1
|
Gardiner CL, Petali JM, Chen CY, Giffard NG, Fernando S, Holsen TM, Varghese JR, Romano ME, Crawford KA. Evaluating the environmental occurrence of per- and polyfluoroalkyl substances (PFAS) and potential exposure risk for recreational shellfish harvesters in the Great Bay Estuary, New Hampshire. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 986:179747. [PMID: 40449359 DOI: 10.1016/j.scitotenv.2025.179747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 05/21/2025] [Accepted: 05/22/2025] [Indexed: 06/03/2025]
Abstract
BACKGROUND Shellfish may be an important contributor to PFAS exposure from seafood consumption. Yet, shellfish consumption patterns are distinct from other seafood varieties and PFAS exposure via shellfish consumption has not been well studied, especially among recreational harvesters who may be exposed to PFAS through direct consumption of shellfish, incidental ingestion of sediment, and dermal absorption. METHODS Collocated surface water, sediment, and bivalve shellfish samples were collected in the Great Bay Estuary, a prominent estuary in New Hampshire, USA with multiple known PFAS sources. All media were analyzed for 27 PFAS compounds via UPLC-MS/MS. Human health risk of PFAS exposure from recreational shellfish harvesting was estimated for typical and high seafood consumers across multiple exposure routes using available health guidance values. RESULTS PFAS were detected in all Great Bay water, sediment, and shellfish samples. PFAS concentrations varied spatially, and profiles varied by media type, with shorter chain compounds found in water and longer chain compounds found in sediment and shellfish. For adults, PFAS exposure risk from recreational shellfish harvesting was greatest from direct consumption of shellfish (>99 % of estimated daily PFAS dose), followed by dermal absorption and incidental sediment ingestion. For children, dermal absorption and incidental ingestion were also important, contributing up to 10 % of estimated daily exposure. PFAS exposure risk from consuming razor clams exceeded the reference hazard quotient of 1 for multiple compounds among the general population that consumes typical or greater amounts of seafood, and among persons of childbearing age and young children who consume high amounts of seafood. CONCLUSIONS High frequency recreational shellfish harvesting and consumption may increase exposure to certain PFAS.
Collapse
Affiliation(s)
| | - Jonathan M Petali
- Environmental Health Program, New Hampshire Department of Environmental Services, Concord, NH, USA; Battelle Memorial Institute, Columbus, OH, USA
| | - Celia Y Chen
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Nathan G Giffard
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
| | - Sujan Fernando
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY, USA
| | - Thomas M Holsen
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY, USA; Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, NY, USA
| | - Juby R Varghese
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY, USA
| | - Megan E Romano
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | | |
Collapse
|
2
|
Taylor B, Ofori KF, Parsaeimehr A, Akdemir Evrendilek G, Attarwala T, Ozbay G. Exploring the Complexities of Seafood: From Benefits to Contaminants. Foods 2025; 14:1461. [PMID: 40361542 PMCID: PMC12071223 DOI: 10.3390/foods14091461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/08/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
Seafood plays a vital role in human diets worldwide, serving as an important source of high-quality protein, omega-3 fatty acids, and essential vitamins and minerals that promote health and prevent various chronic conditions. The health benefits of seafood consumption are well documented, including a reduced risk of cardiovascular diseases, improved cognitive function, and anti-inflammatory effects. However, the safety of seafood is compromised by multiple hazards that can pose significant health risks. Pathogenic microorganisms, including bacteria, viruses, and parasites, in addition to microbial metabolites, are prominent causes of the foodborne diseases linked to seafood consumption, necessitating reliable detection and monitoring systems. Molecular biology and digital techniques have emerged as essential tools for the rapid and accurate identification of these foodborne pathogens, enhancing seafood safety protocols. Additionally, the presence of chemical contaminants such as heavy metals (e.g., mercury and lead), microplastics, and per- and polyfluoroalkyl substances (PFASs) in seafood is of increasing concern due to their potential to accumulate in the food chain and adversely affect human health. The biogenic amines formed during the microbial degradation of the proteins and allergens present in certain seafood species also contribute to food safety challenges. This review aims to address the nutritional value and health-promoting effects of seafood while exploring the multifaceted risks associated with microbial contamination, chemical pollutants, and naturally occurring substances. Emphasis is placed on enhanced surveillance, seafood traceability, sustainable aquaculture practices, and regulatory harmonization as effective strategies for controlling the risks associated with seafood consumption and thereby contributing to a safer seafood supply chain.
Collapse
Affiliation(s)
- Bettina Taylor
- Human Ecology Department, Delaware State University, Dover, DE 19901, USA;
| | - Kelvin Fynn Ofori
- Integrative PhD Program in Agriculture, Food and Environmental Sciences, College of Agriculture, Science and Technology, Delaware State University, Dover, DE 19901, USA;
| | - Ali Parsaeimehr
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE 19901, USA; (A.P.); (T.A.)
| | | | - Tahera Attarwala
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE 19901, USA; (A.P.); (T.A.)
| | - Gulnihal Ozbay
- Human Ecology Department, Delaware State University, Dover, DE 19901, USA;
- Integrative PhD Program in Agriculture, Food and Environmental Sciences, College of Agriculture, Science and Technology, Delaware State University, Dover, DE 19901, USA;
- Department of Agriculture and Natural Resources, Delaware State University, Dover, DE 19901, USA; (A.P.); (T.A.)
| |
Collapse
|
3
|
Amirfakhri SJ, Zobel B, Lilla MK, Tomaszewski C, Stellpflug O. Enhanced PFBS adsorption via silver-impregnated activated carbon: Mechanistic insights and Thermodynamic analysis. CHEMOSPHERE 2025; 375:144257. [PMID: 40037022 DOI: 10.1016/j.chemosphere.2025.144257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/06/2025]
Abstract
This study investigates the effect of silver nanoparticle impregnation on the performance of activated carbon (AC) for perfluorobutane sulfonic acid (PFBS) adsorption. Using the deposition-precipitation method, three silver-impregnated activated carbon (SIAC) adsorbents were synthesized with varying silver contents: SIAC0.01 (0.15 wt%), SIAC0.1 (1.7 wt%), and SIAC1 (8.5 wt%). Among these, SIAC0.1 exhibited the highest adsorption capacity at 25 °C and was selected for detailed analysis. The adsorption mechanism of PFBS on SIAC0.1 was examined at 25, 35, and 45 °C, yielding key kinetic parameters, including reaction rate constants and activation energies. Additionally, the thermodynamic properties of the adsorption process, including ΔH≠, ΔS≠, and ΔG≠, were evaluated. The findings reveal that silver nanoparticle impregnation significantly enhances the kinetic and thermodynamic favorability of PFBS adsorption, leading to a substantial increase in adsorption capacity. This work highlights the potential of silver-impregnated activated carbon as an effective adsorbent for PFBS removal.
Collapse
Affiliation(s)
- Seyed Javad Amirfakhri
- Department of Paper Science and Chemical Engineering, University of Wisconsin Stevens Point, 2001 Fourth Avenue, SCI D274, Stevens Point, WI, 54481, USA.
| | - Ben Zobel
- Department of Paper Science and Chemical Engineering, University of Wisconsin Stevens Point, 2001 Fourth Avenue, SCI D274, Stevens Point, WI, 54481, USA.
| | - Michael Karsten Lilla
- Department of Paper Science and Chemical Engineering, University of Wisconsin Stevens Point, 2001 Fourth Avenue, SCI D274, Stevens Point, WI, 54481, USA.
| | - Christopher Tomaszewski
- Department of Paper Science and Chemical Engineering, University of Wisconsin Stevens Point, 2001 Fourth Avenue, SCI D274, Stevens Point, WI, 54481, USA.
| | - Olivia Stellpflug
- Department of Paper Science and Chemical Engineering, University of Wisconsin Stevens Point, 2001 Fourth Avenue, SCI D274, Stevens Point, WI, 54481, USA.
| |
Collapse
|
4
|
Wang J, Yang HY, Wang XD, Lv YF, Wei N. Application of QuEChERS for Analysis of Contaminants in Dairy Products: A Review. J Food Prot 2025; 88:100453. [PMID: 39805402 DOI: 10.1016/j.jfp.2025.100453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 12/25/2024] [Accepted: 01/08/2025] [Indexed: 01/16/2025]
Abstract
The safety of dairy products is intrinsically linked to consumer health, and the exceedance of risk indicators, such as pesticide and veterinary drug residues, constitutes one of the primary issues affecting their quality and safety. To assess the safety of dairy products, it is crucial to develop accurate and reliable analytical methods for their detection. Food safety testing involving important indicators such as pesticide residues, veterinary drug residues, mycotoxins, and unapproved additives has become a pivotal requirement in the industry field. The QuEChERS (Quick, Easy, Cheap, Effective, Rugged, Safe) method is widely acknowledged as a food safety analysis method currently. This method can effectively extract a wide range of compound classes from diverse matrices in food safety testing, thereby enhancing the accuracy of detection. Additionally, when combined with chromatographic-mass spectrometry techniques, it can simultaneously analyze hundreds of target analytes, rendering it widely applicable in the quality and safety testing of dairy products. Although QuEChERS has rapidly developed in the field of dairy product quality and safety analysis due to its efficiency and speed advantages, certain shortcomings remain, presenting considerable room for improvement. This paper presents a comprehensive review of the utilization and research advancements of the QuEChERS technique in dairy products, with the aim of providing more precise, expeditious, and reliable methods for the safety assessment of dairy products.
Collapse
Affiliation(s)
- Jun Wang
- Institute of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850032, China; Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473004, China
| | - Hai-Yan Yang
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473004, China
| | - Xin-Dong Wang
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473004, China
| | - Yi-Fan Lv
- Zhang Zhongjing School of Chinese Medicine, Nanyang Institute of Technology, Nanyang 473004, China
| | - Na Wei
- Institute of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850032, China.
| |
Collapse
|
5
|
Sapozhnikova Y, Stroski KM, Haddad SP, Burket SR, Luers M, Brooks BW. Per- and polyfluoroalkyl substances (PFAS) accumulation in fish occupying different trophic positions from East Canyon Creek, a seasonally effluent-dominated river, Utah, USA. ENVIRONMENTAL RESEARCH 2025; 266:120480. [PMID: 39613019 DOI: 10.1016/j.envres.2024.120480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/26/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Fish and seafood are considered a major source of human dietary exposure to per- and polyfluoroalkyl substances (PFAS). In this study, we examined levels of 35 PFAS in fish samples of brown trout and mottled sculpin, which occupy different trophic positions, collected in 2014 from East Canyon Creek in Utah, USA. We observed 20 PFAS with ∑20PFAS ranging from 0.46-63.9 ng/g and from
Collapse
Affiliation(s)
- Yelena Sapozhnikova
- USDA, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, USA.
| | - Kevin M Stroski
- USDA, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, USA; Center for Reservoir and Aquatic Systems Research, Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Samuel P Haddad
- Center for Reservoir and Aquatic Systems Research, Department of Environmental Science, Baylor University, Waco, TX, USA
| | - S Rebekah Burket
- Center for Reservoir and Aquatic Systems Research, Department of Environmental Science, Baylor University, Waco, TX, USA
| | - Michael Luers
- Snyderville Basin Water Reclamation District, Park City, UT, USA
| | - Bryan W Brooks
- Center for Reservoir and Aquatic Systems Research, Department of Environmental Science, Baylor University, Waco, TX, USA
| |
Collapse
|
6
|
Dimitrakopoulou ME, Karvounis M, Marinos G, Theodorakopoulou Z, Aloizou E, Petsangourakis G, Papakonstantinou M, Stoitsis G. Comprehensive analysis of PFAS presence from environment to plate. NPJ Sci Food 2024; 8:80. [PMID: 39369000 PMCID: PMC11455986 DOI: 10.1038/s41538-024-00319-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 09/24/2024] [Indexed: 10/07/2024] Open
Abstract
Per- and polyfluoroalkyl substances (PFAS) pose an emerging environmental risk impacting food products and ecosystems. This study analyzes over 150,000 entries from food safety authorities and scientific publications from 2017 onwards. Our findings show that fish & seafood, and biota have the highest PFAS concentrations due to environmental contamination and bioaccumulation. Surface water samples also frequently contain PFAS, raising concerns about long-term ecological and human health effects. Comprehensive strategies are essential to mitigate these risks.
Collapse
|
7
|
Ramasamy Chandrasekaran P, Chinnadurai J, Lim YC, Chen CW, Tsai PC, Huang PC, Gavahian M, Andaluri G, Dong CD, Lin YC, Ponnusamy VK. Advances in perfluoro-alkylated compounds (PFAS) detection in seafood and marine environments: A comprehensive review on analytical techniques and global regulations. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:424. [PMID: 39316302 DOI: 10.1007/s10653-024-02194-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 08/25/2024] [Indexed: 09/25/2024]
Abstract
Per- and poly-fluoroalkyl substances (PFAS) are persistent organic pollutants that severely threaten the environment and human health due to their distinct chemical composition, extensive production, widespread distribution, bioaccumulation in nature, and long-term persistence. This review focuses on the occurrence and sources of PFAS in seafood, with a particular emphasis on advanced detection methods viz. nanoparticle-based, biosensor-based, and metal-organic frameworks-based, and mass spectrometric techniques. The challenges associated with these advanced detection technologies are also discussed. Recent research and regulatory updates about PFAS, including hazardous and potential health effects, epidemiological studies, and various risk assessment models, have been reviewed. In addition, the need for global monitoring programs and regulations on PFAS are critically reviewed by underscoring their crucial role in protecting human health and the environment. Further, approaches for reducing PFAS in seafood are highlighted with future innovative remediation directions. Although advanced PFAS analytical methods are available, selectivity, sample preparation, and sensitivity are still significant challenges associated with detection of PFAS in seafood matrices. Moreover, crucial research gaps and solutions to essential concerns are critically explored in this review.
Collapse
Affiliation(s)
- Prasath Ramasamy Chandrasekaran
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung, 811, Taiwan
| | - Jeganathan Chinnadurai
- PhD Program in Life Science, College of Life Science, Kaohsiung Medical University (KMU), Kaohsiung, 807, Taiwan
| | - Yee Cheng Lim
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung, 811, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung, 811, Taiwan
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung, 807, Taiwan
- Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - Po-Chin Huang
- National Institute of Environmental Health Sciences, National Health Research Institutes (NHRI), Miaoli, 350, Taiwan
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan
- Department of Medical Research, China Medical University Hospital (CMUH), China Medical University (CMU), Taichung City, Taiwan
| | - Mohsen Gavahian
- Department of Food Science, Agriculture College, National Pingtung University of Science and Technology (NPUST), Pingtung, 91201, Taiwan
| | - Gangadhar Andaluri
- Civil and Environmental Engineering Department, College of Engineering, Temple University, Philadelphia, USA
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung, 811, Taiwan.
- Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City, 811, Taiwan.
| | - Yuan-Chung Lin
- Institute of Environmental Engineering, National Sun Yat-Sen University (NSYSU), Kaohsiung, Taiwan.
- Center for Emerging Contaminants Research, National Sun Yat-Sen University, Kaohsiung City, Taiwan.
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung, 807, Taiwan.
- Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City, 807, Taiwan.
- Department of Food Science, Agriculture College, National Pingtung University of Science and Technology (NPUST), Pingtung, 91201, Taiwan.
- Institute of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology (NKUST), Kaohsiung City, 811, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung City, 807, Taiwan.
| |
Collapse
|
8
|
Zhang B, Yang Y, Li Q, Ding X, Tian M, Ma Q, Xu D. Impacts of PFOS, PFOA and their alternatives on the gut, intestinal barriers and gut-organ axis. CHEMOSPHERE 2024; 361:142461. [PMID: 38810808 DOI: 10.1016/j.chemosphere.2024.142461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/28/2024] [Accepted: 05/25/2024] [Indexed: 05/31/2024]
Abstract
With the restricted use of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), a number of alternatives to PFOS and PFOA have attracted great interest. Most of the alternatives are still characterized by persistence, bioaccumulation, and a variety of toxicity. Due to the production and use of these substances, they can be detected in the atmosphere, soil and water body. They affect human health through several exposure pathways and especially enter the gut by drinking water and eating food, which results in gut toxicity. In this review, we summarized the effects of PFOS, PFOA and 9 alternatives on pathological changes in the gut, the disruption of physical, chemical, biological and immune barriers of the intestine, and the gut-organ axis. This review provides a valuable understanding of the gut toxicity of PFOS, PFOA and their alternatives as well as the human health risks of emerging contaminants.
Collapse
Affiliation(s)
- Boxiang Zhang
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China
| | - Yunhui Yang
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China
| | - Qing Li
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China
| | - Xiaolin Ding
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China
| | - Mingming Tian
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China
| | - Qiao Ma
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China
| | - Dan Xu
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Linghai Road 1, Dalian, 116026, PR China.
| |
Collapse
|
9
|
Turnipseed SB. Analysis of chemical contaminants in fish using high resolution mass spectrometry - A review. TRENDS IN ENVIRONMENTAL ANALYTICAL CHEMISTRY 2024; 42:e00227. [PMID: 38957876 PMCID: PMC11215702 DOI: 10.1016/j.teac.2024.e00227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
High resolution mass spectrometry (HRMS) has become an important tool in environmental and food safety analysis. This review highlights how HRMS has been used to analyze chemical contaminants in fish. Measuring and documenting chemical contaminants in fish serves not only as an indicator of environmental conditions but can also monitor the health of these animals and help protect an important source of human food. The incidence and significance of contaminants including veterinary drugs, human drugs and personal care products, pesticides, persistent organic pollutants, per- and poly fluorinated substances, and marine toxins will be reviewed. The advantage of HRMS over traditional MS is its ability to expand the number of compounds that can be detected and identified. This is true whether HRMS is used for targeted analytes, or more broadly for suspect screening and nontargeted analyses. The classes of compounds, types of fish or seafood, options for data acquisition and analysis, and reports of unexpected findings from recent HMRS methods for chemical contaminants in fish are summarized.
Collapse
Affiliation(s)
- Sherri B Turnipseed
- US Food and Drug Administration, Animal Drugs Research Center, Denver, CO, USA
| |
Collapse
|
10
|
Iannone A, Carriera F, Passarella S, Fratianni A, Avino P. There's Something in What We Eat: An Overview on the Extraction Techniques and Chromatographic Analysis for PFAS Identification in Agri-Food Products. Foods 2024; 13:1085. [PMID: 38611389 PMCID: PMC11011820 DOI: 10.3390/foods13071085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 03/29/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
Per- and polyfluorinated alkyl substances (PFASs) are a group of anthropogenic chemicals used in a range of industrial processes and consumer products. Recently, their ubiquitous presence in the environment as well as their toxicological effects in humans have gained relevant attention. Although the occurrence of PFASs is widely investigated in scientific community, the standardization of analytical method for all matrices still remains an important issue. In this review, we discussed extraction and detection methods in depth to evaluate the best procedures of PFAS identification in terms of analytical parameters (e.g., limits of detection (LODs), limits of quantification (LOQs), recoveries). Extraction approaches based on liquid-liquid extraction (LLE), alkaline digestion, and solid phase extraction (SPE), followed by liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) analysis are the main analytical methods applied in the literature. The results showed detectable recoveries of PFOA and PFOS in meat, milk, vegetables, eggs products (90.6-101.2% and of 89.2-98.4%), and fish (96-108%). Furthermore, the low LOD and LOQ values obtained for meat (0.00592-0.01907 ng g-1; 0.050 ng g-1), milk (0.003-0.009 ng g-1; 0.010-0.027 ng g-1), fruit (0.002-0.009 ng g-1; 0.006-0.024 ng g-1), and fish (0.00369-0.017.33 ng g-1; 0.05 ng g-1) also confirmed the effectiveness of the recent quick, easy, cheap, effective, rugged, and safe method (QuEChERS) for simple, speedy, and sensitive ultra-trace PFAS analysis.
Collapse
Affiliation(s)
- Alessia Iannone
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, IT-86100 Campobasso, Italy; (A.I.); (F.C.); (S.P.); (A.F.)
| | - Fabiana Carriera
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, IT-86100 Campobasso, Italy; (A.I.); (F.C.); (S.P.); (A.F.)
| | - Sergio Passarella
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, IT-86100 Campobasso, Italy; (A.I.); (F.C.); (S.P.); (A.F.)
| | - Alessandra Fratianni
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, IT-86100 Campobasso, Italy; (A.I.); (F.C.); (S.P.); (A.F.)
| | - Pasquale Avino
- Department of Agriculture, Environmental and Food Sciences, University of Molise, Via De Sanctis, IT-86100 Campobasso, Italy; (A.I.); (F.C.); (S.P.); (A.F.)
- Institute of Atmospheric Pollution Research, Division of Rome, c/o Ministry of Environment and Energy Security, Via Cristoforo Colombo 44, IT-00147 Rome, Italy
| |
Collapse
|
11
|
Heinsberg LW, Niu S, Arslanian KJ, Chen R, Bedi M, Unasa-Apelu F, Fidow UT, Soti-Ulberg C, Conley YP, Weeks DE, Ng CA, Hawley NL. Characterization of per- and polyfluoroalkyl substances (PFAS) concentrations in a community-based sample of infants from Samoa. CHEMOSPHERE 2024; 353:141527. [PMID: 38401869 PMCID: PMC10997188 DOI: 10.1016/j.chemosphere.2024.141527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/08/2024] [Accepted: 02/21/2024] [Indexed: 02/26/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent contaminants with documented harmful health effects. Despite increasing research, little attention has been given to studying PFAS contamination in low- and middle-income countries, including Samoa. Using data and biosamples collected through the Foafoaga o le Ola ("Beginning of Life") Study, which recruited a sample of mothers and infants from Samoa, we conducted an exploratory study to describe concentrations of 40 PFAS analytes in infant cord blood collected at birth (n = 66) and infant dried blood spots (DBS) collected at 4 months post-birth (n = 50). Of the 40 PFAS analytes tested, 19 were detected in cord blood, with 10 detected in >50% of samples (PFBA, PFPeA, PFOA, PFNA, PFDA, PFUnA, PFTrDA, PFHxS, PFOS, and 9Cl-PF3ONS); and 12 analytes were detected in DBS, with 3 detected in >50% of samples (PFBA, PFHxS, and PFOS). PFAS concentrations were generally lower than those reported in existing literature, with the exception of PFHxS, which was detected at higher concentrations. In cord blood, we noted suggestive (p < 0.05) or significant (p < 0.006) associations between higher PFHxS and male sex; higher PFPeA and residence in Northwest 'Upolu (NWU) compared to the Apia Urban Area (AUA); lower PFUnA and 9Cl-PF3ONS and greater socioeconomic resources; lower PFOA and higher parity; higher PFDA and higher maternal age; and lower PFUnA, PFTrDA, and 9Cl-PF3ONS and higher maternal BMI. In DBS, we found suggestive (p < 0.05) or significant (p < 0.025) associations between lower PFBA and residence in NWU versus AUA; lower PFBA and PFHxS and higher maternal age; and higher PFBA and higher maternal BMI. Finally, we observed associations between nutrition source at 4 months and DBS PFBA and PFHxS, with formula- or mixed-fed infants having higher concentrations compared to exclusively breastfed infants. This study represents the first characterization of PFAS contamination in Samoa. Additional work in larger samples is needed to identify potentially modifiable determinants of PFAS concentrations, information that is critical for informing environmental and health policy measures.
Collapse
Affiliation(s)
- Lacey W Heinsberg
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Shan Niu
- Department of Civil and Environmental Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Kendall J Arslanian
- Department of Social and Behavioral Sciences, Yale University School of Public Health, New Haven, CT, USA.
| | - Ruiwen Chen
- Department of Civil and Environmental Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Megha Bedi
- Department of Civil and Environmental Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Folla Unasa-Apelu
- Obesity, Lifestyle and Genetic Adaptations Study Group, Apia, Samoa.
| | | | | | - Yvette P Conley
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA; Department of Health Promotion and Development, School of Nursing, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Daniel E Weeks
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA; Department of Biostatistics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Carla A Ng
- Department of Civil and Environmental Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Nicola L Hawley
- Department of Chronic Disease Epidemiology, Yale University School of Public Health, New Haven, CT, USA.
| |
Collapse
|
12
|
Bedi M, Sapozhnikova Y, Ng C. Evaluating contamination of seafood purchased from U.S. retail stores by persistent environmental pollutants, pesticides and veterinary drugs. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:325-338. [PMID: 38315767 DOI: 10.1080/19440049.2024.2310128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/21/2024] [Indexed: 02/07/2024]
Abstract
Studies have reported health risks associated with seafood contamination, but few data exist on levels in commercially available seafood in the US. To better understand, the magnitude of foodborne exposure and identify vulnerable populations in the US, we measured concentrations of veterinary drugs, persistent organic pollutants (POPs) (polycyclic aromatic hydrocarbons [PAHs], polybrominated diphenyl ethers [PBDEs] and polychlorinated biphenyls [PCBs]), and legacy and current-use pesticides in 46 seafood samples purchased from retail outlets. Measured levels were used to estimate risk based on available maximum residue limits (MRLs) and toxic equivalence (TEQ) factors for analytes. Only seventeen of the 445 analytes were detected, at low substance frequencies. However, half of the samples tested positive for one or more analyte, with total concentrations ranging from below the limit of detection (LOD) to as high as 156 µg/kg wet weight. Based on the risk assessment for individual pesticides and veterinary drugs, the hazard quotients (HQ) were all <1, indicating no risk. However, for the sum of PCB126 and PCB167, two dioxin-like PCBs detected in our samples, the TEQ was nearly two orders of magnitude higher than the WHO limits in one catfish sample. Moreover, vulnerable groups with higher rates of consumption of specific fish types may face higher risks.
Collapse
Affiliation(s)
- Megha Bedi
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yelena Sapozhnikova
- USDA, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, USA
| | - Carla Ng
- Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
13
|
Heinsberg LW, Niu S, Arslanian KJ, Chen R, Bedi M, Unasa-Apelu F, Fidow UT, Soti-Ulberg C, Conley YP, Weeks DE, Ng CA, Hawley NL. Characterization of Per- and Polyfluoroalkyl Substance (PFAS) concentrations in a community-based sample of infants from Samoa. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.10.23298357. [PMID: 37986966 PMCID: PMC10659488 DOI: 10.1101/2023.11.10.23298357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent contaminants with documented harmful health effects. Despite increasing research, little attention has been given to studying PFAS contamination in low- and middle-income countries, including Samoa, where there is more recent modernization and potential window to examine earlier stages of PFAS exposure and consequences. Using data and biosamples collected through the Foafoaga o le Ola ("Beginning of Life") Study, which recruited a sample of mothers and infants from Samoa, we conducted an exploratory study to describe concentrations of 40 PFAS analytes in infant cord blood collected at birth (n=66) and dried blood spots (DBS) collected at 4 months post-birth (n=50). Of the 40 PFAS analytes tested, 19 were detected in cord blood, with 11 detected in >10% of samples (PFBA, PFPeA, PFHpA, PFOA, PFNA, PFDA, PFUnA, PFTrDA, PFHxS, PFOS, and 9Cl-PF3ONS); 12 analytes were detected in DBS, with 3 detected in >10% of samples (PFBA, PFHxS, and PFOS). PFAS concentrations were generally lower than those reported in existing literature, with the exception of PFHxS, which was detected at higher concentrations. In cord blood, we noted associations between higher PFHxS and male sex, higher PFPeA and residence in Northwest 'Upolu (NWU) compared to the Apia Urban Area (AUA), and lower PFUnA and 9Cl-PF3ONS with greater socioeconomic resources. In DBS, we found associations between higher PFBA and greater socioeconomic resources, and between lower PFBA and PFHxS and residence in NWU versus AUA. However, the latter association did not hold when controlling for socioeconomic resources. Finally, we observed associations between nutrition source at 4 months and DBS PFBA and PFHxS, with formula- or mixed-fed infants having higher concentrations compared to exclusively breastfed infants. This study presents the first evidence of PFAS contamination in Samoa. Additional work in larger samples is needed to identify potentially modifiable determinants of PFAS concentrations, information that is critical for informing environmental and health policy measures.
Collapse
|