation(s)
- Haoyun Lu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Lifei Hou
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Yang Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China.
| | - Xiaoqiang Cao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China.
| | - Yanan Shang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China.
| |
Collapse
|
8
|
Li Q, Huang J, Lin L, Fan G. Regulating cobalt-nitrogen function centers via Cu incorporation enhances ciprofloxacin destruction through peroxymonosulfate activation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 360:124683. [PMID: 39111527 DOI: 10.1016/j.envpol.2024.124683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/27/2024] [Accepted: 08/04/2024] [Indexed: 08/12/2024]
Abstract
Metal-nitrogen (M-N) coupling has shown promise as a catalytic active component for various reactions. However, the regulation of heterogeneous catalytic materials with M-N coupling for peroxymonosulfate (PMS) activation to enhance the degradation efficiency and reusability of antibiotics remains a challenge. In this study, an efficient modulation of M-N coupling was achieved through the incorporation of Cu into Co4N to form a Cu-Co4N composite with sea urchin-like morphology assembled by numerous nano-needles using hydrothermal and nitriding processes. This modulation led to enhanced PMS activation for ciprofloxacin (CIP) degradation. The Cu-Co4N/PMS system demonstrated exceptional removal efficiency with a degradation rate of 95.85% within 30 min and can be reused for five time without obvious loss of its initial activity. Additionally, the catalyst displayed a high capacity for degrading various challenging organic pollutants, as well as remarkable stability, resistance to interferences, and adaptability to pH changes. The synergistic effect between Co and Cu facilitated multiple redox cycles, resulting in the generation of reactive oxidized species. The primary active species involved in the catalytic degradation process included 1O2, SO4•-, O2•-, •OH, and e-, with 1O2 and SO4•- playing the most significant roles. The degradation pathways and toxicity of the intermediates for CIP were unveiled. This study offers valuable insights into the regulation of M-N centers for degrading antibiotics through PMS activation.
Collapse
Affiliation(s)
- Qiulin Li
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Jieling Huang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Lan Lin
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China
| | - Guangyin Fan
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, 610068, China.
| |
Collapse
|
9
|
He Y, Xu Z, Yan Y, Zhang X, He Y, Luo Q, Wang D, Gao D. A universal nanoreactor triggering butterfly effect for encouraging Fenton/Fenton-like reactions and chemodynamic therapy. J Colloid Interface Sci 2024; 670:297-310. [PMID: 38763026 DOI: 10.1016/j.jcis.2024.05.091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
Fenton/Fenton-like reaction induced chemical dynamic therapy (CDT) has been widely recognized in tumor therapy. Due to the low efficiency of conversion from high-valent metal ions (M(n+1)+) to low-valent ions (Mn+) in the Fenton/Fenton-like catalytic process, enhancing the conversion efficiency safely and effectively would create a great opportunity for the clinical application of CDT. In the study, a universal nanoreactor (NR) consisting of liposome (Lip), tumor cell membrane (CM), and bis(2,4,5-trichloro-6-carboxyphenyl) oxalate (CPPO) is developed to tackle this challenge. The CPPO was first discovered to decompose under weak acidity and H2O2 conditions to generate carboxylic acids (R'COOH) and alcohols (R'OH) with reducibility, which will reduce M(n+1)+ to Mn+ and magnify the effect of CDT. Furthermore, glucose oxidase (GOx) was introduced to decompose glucose in tumor and generate H2O2 and glucose acid, which promote the degradation of CPPO, further strengthening the efficiency of CDT, leading to a butterfly effect. This demonstrated that the butterfly effect triggered by NR and GOx encourages Fenton/Fenton-like reactions of Fe3O4 and MoS2, thereby enhancing the tumor inhibition effect. The strategy of combining GOx and CPPO to strengthen the Fenton/Fenton-like reaction is a universal strategy, which provides a new and interesting perspective for CPPO in the application of CDT, reflecting the exquisite integration of Fenton chemistry and catalytic medicine.
Collapse
Affiliation(s)
- Yaqian He
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao 066004, China
| | - Zichuang Xu
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao 066004, China
| | - Yaqian Yan
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao 066004, China
| | - Xuwu Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao 066004, China
| | - Yuchu He
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao 066004, China
| | - Qingzhi Luo
- Hebei Key Laboratory of Photoelectric Control on Surface and Interface School of Sciences, Hebei University of Science and Technology, Shijiazhuang 050018, China.
| | - Desong Wang
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao 066004, China.
| | - Dawei Gao
- State Key Laboratory of Metastable Materials Science and Technology, Nano-biotechnology Key Lab of Hebei Province, Applying Chemistry Key Lab of Hebei Province, Heavy Metal Deep-Remediation in Water and Resource Reuse Key Lab of Hebei, Yanshan University, Qinhuangdao 066004, China.
| |
Collapse
|
10
|
Li S, Zou J, Wu J, Lin J, Tang C, Yang S, Chen L, Li Q, Wang P, Ma J. Protocatechuic acid enhanced the selective degradation of sulfonamide antibiotics in Fe(III)/peracetic acid process under actually neutral pH conditions. WATER RESEARCH 2024; 259:121891. [PMID: 38870888 DOI: 10.1016/j.watres.2024.121891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/13/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
The practical application of the Fe-catalyzed peracetic acid (PAA) processes is seriously restricted due to the need for narrow pH working range and poor anti-interference capacity. This study demonstrates that protocatechuic acid (PCA), a natural and eco-environmental phenolic acid, significantly enhanced the removal of sulfonamide antibiotics in Fe(III)/PAA process under actually neutral pH conditions (6.0-8.0) by complexing Fe(III). With sulfamethoxazole (SMX) as the model contaminant, the pseudo-first-order rate constant of SMX elimination in PCA/Fe(III)/PAA process was 63.5 times higher than that in Fe(III)/PAA process at pH 7.0, surpassing most of the previously reported strategies-enhanced Fe-catalyzed PAA processes (i.e., picolinic acid and hydroxylamine etc.). Excluding the primary contribution of reactive species commonly found in Fe-catalyzed PAA processes (e.g., •OH, R-O•, Fe(IV)/Fe(V) and 1O2) to SMX removal, the Fe(III)-peroxy complex intermediate (CH3C(O)OO-Fe(III)-PCA) was proposed as the primary reactive species in PCA/Fe(III)/PAA process. DFT theoretical calculations indicate that CH3C(O)OO-Fe(III)-PCA exhibited stronger oxidation potential than CH3C(O)OO-Fe(III), thereby enhancing SMX removal. Four potential removal pathways of SMX were proposed and the toxicity of reaction solution decreased with the removal of SMX. Furthermore, PCA/Fe(III)/PAA process exhibited strong anti-interference capacity to common natural anions (HCO3-, Cl-and NO3-) and humic acid. More importantly, the PCA/Fe(III)/PAA process demonstrated high efficiency for SMX elimination in actual samples, even at a trace Fe(III) dosage (i.e., 5 μM). Overall, this study provided a highly-efficient and eco-environmental strategy to remove sulfonamide antibiotics in Fe(III)/PAA process under actually neutral pH conditions and to strengthen its anti-interference capacity, underscoring its potential application in water treatment.
Collapse
Affiliation(s)
- Sheng Li
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Jing Zou
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China.
| | - Jianying Wu
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Jinbin Lin
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China; Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, School of Environment, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Chenyu Tang
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Shiyi Yang
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Lingxin Chen
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China
| | - Qingsong Li
- Water Resources and Environmental Institute, Xiamen University of Technology, Xiamen, Fujian, 361005, PR China
| | - Panpan Wang
- Xiamen Key Laboratory of Municipal and Industrial Solid Waste Utilization and Pollution Control, College of Civil Engineering, Huaqiao University, Xiamen, Fujian 361021, PR China; State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China
| | - Jun Ma
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang, 150090, PR China
| |
Collapse
|
11
|
Chen Y, Cheng M, Jin L, Yang H, Ma S, Lin Z, Dai G, Liu X. Heterogeneous activation of self-generated H 2O 2 by Pd@UiO-66(Zr) for trimethoprim degradation: Efficiency and mechanism. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121868. [PMID: 39032257 DOI: 10.1016/j.jenvman.2024.121868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/19/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
The Fenton reaction is recognized as an effective technique for degrading persistent organic pollutants, such as the emerging pollutant trimethoprim (TMP). Recently, due to the excellent reducibility of active hydrogen ([H]), Pd-H2 has been preferred for Fenton-like reactions and the specific H2 activation of Pd-based catalysts. Herein, a heterogeneous Fenton catalyst named the hydrogen-accelerated oxygen reduction Fenton (MHORF@UiO-66(Zr)) system was prepared through the strategy of building ships in the bottle. The [H] has been used for the acceleration of the reduction of Fe(III) and self-generate H2O2. The systematic characterization demonstrated that the nano Pd0 particle was highly dispersed into the UiO-66(Zr). The results found that 20 mg L-1 of TMP was thoroughly degraded within 90 min in the MHORF@UiO-66(Zr) system under conditions of initial pH 3, 30 mL min-1 H2, 2 g L-1 Pd@UiO-66(Zr) and 25 μM Fe2+. The hydroxyl radical as well as the singlet oxygen were evidenced to be the main reactive oxygen species by scavenging experiments and electron spin resonance. In addition, both reducing Fe(III) and self-generating H2O2 could be achieved due to the strong metal-support interaction (SMSI) between the nano Pd0 particles and UiO-66(Zr) confirmed by the correlation results of XPS and calculation of density functional theory. Finally, the working mechanism of the MHORF@UiO-66(Zr) system and the possible degradation pathway of the TMP have been proposed. The novel system exhibited excellent reusability and stability after six cyclic reaction processes.
Collapse
Affiliation(s)
- Yijun Chen
- Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China
| | - Meina Cheng
- Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China
| | - Long Jin
- Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China; Jiangsu Meixin Environmental Technology Co., Ltd., Suzhou, 215500, Jiangsu Province, China.
| | - Hailiang Yang
- Suzhou Cott Environmental Protection Co., Ltd., Suzhou, 215156, Jiangsu Province, China
| | - Sanjian Ma
- Suzhou Cott Environmental Protection Co., Ltd., Suzhou, 215156, Jiangsu Province, China
| | - Zixia Lin
- Testing Center, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China
| | - Guoliang Dai
- School of Chemistry and Life Sciences, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China
| | - Xin Liu
- Institute of Environmental Protection Application Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou, 215009, Jiangsu Province, China.
| |
Collapse
|
12
|
Mao X, Zhang M, Wang M, Lei H, Dong C, Shen R, Zhang H, Chen C, Hu J, Wu G. Highly efficient catalytic Fenton-Like reactions of bimetallic Fe/Cu chelated on radiation functionalized nonwoven fabric for pollutant control. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133752. [PMID: 38350320 DOI: 10.1016/j.jhazmat.2024.133752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/26/2023] [Accepted: 02/06/2024] [Indexed: 02/15/2024]
Abstract
A remarkably efficient and affordable Fe/Cu bimetallic catalyst featuring a substantial light energy utilization and compatibility with a sizable substrate was developed for Fenton-like reactions aimed at pollutant control. Specifically, a novel strategy was employed to synthesize high-density metal sites (Fe:Cu ≈ 3:1) robustly embedded on polyethylene/polyethylene terephthalate nonwoven fabric (PE/PET NWF) via radiation-induced graft polymerization (RIGP) and subsequent chemical modification, labeled as Fe/Cu-PPAO. Its high effectiveness was demonstrated by degrading 50 mg/L of tetracycline hydrochloride within 30 min in the presence of H2O2 under simulate sunlight irradiation. It was investigated that amidoxime groups regulated the optical gaps and HOMO-LUMO gaps of metal ions to enable the absorption of a broader spectrum light while the Cu2+ facilitated the transfer of electrons between the bimetal ions to achieve an improved reaction path. Furthermore, X-ray absorption fine structure (XAFS) and density functional theory (DFT) calculations further revealed its special complex state and delicate electronic structure between bimetal ions and amidoxime groups. Our study offers a new strategy to synthesize high-density bimetallic sites catalyst for environmental remediation and pushes forward insight into understanding the catalytic mechanism of bimetallic Fenton-like catalysts.
Collapse
Affiliation(s)
- Xuanzhi Mao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019 Jialuo Road, Jiading District, Shanghai 201800, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Maojiang Zhang
- College of Materials and Environmental Engineering, Chizhou University, Chizhou, Anhui 247000, PR China
| | - Minglei Wang
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019 Jialuo Road, Jiading District, Shanghai 201800, PR China; Institute of Environmental Engineering, ETH Zürich, Zürich 8093, Switzerland.
| | - Heng Lei
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019 Jialuo Road, Jiading District, Shanghai 201800, PR China; School of Physical Science and Technology, Shanghai Tech University, Shanghai 200031, PR China
| | - Chunlei Dong
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019 Jialuo Road, Jiading District, Shanghai 201800, PR China; College of Materials and Environmental Engineering, Chizhou University, Chizhou, Anhui 247000, PR China
| | - Rongfang Shen
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019 Jialuo Road, Jiading District, Shanghai 201800, PR China
| | - Hao Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, RP China
| | - Chaorong Chen
- Department of Environment, College of Environment and Resources, Xiangtan University, Xiangtan 411105, PR China
| | - Jiangtao Hu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019 Jialuo Road, Jiading District, Shanghai 201800, PR China.
| | - Guozhong Wu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, No. 2019 Jialuo Road, Jiading District, Shanghai 201800, PR China; School of Physical Science and Technology, Shanghai Tech University, Shanghai 200031, PR China.
| |
Collapse
|
13
|
Liu J, Dong Y, Liu Q, Liu W, Lin H. MoS 2-based nanocomposites and aerogels for antibiotic pollutants removal from wastewater by photocatalytic degradation process: A review. CHEMOSPHERE 2024; 354:141582. [PMID: 38462179 DOI: 10.1016/j.chemosphere.2024.141582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/18/2024] [Accepted: 02/28/2024] [Indexed: 03/12/2024]
Abstract
Photocatalytic technologies based on molybdenum disulfide (MoS2) catalysts are effective, eco-friendly, and promising for antibiotic pollutants treatment. The technologies used by MoS2-based nanocomposites and aerogels for efficient degradation of antibiotics are reviewed in detail for the first time in this paper. The fundamental aspects of MoS2 were comprehensively scrutinized, encompassing crystal structure, optical properties, and photocatalytic principle. Then, the main synthesized methods and advantages/disadvantages for the preparation of MoS2-based nanocomposites and aerogels were systematically presented. Besides, a comprehensive overview of diverse MoS2-based nanocomposites and aerogels photo-degradation systems that enhanced the degradation of antibiotic pollutants were revealed. Meanwhile, the photo-degradation mechanism concentrated on the photoelectron transfer pathways and reactive oxygen species (ROS) were systematically evaluated. Finally, the challenges and perspectives for deeply development of MoS2-based nanocomposites and aerogels were discussed. This review may help researchers to deeply understand the research status of MoS2-based nanocomposites and aerogels for antibiotics removal, and makes clear the photo-degradation mechanism from photoelectron transfer pathways and ROS aspects of MoS2-based nanocomposites and aerogels.
Collapse
Affiliation(s)
- Junfei Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China; Shunde Innovation School, University of Science and Technology Beijing, Shunde 528399, China
| | - Yingbo Dong
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Qiaojun Liu
- West District of the First Affiliated Hospital of University of Science and Technology of China, Hefei 230031, China
| | - Wei Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China
| | - Hai Lin
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Key Laboratory on Resource-oriented Treatment of Industrial Pollutants, Beijing 100083, China.
| |
Collapse
|
14
|
Zhou Z, Ye G, Zong Y, Zhao Z, Wu D. Improvement of Fe(Ⅲ)/percarbonate system by molybdenum powder and tripolyphosphate: Co-catalytic performance, low oxidant consumption, pH-dependent mechanism. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132924. [PMID: 37984133 DOI: 10.1016/j.jhazmat.2023.132924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/10/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023]
Abstract
The homogeneous sodium percarbonate (SPC) systems are limited by narrow pH range, ineffective consumption of oxidant, and weak reusability of catalyst. Herein, molybdenum (Mo) powder and sodium tripolyphosphate (STPP) were selected to overcome these challenges. Sulfamethoxazole (SMX), as a model contaminant, was almost completely degraded in 60 min with higher removal rate (0.1367 min-1) than the Mo or STPP-absent system. In addition, Mo/STPP-Fe(Ⅲ)/SPC system was cost-effective in terms of oxidant consumption, requiring only 0.2 mM SPC. About activation mechanism, the main active species for SMX degradation was pH-dependent, with hydroxyl radical (·OH) as the dominant active species at pHi = 7 and ·OH, carbonate radical (CO3·-), and superoxide radical (O2·-) derived from a series of chain reaction at pHi = 10, respectively. Due to the generation of various electrophilic free radical, the system exhibited excellent performance towards electron-rich pollutants under a wide pH range. Furthermore, Mo exhibited excellent stability and reusability. SMX was degraded through hydroxylation, N-S cleavage, amino and sulfanilamide oxidation into intermediates whose toxicities were evaluated by Toxicity Estimation Software Tool (T.E.S.T.) software. This work provided new insights to Fe/SPC system towards high-efficiency and low consumption treatment of practical application.
Collapse
Affiliation(s)
- Zhengwei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Guojie Ye
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Yang Zong
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Zhenyu Zhao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China
| | - Deli Wu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science & Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
15
|
Chen Z, Yan Y, Lu C, Lin X, Fu Z, Shi W, Guo F. Photocatalytic Self-Fenton System of g-C 3N 4-Based for Degradation of Emerging Contaminants: A Review of Advances and Prospects. Molecules 2023; 28:5916. [PMID: 37570886 PMCID: PMC10421113 DOI: 10.3390/molecules28155916] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/31/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
The discharge of emerging pollutants in the industrial process poses a severe threat to the ecological environment and human health. Photocatalytic self-Fenton technology combines the advantages of photocatalysis and Fenton oxidation technology through the in situ generation of hydrogen peroxide (H2O2) and interaction with iron (Fe) ions to generate a large number of strong reactive oxygen species (ROS) to effectively degrade pollutants in the environment. Graphite carbon nitride (g-C3N4) is considered as the most potential photocatalytic oxygen reduction reaction (ORR) photocatalyst for H2O2 production due to its excellent chemical/thermal stability, unique electronic structure, easy manufacturing, and moderate band gap (2.70 eV). Hence, in this review, we briefly introduce the advantages of the photocatalytic self-Fenton and its degradation mechanisms. In addition, the modification strategy of the g-C3N4-based photocatalytic self-Fenton system and related applications in environmental remediation are fully discussed and summarized in detail. Finally, the prospects and challenges of the g-C3N4-based photocatalytic self-Fenton system are discussed. We believe that this review can promote the construction of novel and efficient photocatalytic self-Fenton systems as well as further application in environmental remediation and other research fields.
Collapse
Affiliation(s)
- Zhouze Chen
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China (Y.Y.)
| | - Yujie Yan
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China (Y.Y.)
| | - Changyu Lu
- School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization and Development of Water Recourse, Hebei Geo University, Shijiazhuang 050031, China
| | - Xue Lin
- School of Material Science and Engineering, Beihua University, Jilin 132013, China
| | - Zhijing Fu
- School of Water Resource and Environment, Hebei Province Key Laboratory of Sustained Utilization and Development of Water Recourse, Hebei Geo University, Shijiazhuang 050031, China
| | - Weilong Shi
- School of Material Science and Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, China (Y.Y.)
| | - Feng Guo
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212003, China
| |
Collapse
|