1
|
Duan R, Ma S, Ma Y, Xu S, Li G, Fu H, Wu X, Du J, Zhao P. Efficient inactivation of antibiotic resistant bacteria by iron-modified biochar and persulfate system: Potential for controlling antimicrobial resistance spread and mechanism insights. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138182. [PMID: 40203758 DOI: 10.1016/j.jhazmat.2025.138182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/11/2025]
Abstract
Antimicrobial resistance (AMR) is a critical global health threat, further intensified by the widespread dissemination of plasmid-encoded antibiotic resistance genes (ARGs), which poses a significant challenge to the "One Health" concept. Persulfate-based advanced oxidation processes (PS-AOPs) have emerged as effective disinfection methods, capable of degrading antibiotics, inactivating bacteria, and eliminating ARGs, whereas their efficacy towards blocking ARGs horizontal transfer remains elusive. This work constructed a series of Fe-modified soybean straw biochar (FeSSB) as persulfate (PS) activators through Fe-modification and temperature regulation. Among the tested systems, FeSSB800/PS achieved complete inactivation of antibiotic resistant bacteria (ARB) with a 7.04-log reduction within 60 min, outperforming others. FeSSB800, featuring the highest exposed-Fe(II) sites, most CO groups, and lowest charge transfer resistance, obtaining optimal PS activation and reactive species generation, which caused irreversible damage to ARB cells and significantly inhibited the transformation and conjugation efficiency of plasmid RP4. The inhibition mechanism is driven by the aggressive action of free radicals, which injure cell envelopes, induce oxidative stress, disrupt ATP synthesis, and alter intercellular adhesion. These findings underscore the potential of PS-AOPs as a promising strategy to mitigate AMR by simultaneously inactivating ARB and impeding ARGs dissemination.
Collapse
Affiliation(s)
- Ran Duan
- Key Laboratory of Soil Pollution Control and Remediation of Henan Province, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China; Henan Key Laboratory of Quality & Safety and Processing for Agro-Products, Institute of Quality and Safety for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Shuanglong Ma
- Key Laboratory of Soil Pollution Control and Remediation of Henan Province, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China.
| | - Yanbing Ma
- Key Laboratory of Soil Pollution Control and Remediation of Henan Province, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Shengjun Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Haidian District, Beijing 100085, China
| | - Guangxin Li
- Key Laboratory of Soil Pollution Control and Remediation of Henan Province, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Haichao Fu
- Key Laboratory of Soil Pollution Control and Remediation of Henan Province, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China
| | - Xujin Wu
- Henan Key Laboratory of Quality & Safety and Processing for Agro-Products, Institute of Quality and Safety for Agro-products, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Jinge Du
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Peng Zhao
- Key Laboratory of Soil Pollution Control and Remediation of Henan Province, College of Resources and Environment, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
2
|
Zhou T, Liu G, Jin R, Zhou J. Altered Cell Viability, Morphology, and Motility under Ciprofloxacin Stress Influence the Transport and Resistance of Bacteria in Saturated Porous Media. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8746-8755. [PMID: 40265891 DOI: 10.1021/acs.est.5c00322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
The ubiquitous occurrence of antibiotics in the environment induces various stress responses of microbes and increases the risk of the emergence and spread of antimicrobial resistance (AMR). In this study, the transport and retention of Shewanella oneidensis cells in saturated porous media was investigated under different levels of ciprofloxacin (CIP) stress. Exposing to lethal CIP stress caused significant viability loss and stimulated cell transport due to increasing hydrophilicity and decreasing surface roughness. While exposure to sublethal CIP stress did not affect MR-1's viability, elongation of cells promoted their retention in sand columns via straining and orientation effects. The elongated cells likely adopted an end-on configuration to minimize repulsive interaction energy when approaching sand surfaces and deposited in a side-on position due to local surface roughness and charge heterogeneity of sands. The more diminished breakthrough of MR-1 cells in redox-active media was ascribed to their improving extracellular electron transfer and energy taxis activities under sublethal CIP stress. Moreover, the retention of elongated cells in porous media facilitated the de novo emergence of a resistant gyrase mutant, whose remobilization might exacerbate the AMR dissemination.
Collapse
Affiliation(s)
- Tianao Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Guangfei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ruofei Jin
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
3
|
Ma TF, Yu XY, Xing CY, Fu HM, Duan HY, Chen YP. Impacts of sulfamethoxazole on heterotrophic nitrification-aerobic denitrification bacteria and its response strategies: Insights from physiology to proteomics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 379:124890. [PMID: 40056593 DOI: 10.1016/j.jenvman.2025.124890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/04/2025] [Accepted: 03/04/2025] [Indexed: 03/10/2025]
Abstract
The effects of sulfonamide antibiotics on heterotrophic nitrification-aerobic denitrification (HN-AD) and the response mechanisms of HN-AD bacteria are not fully understood. This study investigated the physiological changes and proteomic responses of the HN-AD bacteria Pseudomonas stutzeri (P. stutzeri) under varying concentrations of sulfamethoxazole (SMX). Results indicated that SMX inhibited the growth and HN-AD performance of P. stutzeri in a concentration-dependent manner. SMX exposure led to decreased motility, reduced electron transfer system activity, and diminished activities of key denitrifying enzymes, accompanied by increased levels of intracellular reactive oxygen species and compromised cell membrane integrity. Additionally, the production of extracellular polymeric substances and self-aggregation ability of P. stutzeri initially increased and then decreased with rising SMX concentrations. Proteomic analysis revealed that SMX primarily suppressed pathways involved in bacterial chemotaxis, ABC transporters, two-component systems, fatty acid metabolism, and nitrogen metabolism. In response, P. stutzeri upregulated pathways associated with starch and sucrose metabolism, carotenoid biosynthesis, styrene degradation, O-antigen nucleotide sugar biosynthesis, and the pentose phosphate pathway. These findings provide insights into the effects of sulfonamide antibiotics on HN-AD bacteria and their response mechanisms, offering references for the application of HN-AD processes in treating antibiotic-containing wastewater.
Collapse
Affiliation(s)
- Teng-Fei Ma
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Xiao-Yao Yu
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Chong-Yang Xing
- School of Environment and Resource, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Hui-Min Fu
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Hao-Yang Duan
- National Research Base of Intelligent Manufacturing Service, Chongqing Technology and Business University, Chongqing, 400067, China
| | - You-Peng Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
4
|
Wu L, Zhang X, Jin D, Wu P. Insights into combined stress mechanisms of microplastics and antibiotics on anammox: A critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:124947. [PMID: 40081039 DOI: 10.1016/j.jenvman.2025.124947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/20/2025] [Accepted: 03/09/2025] [Indexed: 03/15/2025]
Abstract
The microplastic and antibiotic pollution poses a major threat to human health and natural ecology. Wastewater treatment systems act as a link between human societies and natural ecosystems. Microplastics (MPs) and antibiotics (ATs) in wastewater endanger the stabilization of the anaerobic ammonium oxidation (anammox) system. However, most existing studies have primarily concentrated on the effects and stress mechanisms of either MPs-induced or ATs-induced stress on anammox. A comprehensive and holistic overview of the effects and underlying mechanisms of the combined stress exerted on anammox by both MPs and ATs is currently lacking. This review concludes the effects of MPs and ATs on anammox bacteria (AnAOB) and describes the mechanisms of the effects of these two emerging contaminants on AnAOB. Subsequently, the effects that the combined stress of MPs and ATs can have on the anammox system are reviewed. The adsorption of ATs by MPs, an indispensable mechanism affecting the combined stress, is explained. Additionally, the effect of MPs' aging on their ability to adsorb ATs is presented. Finally, this paper proposes to alleviate the combined stress of MPs and ATs by enriching biofilms and points out the risk of propagation of ARGs under the combined stress. This review sheds light on valuable insights into the combined stress of MPs and ATs on anammox and points out future research directions for this combined stress.
Collapse
Affiliation(s)
- Long Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Xiaonong Zhang
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Da Jin
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Peng Wu
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
5
|
Zhang X, Wang J, Yang Z, Zhang Z, Wang M, Zhang T, Chen Y, Wu X, Liu P, Jia H. Microplastics Exacerbated Conjugative Transfer of Antibiotic Resistance Genes during Ultraviolet Disinfection: Highlighting Difference between Conventional and Biodegradable Ones. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:834-845. [PMID: 39723446 DOI: 10.1021/acs.est.4c10991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Microplastics (MPs) have been confirmed as a hotspot for antibiotic resistance genes (ARGs) in wastewater. However, the impact of MPs on the transfer of ARGs in wastewater treatment remains unclear. This study investigated the roles and mechanisms of conventional (polystyrene, PS) and biodegradable (polylactic acid, PLA) MPs in the conjugative transfer of ARGs during ultraviolet disinfection. The results showed that MPs significantly facilitated the conjugative transfer of ARGs compared with individual ultraviolet disinfection, and PSMPs exhibited higher facilitation than PLAMPs. The facilitation effects were attributed to light shielding and the production of reactive oxygen species (ROS) and nanoplastics from ultraviolet irradiation of MPs. The light shielding of MPs protected the bacteria and ARGs from ultraviolet inactivation. More importantly, ROS and nanoplastics generated from irradiated MPs induced intracellular oxidative stress on bacteria and further increased the cell membrane permeability and intercellular contact, ultimately enhancing the ARG exchange. The greater fragmentation of PSMPs than PLAMPs resulted in a higher intracellular oxidative stress and a stronger enhancement. This study highlights the concerns of conventional and biodegradable MPs associated with the transfer of ARGs during wastewater treatment, which provides new insights into the combined risks of MPs and ARGs in the environment.
Collapse
Affiliation(s)
- Xinrui Zhang
- Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Jian Wang
- Environmental Protection Key Laboratory of Soil Environmental Management and Pollution Control, Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of China, Nanjing 210042, China
| | - Zeyuan Yang
- Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Zixuan Zhang
- Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Mingjun Wang
- Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Taishuo Zhang
- Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Yiqi Chen
- Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xiaowei Wu
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Peng Liu
- Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Hanzhong Jia
- Key Laboratory of Plant Nutrition and the Agro-Environment in Northwest China, Ministry of Agriculture and Rural Affairs, College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
6
|
Xiao W, Bian Z. Impact of molecular structure on the biological removal efficiency of fluoroquinolone antibiotics: An in-silico approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 956:177178. [PMID: 39486545 DOI: 10.1016/j.scitotenv.2024.177178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/04/2024]
Abstract
Fluoroquinolone antibiotics (FQs), one of the most widely used antibacterials, have been recognized as emerging contaminants with adverse human health concerns. To overcome the adverse effects, a theoretical molecular design and screening approach was developed in this study to improve the removal efficiency of FQs by Chlorella in artificial or natural wetland systems. Among the 189 designed norfloxacin (NOR) derivatives, NOR-140 was screened with significantly improved biosorption, bioaccumulation, and biodegradation removal and functional effects, and reduced human health and ecological risks. The removal mechanism NOR-140 was also analyzed using adsorption kinetics, molecular docking, molecular dynamics simulations and machine learning models. Protein and polysaccharide structures play a major role in the adsorption process, polarizability and molecular volume of NOR-140 affect the bioaccumulation ability, and hydrogen bonding was found as the key force promoting the degradation ability of NOR-140. Modifying specific sites (5, 8, and 13) with functional groups containing highly electronegative atoms (O, F) significantly enhances the biodegradability of FQs alternatives by Chlorella. This study provided theoretical support for designing environmentally friendly FQs alternatives with improved degradation ability and advanced the understanding of how the FQs' molecular structures affect its removal by Chlorella.
Collapse
Affiliation(s)
- Wenyu Xiao
- College of Water Sciences, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Zhaoyong Bian
- College of Water Sciences, Beijing Normal University, Beijing 100875, People's Republic of China.
| |
Collapse
|
7
|
Zhang M, Hou J, Xia J, Wu J, You G, Miao L. The selective occurrence of ripening effect makes the cotransport of various sized nanoplastics in seawater-saturated and freshwater-saturated porous media significantly different. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136189. [PMID: 39423641 DOI: 10.1016/j.jhazmat.2024.136189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
We explored the coadsorption and cotransport (single, binary, and ternary systems) of varying sized (50, 200, and 500 nm) Polymethylmethacrylate (PMMA) nanoplastics (NPs) with different concentration ratios in freshwater-saturated and seawater-saturated porous media. It was found that ripening effect occurred selectively, with ripening more likely to occur in seawater relative to freshwater, resulting in significantly different cotransport and coadsorption of varying sized NPs in freshwater-saturated and seawater-saturated porous media. In freshwater, there was no obvious ripening effect happening. In both binary and ternary systems, as the concentration of coexisting PMMA NPs increased, the adsorption and retention of coexisting other sized PMMA NPs were inhibited due to competition for adsorption sites. In seawater, coexisting varying sized NPs promoted adsorption and retention of each other in saturated porous media due to increased roughness and ripening effect. The NP aggregate size and the increase in surface roughness of media grains brought about by the increase in size variety of NPs dominated the cotransport of varying sized NPs in seawater-saturated porous media. The findings of this study provide help for clarifying the fate of NPs presented in real environments in porous media of freshwater and seawater systems.
Collapse
Affiliation(s)
- Mingzhi Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Jun Xia
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
8
|
Tang Z, Liu H, Wang Y, Wang Q, Zhang L, An F, Chen Y. Impacts of cefalexin on nitrite accumulation, antibiotic degradation, and microbial community structure in nitrification systems. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135430. [PMID: 39178773 DOI: 10.1016/j.jhazmat.2024.135430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 07/30/2024] [Accepted: 08/03/2024] [Indexed: 08/26/2024]
Abstract
The intensive use of various antibiotics for clinical and agricultural purposes has resulted in their widespread use in wastewater treatment plants. However, little research has been conducted on the effects of antibiotics on nitrite accumulation, antibiotic degradation pathways, or the microbial community structure in nitrification systems. In this study, a laboratory-scale sequencing batch reactor was used to treat wastewater containing cefalexin (CFX) at different doses (5, 10, 15, and 20 mg/L). The results showed that the nitrification performance was gradually inhibited with increasing CFX concentration. Ammonia-oxidizing bacteria (AOB) are more tolerant to CFX than nitrite-oxidizing bacteria (NOB). Under 15 mg/L of CFX, NOB were completely suppressed, whereas AOB were partially inhibited, as evidenced by an ammonium removal efficiency of 60 % and a 90 % of nitrite accumulation ratio. The partial nitritation was achieved. CFX can be degraded into 2-hydroxy-3phenylpyrazine and cyclohexane through bacterial co-metabolism, and CFX degradation gradually diminishes with decreasing nitrification performance. The abundance of Nitrospira gradually decreased with increasing CFX concentration. Ferruginibacter, Hydrogenophaga, Thauera, and Pseudoxanthomonas were detected at relative abundances of 13.2 %, 0.4 %, 0.9 %, and 1.3 %, respectively, indicating their potential roles in antibiotic degradation. These findings provide insight into the interactions between antibiotics and microbial communities, which are beneficial for a better understanding of antibiotic degradation in nitrification systems.
Collapse
Affiliation(s)
- Zhiqiang Tang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Technical Center of Sewage Treatment Industry in Gansu, Lanzhou 730070, China
| | - Hong Liu
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Technical Center of Sewage Treatment Industry in Gansu, Lanzhou 730070, China
| | - Yunxia Wang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Technical Center of Sewage Treatment Industry in Gansu, Lanzhou 730070, China
| | - Qi Wang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Technical Center of Sewage Treatment Industry in Gansu, Lanzhou 730070, China
| | - Li Zhang
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Technical Center of Sewage Treatment Industry in Gansu, Lanzhou 730070, China
| | - Fangjiao An
- School of Civil Engineering, Lanzhou University of Technology, Lanzhou 730050, China
| | - Yongzhi Chen
- School of Environmental and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China; Technical Center of Sewage Treatment Industry in Gansu, Lanzhou 730070, China.
| |
Collapse
|
9
|
Deng J, Zhang W, Zhang L, Qin C, Wang H, Ling W. Micro-interfacial behavior of antibiotic-resistant bacteria and antibiotic resistance genes in the soil environment: A review. ENVIRONMENT INTERNATIONAL 2024; 191:108972. [PMID: 39180776 DOI: 10.1016/j.envint.2024.108972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/11/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024]
Abstract
Overutilization and misuse of antibiotics in recent decades markedly intensified the rapid proliferation and diffusion of antibiotic resistance genes (ARGs) within the environment, thereby elevating ARGs to the status of a global public health crisis. Recognizing that soil acts as a critical reservoir for ARGs, environmental researchers have made great progress in exploring the sources, distribution, and spread of ARGs in soil. However, the microscopic state and micro-interfacial behavior of ARGs in soil remains inadequately understood. In this study, we reviewed the micro-interfacial behaviors of antibiotic-resistant bacteria (ARB) in soil and porous media, predominantly including migration-deposition, adsorption, and biofilm formation. Meanwhile, adsorption, proliferation, and degradation were identified as the primary micro-interfacial behaviors of ARGs in the soil, with component of soil serving as significant determinant. Our work contributes to the further comprehension of the microstates and processes of ARB and ARGs in the soil environments and offers a theoretical foundation for managing and mitigating the risks associated with ARG contamination.
Collapse
Affiliation(s)
- Jibao Deng
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenkang Zhang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Lingyu Zhang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chao Qin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hefei Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
10
|
Li H, Liu B, Li M, Shen M. Livestock and poultry breeding farms as a fixed and underestimated source of antibiotic resistance genes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:49916-49931. [PMID: 39052112 DOI: 10.1007/s11356-024-34413-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/14/2024] [Indexed: 07/27/2024]
Abstract
The excessive use of antibiotics, disinfectants, and drugs in livestock and poultry breeding has resulted in a rise in the presence of antibiotic resistance genes (ARGs). Antibiotic-resistant bacteria (ARB) and ARGs have been widely found in animal feces, farm wastewater, and farm air. ARGs can not only spread across media through adsorption and migration, but also transfer resistance across bacterial genera through horizontal gene transfer. Livestock breeding has become a fixed and unavoidable source of ARGs in the environment. Existing technologies for controlling ARGs, such as composting, disinfection, and sewage treatment, are not efficient in removing ARB and ARGs from waste. Furthermore, the remaining ARGs still possess a strong capacity for dissemination. At present, antibiotics used in animal husbandry are difficult to replace in a short period of time. The growth and potential risks of resistance genes in livestock and poultry breeding sources in the receiving environment are not yet clear. In this paper, we summarize the current situation of ARGs in the livestock and poultry breeding environment. We also explain the key environmental processes, main influencing factors, and corresponding ecological risks associated with ARGs in this environment. The advantages and disadvantages of current technologies for the removal of ARGs are primarily discussed. There is a particular emphasis on clarifying the spatiotemporal evolution patterns and environmental process mechanisms of ARGs, as well as highlighting the importance and urgency of developing efficient pollution control technologies.
Collapse
Affiliation(s)
- Haokai Li
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, People's Republic of China
| | - Bohao Liu
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, People's Republic of China
| | - Mingyu Li
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, People's Republic of China
| | - Maocai Shen
- School of Energy and Environment, Anhui University of Technology, Maanshan, Anhui, 243002, People's Republic of China.
| |
Collapse
|
11
|
Zhang J, Li S, Yao L, Han Y, Chen K, Qian M, Li Z, Lin H. Cyclodextrin-based ternary supramolecular deep eutectic solvents for efficient extraction and analysis of trace quinolones and sulfonamides in wastewater by adjusting pH. Anal Chim Acta 2024; 1311:342714. [PMID: 38816153 DOI: 10.1016/j.aca.2024.342714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/01/2024]
Abstract
BACKGROUND Antibiotics residues can accelerate the growth of drug-resistant bacteria and harm the ecological environment. Under the effect of enrichment and biomagnification, the emergence of drug-resistant pathogenic bacteria may eventually lead to humans being ineffective to drugs in the face of bacterial or fungal disease infections in the future. It is urgent to develop an efficient separation medium and analytical method for simultaneous extraction and determination of antibiotics in the water environment. RESULTS This work doped 2,6-Di-O-methyl-β-cyclodextrin, randomly methyl-β-cyclodextrin, 2-hydroxypropyl-β-cyclodextrin with thymol:fatty acid respectively to construct non-covalent interaction-dominated pH-responsive ternary supramolecular deep eutectic solvents (SUPRADESs), which can undergo a hydrophilic/hydrophobic transition with aqueous phase to achieve an efficient microextraction. Semi-empirical method illustrated that SUPRADESs have a wide range of hydrogen bond receptor sites. We developed a SUPRADES-based analytical method combined with liquid chromatography-triple quadrupole mass spectrometry for the extraction and determination of trace quinolones and sulfonamides in wastewater. The overall limits of detection of the method were 0.0021-0.0334 ng mL-1 and the limits of quantification were 0.0073-0.1114 ng mL-1. The linearity maintained good in the spiked level of 0.01-100 ng mL-1 (R2 > 0.99). The overall enrichment factors of the method were 157-201 with lower standard deviations (≤8.7). SIGNIFICANCE The method gave an extraction recovery of 70.1-115.3 % for 28 antibiotics in livestock farming wastewater samples from Zhejiang, China, at trace levels (minimum 0.5 ng mL-1). The results demonstrated that inducing the phase transition between SUPRADES and aqueous phase by adjusting pH for extraction is a novel and efficient pretreatment strategy. To our knowledge, this is the first application of cyclodextrin-based ternary SUPRADESs with pH-responsive reversible hydrophobicity-hydrophilicity transition behavior in wastewater analysis.
Collapse
Affiliation(s)
- Jingyu Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Shang Li
- Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Liping Yao
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Yulin Han
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Kexian Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, 310018, China
| | - Mingrong Qian
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Zuguang Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Hui Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Zhejiang Academy of Agricultural Sciences, Hangzhou, 310021, China.
| |
Collapse
|
12
|
Zhang M, Hou J, Xia J, Wu J, You G, Miao L. The long-term release and particle fracture behaviors of nanoplastics retained in porous media: Effects of surfactants, natural organic matters, antibiotics, and bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 925:171563. [PMID: 38460706 DOI: 10.1016/j.scitotenv.2024.171563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
The transport of nanoplastics (NPs) in porous media has received a lot of attention, but the studies on the long-term release of NPs retained in porous media and the particle fracture during this process are seriously lacking. For filling this deficiency, we examined the individual or synergistic effects of surfactants, natural organic matters (NOMs), antibiotics, and bacteria on the desorption, long-term release, and particle fracture behaviors of polystyrene NPs (PS-NPs) retained in porous media. It was found that the change in hydrophilicity of PS-NPs dominated the long-term release of PS-NPs retained in porous media when surfactants were present. In the single system of surfactants and the dual system of surfactants and NOMs, the release of PS-NPs were improved owing to the increasing hydrophilicity of PS-NPs, although cationic surfactants also reduced the electrostatic repulsion between PS-NPs and porous media. Increasing antibiotic concentration reduced the electrostatic repulsion between PS-NPs and porous media to inhibit the release of PS-NPs. When bacteria were present whether containing antibiotics or not, the effects on roughness of PS-NPs dominated the release of PS-NPs. The effects of surfactants and NOMs on the PS-NP desorption were similar with the long-term release, with changes in hydrophilicity dominating the process. Whereas the effects of antibiotics and bacteria on the PS-NP desorption were different with the long-term release. Surfactants and NOMs in the presence of surfactants inhibited the fracture of PS-NPs by increasing the hydrophilicity of PS-NPs brought about the coating of water molecules on PS-NPs for protection. Antibiotics had no significant effects on the fracture of PS-NPs due to unaltered vertical forces on PS-NPs and no protective effect. Bacteria in the presence or absence of antibiotics inhibited the fracture of PS-NPs by coating PS-NPs retained in porous media to protect PS-NPs from fracture.
Collapse
Affiliation(s)
- Mingzhi Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Jun Xia
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Wu
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Lingzhan Miao
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|