1
|
Li G, Liu C, Qiu S, Wei L, Cao L, Wang K, Wang X, Lin H, Sui J. From non-affinity to high-affinity: Rapid preparation of nanobodies utilizing high-precision alphafold and structural-interaction analysis for detection of enrofloxacin in marine fish. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137394. [PMID: 39889601 DOI: 10.1016/j.jhazmat.2025.137394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/13/2025] [Accepted: 01/24/2025] [Indexed: 02/03/2025]
Abstract
Traditional antibody preparation methods rely on animal immunization and experimental screening, often requiring 3-6 months, which cannot meet the urgent demands for antibodies in environmental emergencies or contamination events. Herein, a rapid antibody preparation method was proposed to transform anti-macromolecule nanobodies into high-affinity anti-small molecule (enrofloxacin) nanobodies, based on the high-precision predictive capabilities of AlphaFold, integrated with structural and interaction analysis. The high-precision prediction capability of AlphaFold ensured the accuracy of nanobody structural analysis and targeted modification. Binding structure design enabled the antigen and antibody to adopt an optimal binding conformation. Interaction analysis provided guidance for targeted modifications and served as a tool for evaluating the results. Molecular docking results revealed that the template nanobodies, which initially couldn't dock with enrofloxacin, formed 3-5 noncovalent bonds after modification. Bio-layer interferometry (BLI) assays demonstrated that the equilibrium dissociation constant (KD) of the modified nanobodies ranged from 5.56 ± 0.34 nM to 94.73 ± 4.35 nM, with half-maximal inhibitory concentration (IC50) between 231.9 and 3293.6 ng/mL. Based on the modified nanobodies and BLI platform, the detection of enrofloxacin in marine fish was achieved with a limit of detection (LOD) as low as 59.97 μg/kg. In summary, this study provided a novel perspective for the rapid nanobody preparation, showing significant potential in food safety and environmental monitoring.
Collapse
Affiliation(s)
- Guoqiang Li
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Chang Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Shuo Qiu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Lin Wei
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Limin Cao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Kaiqiang Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Xiudan Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Hong Lin
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266100, China
| | - Jianxin Sui
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao, Shandong 266100, China.
| |
Collapse
|
2
|
Hutchings CJ, Sato AK. Phage display technology and its impact in the discovery of novel protein-based drugs. Expert Opin Drug Discov 2024; 19:887-915. [PMID: 39074492 DOI: 10.1080/17460441.2024.2367023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/07/2024] [Indexed: 07/31/2024]
Abstract
INTRODUCTION Phage display technology is a well-established versatile in vitro display technology that has been used for over 35 years to identify peptides and antibodies for use as reagents and therapeutics, as well as exploring the diversity of alternative scaffolds as another option to conventional therapeutic antibody discovery. Such successes have been responsible for spawning a range of biotechnology companies, as well as many complementary technologies devised to expedite the drug discovery process and resolve bottlenecks in the discovery workflow. AREAS COVERED In this perspective, the authors summarize the application of phage display for drug discovery and provide examples of protein-based drugs that have either been approved or are being developed in the clinic. The amenability of phage display to generate functional protein molecules to challenging targets and recent developments of strategies and techniques designed to harness the power of sampling diverse repertoires are highlighted. EXPERT OPINION Phage display is now routinely combined with cutting-edge technologies to deep-mine antibody-based repertoires, peptide, or alternative scaffold libraries generating a wealth of data that can be leveraged, e.g. via artificial intelligence, to enable the potential for clinical success in the discovery and development of protein-based therapeutics.
Collapse
|
3
|
Zhao J, Li P, ABD EL-ATY AM, Xu L, Lei X, Gao S, Li J, Zhao Y, She Y, Jin F, Wang J, Hammock BD, Jin M. A novel sustainable immunoassay for sensitive detection of atrazine based on the anti-idiotypic nanobody and recombinant full-length antibody. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2024; 491:152039. [PMID: 38882000 PMCID: PMC11173377 DOI: 10.1016/j.cej.2024.152039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Immunoassays have been widely used to determine small-molecule compounds in food and the environment, meeting the challenge of obtaining false positive or negative results because of the variance in the batches of antibodies and antigens. To resolve this problem, atrazine (ATR) was used as a target, and anti-idiotypic nanobodies for ATR (AI-Nbs) and a recombinant full-length antibody against ATR (ATR-rAb) were prepared for the development of a sustainable enzyme-linked immunosorbent assay (ELISA). AI-Nb-7, AI-Nb-58, and AI-Nb-66 were selected from an immune phage display library. ATR-rAb was produced in mammalian HEK293 (F) cells. Among the four detection methods explored, the assay using AI-Nb-66 as a coating antigen and ATR-rAb as a detection reagent yielded a half maximal inhibitory concentration (IC50) of 1.66 ng mL-1 for ATR and a linear range of 0.35-8.73 ng mL-1. The cross-reactivity of the assay to ametryn was 64.24%, whereas that to terbutylazine was 38.20%. Surface plasmon resonance (SPR) analysis illustrated that these cross-reactive triazine compounds can bind to ATR-rAb to varying degrees at high concentrations; however, the binding/dissociation kinetic curves and the response values at the same concentration are different, which results in differences in cross-reactivity. Homology modeling and molecular docking revealed that the triazine ring is vital in recognizing triazine compounds. The proposed immunoassay exhibited acceptable recoveries of 84.40-105.36% for detecting fruit, vegetables, and black tea. In conclusion, this study highlights a new strategy for developing sustainable immunoassays for detecting trace pesticide contaminants.
Collapse
Affiliation(s)
- Jing Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Peipei Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - A. M. ABD EL-ATY
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| | - Lingyuan Xu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xingmei Lei
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Song Gao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- College of Biological and Resources Environment, Beijing University of Agriculture, Beijing 102206, China
| | - Jia Li
- Jinhua Miaozhidizhi Agricultural Technology Co., Ltd., Jinhua 321000, China
| | - Yun Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongxin She
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fen Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bruce D. Hammock
- Department of Entomology & Nematology and the UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
4
|
Lei X, Li P, Abd El-Aty AM, Zhao J, Xu L, Gao S, Li J, Zhao Y, She Y, Jin F, Wang J, Zheng L, Hammock BD, Jin M. Generation of a highly specific recombinant full-length antibody for detecting ethirimol in fruit and environmental water. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:134067. [PMID: 38513441 PMCID: PMC11062638 DOI: 10.1016/j.jhazmat.2024.134067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 03/03/2024] [Accepted: 03/16/2024] [Indexed: 03/23/2024]
Abstract
High-performance antibodies are core reagents for highly sensitive immunoassays. Herein, based on a novel hapten, a hybridoma secreting the high-affinity anti-ethirimol monoclonal antibody (mAb-14G5F6) was isolated with an IC50 value of 1.35 μg/L and cross-reactivity below 0.20% for 13 analogs. To further address the challenge of hybridoma preservation and antibody immortalization, a recombinant full-length antibody (rAb-14G5F6) was expressed using the HEK293(F) expression system based on the mAb-14G5F6 gene. The affinity, specificity, and tolerance of rAb-14G5F6, as characterized by indirect competitive enzyme-linked immunosorbent assay and noncompetitive surface plasmon resonance, exhibited high concordance with those of mAb-14G5F6. Further immunoassays based on rAb-14G5F6 were developed for irrigation water and strawberry fruit with limits of detection of 0.0066 and 0.036 mg/kg, respectively, recoveries of 80100%, and coefficients of variation below 10%. Furthermore, homology simulation and molecular docking revealed that GLU(L40), GLY(L107), GLY(H108), and ASP(H114) play important roles in forming hydrogen bonds and pi-anion ionic bonds between rAb-14G5F6 and ethirimol, resulting in the high specificity and affinity of rAb-14G5F6 for ethirimol, with a KD of 5.71 × 10-10 mol/L. Overall, a rAb specific for ethirimol was expressed successfully in this study, laying the groundwork for rAb-based immunoassays for monitoring fungicide residues in agricultural products and the environment.
Collapse
Affiliation(s)
- Xingmei Lei
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Peipei Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum 25240, Turkey
| | - Jing Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lingyuan Xu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Song Gao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jia Li
- Jinhua Miaozhidizhi Agricultural Technology Co., Ltd., Jinhua, Zhejiang 321000, China
| | - Yun Zhao
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongxin She
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fen Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jing Wang
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lufei Zheng
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Bruce D Hammock
- Department of Entomology & Nematology and the UC Davis Comprehensive Cancer Center, University of California, Davis, CA 95616, USA
| | - Maojun Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Research Center of Quality Standards for Agro-Products, Ministry of Agriculture and Rural Affairs, Beijing 100081, China.
| |
Collapse
|
5
|
Tang F, Wang Y, Wang D, Yang Y, Chang J, Sun H, Gu S, He J. Streptavidin-biotin system-mediated immobilization of a bivalent nanobody onto magnetosomes for separation and analysis of 3-phenoxybenzoic acid in urine. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1546-1553. [PMID: 38404205 DOI: 10.1039/d4ay00026a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
The compound 3-phenoxybenzoic acid (3-PBA) is frequently utilized as a biomarker to detect exposure to various pyrethroids. In this study, a bivalent nanobody (Nb2) specifically targeting 3-PBA was biotinylated and immobilized onto streptavidin (SA)-modified bacterial magnetic nanoparticles (BMPs), resulting in the formation of BMP-SA-Biotin-Nb2 complexes. These complexes demonstrated remarkable stability when exposed to strongly acidic solutions (4 M HCl), methanol (80%), and high ionic strength (1.37 M NaCl). An immunoassay was subsequently developed utilizing BMP-SA-Biotin-Nb2 as the capture agent and 3-PBA-horseradish peroxidase as the detection probe. The immunoassay exhibited an IC50 value (half-maximum signal inhibition concentration) of 1.11 ng mL-1 for 3-PBA. To evaluate the accuracy of the assay, spiked sheep and cow urine samples (ranging from 3.0 to 240 ng mL-1) were analyzed. The quantitative recoveries ranged from 82.5% to 113.1%, which agreed well with the findings obtained using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Overall, the BMP-SA-Biotin-Nb2-based immunoassay holds great promise for rapid monitoring of 3-PBA following acid dissociation.
Collapse
Affiliation(s)
- Fang Tang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, P. R. China.
| | - Yating Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, P. R. China.
| | - Di Wang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, P. R. China.
| | - Yayun Yang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, P. R. China.
| | - Jiashu Chang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, P. R. China.
| | - Huabo Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, P. R. China.
| | - Shaopeng Gu
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, P. R. China.
| | - Jinxin He
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, P. R. China.
| |
Collapse
|