1
|
Barberoux V, Anzil A, Meinertzhagen L, Nguyen-Dinh T, Servais P, George IF. Spatio-temporal dynamics of bacterial community composition in a Western European watershed, the Meuse River watershed. FEMS Microbiol Ecol 2025; 101:fiaf022. [PMID: 40042978 PMCID: PMC11916896 DOI: 10.1093/femsec/fiaf022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/17/2025] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
This study aimed to identify factors influencing bacterial diversity in the Meuse River watershed by analyzing 42 locations sampled in spring and summer 2019, combined with biweekly sampling of one mid-stream location for a year. Bacterial community composition (BCC) was assessed in the small (SF; <5 µm) and large fractions (LF; ≥5 µm,), alongside physico-chemical parameters. LF consistently exhibited greater alpha diversity than SF. During the spatial campaigns, alpha diversity increased downstream in spring with high discharge, and BCC differed significantly between headwaters and the main river. Along this axis, several genera, Flavobacterium, Limnohabitans, and Aquirufa stood out as indicators of good water quality. Rhodoferax, another taxon indicative of good water quality, prevailed in the headwaters and during winter. In contrast, two cyanobacteria genera indicators of poor river quality, Microcystis PCC 7914 and Cyanobium PCC 6307, peaked in summer. BCC in spring and summer temporal samples aligned with spatial ones, while winter and autumn samples had distinct BCC. Finally, season, temperature, and distance from river mouth were the main driving parameters of beta diversity, outweighing the effect of fraction size on the BCC. These findings reinforce the notion that local conditions exert significant influence on bacterial communities in rivers.
Collapse
Affiliation(s)
- Valentin Barberoux
- Laboratory of Ecology of Aquatic Systems (ESA), Brussels Bioengineering School, Université Libre de Bruxelles, Brussels 1050, Belgium
- Laboratory of Marine Biology, Faculty of Sciences, Université Libre de Bruxelles, Brussels 1050, Belgium
| | - Adriana Anzil
- Laboratory of Ecology of Aquatic Systems (ESA), Brussels Bioengineering School, Université Libre de Bruxelles, Brussels 1050, Belgium
| | - Loïc Meinertzhagen
- Laboratory of Ecology of Aquatic Systems (ESA), Brussels Bioengineering School, Université Libre de Bruxelles, Brussels 1050, Belgium
| | - Thanh Nguyen-Dinh
- Greening Laboratory, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia
| | - Pierre Servais
- Laboratory of Ecology of Aquatic Systems (ESA), Brussels Bioengineering School, Université Libre de Bruxelles, Brussels 1050, Belgium
| | - Isabelle F George
- Laboratory of Ecology of Aquatic Systems (ESA), Brussels Bioengineering School, Université Libre de Bruxelles, Brussels 1050, Belgium
| |
Collapse
|
2
|
Shi K, Zhang J, Zhao Y, Liu C, Zhou S. Distinct co-succession of dissolved organic matter and bacterial generalists and specialists in inflow rivers of Baiyangdian Lake. ENVIRONMENTAL RESEARCH 2025; 275:121378. [PMID: 40086578 DOI: 10.1016/j.envres.2025.121378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 03/07/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Dissolved organic matter (DOM) significantly affects the stability of river microorganisms, but the seasonal regulatory mechanisms of generalists and specialists remain unclear. Through spectral measurement and high-throughput sequencing techniques, the structural, network, and evolutionary characteristics of generalists and specialists in Baiyangdian lake inflow rivers from 2021 to 2023 were analyzed, and the influences of environmental factors and DOM on their dynamics were quantified. Parallel factor analysis (PARAFAC) identified two protein-like components (C1+C2) and one humus-like component (C3). Among them, the protein-like components were significantly higher in urban reclaimed water (URW) than in non-urban reclaimed water (NRW), while the humus-like component was higher in summer than in winter (P < 0.001). The relative concentration of DOM was higher in summer, showing overall low humification and strong autochthonous characteristics (FI > 1.8, HIX <4). Actinobacteriota and Proteobacteria were the main components of generalists and specialists. Species replacement had a much greater impact on β-diversity than richness differences. The network structure of winter and NRW exhibited more complex topological properties, and the stability of generalist networks was lower than that of specialists. Stochastic processes dominated the community assembly process (63.73 %-93.94 %), with generalists in summer being more influenced by stochastic processes, while the opposite was true in winter. The BiSSE model indicated that specialists exhibited higher diversification potential than generalists. Path analysis showed that in summer URW, diversity and protein-like components had the greatest impact on the network stability of generalists and specialists, respectively. In NRW, humus-like component had the greatest impact on the network stability of specialists. This study clarified the mechanism by which the seasonal characteristics of DOM drive the ecological strategy differentiation of generalists and specialists in rivers, providing a theoretical basis for watershed ecological management.
Collapse
Affiliation(s)
- Kun Shi
- School of Civil Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Jiafeng Zhang
- School of Civil Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Yuting Zhao
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Chun Liu
- Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| | - Shilei Zhou
- School of Civil Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China; Hebei Key Laboratory of Pollution Prevention Biotechnology, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, China
| |
Collapse
|
3
|
Cai S, Zhao J, Sheng E, Fan L, Shen Z, Li Y. Similar but different assembly processes of bacterial and micro-eukaryotic communities in an urban river. Sci Rep 2025; 15:6974. [PMID: 40011580 PMCID: PMC11865445 DOI: 10.1038/s41598-025-91664-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 02/21/2025] [Indexed: 02/28/2025] Open
Abstract
Bacteria and micro-eukaryotes play important roles in river ecological systems. The processes that govern bacterial and micro-eukaryotic communities in urban rivers are still uncertain. The spatiotemporal characteristics and assembly processes of bacterial and micro-eukaryotic communities in the Xiangjianghe River were explored using 16 S and 18 S rRNA gene amplicon sequencing in the present study. The results indicate that the bacterial and micro-eukaryotic community composition exhibited distinct temporal and spatial variation. The topological characteristics of co-occurrence networks demonstrate that the bacterial and micro-eukaryotic community coexistence patterns vary significantly between the four seasons. Water temperature (WT) and oxidation-reduction potential (ORP) were detected as the most critical factors affecting bacterial and micro-eukaryotic community structure. The stochastic process (dispersal limitation) was the dominant assembly process for bacteria and micro-eukaryotes in all seasons. Deterministic and stochastic processes influenced the bacteria and micro-eukaryotes differently. Compared to bacteria, the values of niche breadth were relatively lower, and the proportion of deterministic processes was relatively higher in micro-eukaryotes. These results expand our understanding of spatiotemporal patterns, assembly mechanisms, and influencing factors of bacterial and micro-eukaryotic communities in urban rivers.
Collapse
Affiliation(s)
- Shenwen Cai
- College of Resources and Environment, Zunyi Normal University, Zunyi, 563006, China.
| | - Jun Zhao
- College of Resources and Environment, Zunyi Normal University, Zunyi, 563006, China
| | - Enguo Sheng
- College of Resources and Environment, Zunyi Normal University, Zunyi, 563006, China
| | - Leilei Fan
- College of Resources and Environment, Zunyi Normal University, Zunyi, 563006, China
| | - Ziwei Shen
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China
| | - Yunfeng Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, 430223, China.
| |
Collapse
|
4
|
Feng C, Lu J, Liu T, Shi X, Zhao S, Lv C, Shi Y, Zhang Z, Jin Y, Pang J, Sun A. Microbial community dynamics in shallow-water grass-type lakes: Habitat succession of microbial ecological assembly and coexistence mechanisms. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117819. [PMID: 39908866 DOI: 10.1016/j.ecoenv.2025.117819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/05/2025] [Accepted: 01/25/2025] [Indexed: 02/07/2025]
Abstract
Aggregation and co-occurrence patterns of microbial communities are the key scientific issues in lake ecology. To explore the mechanisms of microbial ecological assembly and community succession in this unique habitat, 16 samples were collected from eight sites in Wuliangsuhai Lake. Second-generation DNA sequencing was applied to reveal the spatial dynamics of the bacterial community structure and distribution across two environmental media in this nutrient-rich shallow grassland lake and to elucidate the characteristics of the co-occurrence network. This study also examined the effects of environmental filtering and biological interactions on the formation and maintenance of the community composition and diversity. The results highlight habitat heterogeneity in microbial community composition, with no discernible latitudinal diversity patterns. The causal analysis identified electrical conductivity, pH, total nitrogen, and phosphorus as the primary factors driving changes in the bacterial community structure in the water and sediment of grass-type lakes, with TN being the key environmental driver. CL500-3 was identified as a pollution-tolerant species in aquatic environments. g__norank_f_Verrucomicrobiaceae was identified as a pollution-tolerant species in sediment environments. The bacterial communities exhibited a significant distance decay pattern, with a higher spatial turnover rate in water than in sediment. Co-occurrence network analysis revealed greater complexity and stability in the sediment bacterial communities, with three potential keystone species, than in water. The neutral and null model results indicated that the water bacterial communities were more susceptible to dispersal limitation, whereas more complex interactions in sediment increased the role of deterministic processes in community construction. This study proposed the division of aquatic plant regions in freshwater lakes and demonstrated the community characteristics of different habitat types, contributing to a comprehensive understanding of shallow-water bacterial diversity and community structure.
Collapse
Affiliation(s)
- Chen Feng
- Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur 014404, China
| | - Junping Lu
- Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Water Resource Protection and Utilization Key Laboratory, Hohhot 010018, China; Autonomous Region Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot 010018, China.
| | - Tingxi Liu
- Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Water Resource Protection and Utilization Key Laboratory, Hohhot 010018, China; Autonomous Region Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot 010018, China.
| | - Xiaohong Shi
- Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Water Resource Protection and Utilization Key Laboratory, Hohhot 010018, China; Autonomous Region Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur 014404, China
| | - Shengnan Zhao
- Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Water Resource Protection and Utilization Key Laboratory, Hohhot 010018, China; Autonomous Region Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur 014404, China
| | - Chunjian Lv
- Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot 010018, China; Inner Mongolia Water Resource Protection and Utilization Key Laboratory, Hohhot 010018, China; Autonomous Region Collaborative Innovation Center for Integrated Management of Water Resources and Water Environment in the Inner Mongolia Reaches of the Yellow River, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur 014404, China
| | - Yujiao Shi
- Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur 014404, China
| | - Zixuan Zhang
- Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur 014404, China
| | - Yuqi Jin
- Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur 014404, China
| | - Jiaqi Pang
- Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur 014404, China
| | - Aojie Sun
- Water Conservancy and Civil Engineering College of Inner Mongolia Agricultural University, Hohhot 010018, China; State Gauge and Research Station of Wetland Ecosystem, Wuliangsuhai Lake, Bayan Nur 014404, China
| |
Collapse
|
5
|
Liu Y, Wang X, Li H, Zhang R, Liu X, Nan F, Liu Q, Lv J, Feng J, Ma C, Xie S. Evaluating the role of recalcitrant dissolved organic matter in bacterial community dynamics in urbanized freshwater ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177475. [PMID: 39528208 DOI: 10.1016/j.scitotenv.2024.177475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Dissolved organic matter (DOM) and recalcitrant dissolved organic matter (RDOM) play distinct roles in shaping microbial communities. However, characterizing these roles is difficult, especially in ecosystems subjected to varying degrees of anthropogenic influence. This study investigated the molecular compositions and ecological impacts of DOM and RDOM in the Fen River, Shanxi Taiyuan, comparing pristine upstream regions with highly urbanized downstream areas. Using 16S rRNA gene sequencing and LC-MS-based metabolomics, we observed significant shifts in microbial community composition, diversity, and metabolic functions. Upstream communities, characterized by higher diversity, were dominated by Bacteroidota, Proteobacteria, and Cyanobacteria, while downstream communities, influenced by pollution, exhibited increased expression of genes related to amino acid metabolism. Fluorescence spectroscopy and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) revealed that upstream DOM contained higher proportions of complex, high molecular weight compounds, including significant proportions of carboxyl-rich alicyclic molecules (CRAM) and island of stability (IOS) compounds, which play key roles in long-term carbon storage and microbial carbon sequestration. In contrast, downstream DOM was characterized as having lower aromaticity and more saturated compounds, with reduced proportions of CRAM and IOS, reflecting the impact of anthropogenic activities. These findings underscored the critical roles of CRAM and IOS in regulating DOM stability and microbial communities, further highlighting the need for targeted pollution control strategies to preserve ecosystem function in urbanized water bodies.
Collapse
Affiliation(s)
- Yang Liu
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Xiding Wang
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Huimin Li
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Ruikai Zhang
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Xudong Liu
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Fangru Nan
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Qi Liu
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Junping Lv
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Jia Feng
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Chao Ma
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
| | - Shulian Xie
- Shanxi Key Laboratory for Research and Development of Regional Plants, School of Life Science, Shanxi University, Taiyuan 030006, China.
| |
Collapse
|
6
|
Yu K, He B, Xiong J, Kan P, Sheng H, Zhi S, Zhu DZ, Yao Z. Deciphering basic and key traits of bio-pollutants in a long-term reclaimed water headwater urban stream. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177696. [PMID: 39577583 DOI: 10.1016/j.scitotenv.2024.177696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/24/2024]
Abstract
Reclaimed water has been recognized as a stable water resource for ecological replenishment in riverine environment. However, information about the bio-pollutants spatial and temporal distributions and the associated risk in this environment remains insufficient. Herein, the bio-pollutant profile in a long-term reclaimed water headwater urban stream, including antibiotic resistance genes (ARGs), mobile genetic elements and pathogens, were revealed by metagenomics. Notably, the temporal variation in bio-pollutant levels exceeded spatial fluctuations, possibly due to the varied rainfall intensity. Specially, multidrug resistance genes and Acinetobacter baumannii (A. baumannii) were the dominant ARGs and pathogens, respectively, exhibiting higher abundance in the dry season, especially in the downstream of the receiving point, where the bio-risk also peaked. A. baumannii and Ralstonia solanacearum were found to be the main plasmids contributors inducing the horizontal gene transfer process in this stream. Overall, A. baumannii contributed over 50 % bio-risk values in most samples, indicating that it was the "overlord" in this headwater urban stream. This study revealed characteristics of bio-pollutants in a typical long-term reclaimed water headwater urban stream, highlighting the superiority of A. baumannii in bio-pollutants, which should be a key consideration in the bio-pollutants surveillance for reclaimed waters.
Collapse
Affiliation(s)
- Kai Yu
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Institute of Hydraulic and Ocean Engineering, Ningbo University, Ningbo 315211, China
| | - Bin He
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China
| | - Jinbo Xiong
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Peiying Kan
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Institute of Hydraulic and Ocean Engineering, Ningbo University, Ningbo 315211, China
| | - Huafeng Sheng
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Shuai Zhi
- School of Public Health, Ningbo University, Ningbo 315211, China
| | - David Z Zhu
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Institute of Hydraulic and Ocean Engineering, Ningbo University, Ningbo 315211, China; Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Zhiyuan Yao
- School of Civil & Environmental Engineering and Geography Science, Ningbo University, Ningbo 315211, China; Institute of Hydraulic and Ocean Engineering, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
7
|
Yao L, Wu C, Jiang B, Wu M, Shao X, Li N. Thinning alters nitrogen transformation processes in subtropical forest soil: Key roles of physicochemical properties. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175086. [PMID: 39074748 DOI: 10.1016/j.scitotenv.2024.175086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 07/31/2024]
Abstract
Thinning-a widely used forest management practice-can significantly influence soil nitrogen (N) cycling processes in subtropical forests. However, the effects of different thinning intensities on nitrification, denitrification, and their relationships with soil properties and microbial communities remain poorly understood. Here, we conducted a study in a subtropical forest in China and applied three thinning treatments, i.e., no thinning (0 %), intermediate thinning (10-15 %), and heavy thinning (20-25 %), and investigated the effects of thinning intensity on the potential nitrification rate (PNR), potential denitrification rate (PDR), and microbial communities. Moreover, we explored the relationships among soil physicochemical properties, microbial community structure, and nitrogen transformation rates under different thinning intensities. Our results showed that intermediate and heavy thinning significantly increased the PNR by 87 % and 61 % and decreased the PDR by 31 % and 50 % compared to that of the control, respectively. Although the bacterial community structure was markedly influenced by thinning, the fungal community structure remained stable. Importantly, changes in microbial community composition and diversity had minimal impacts on the nitrogen transformation processes, whereas soil physicochemical properties, such as pH, organic carbon content, and nitrogen forms, were identified as the primary drivers. These findings highlight the critical role of managing soil physicochemical properties to regulate nitrogen transformations in forest soils. Effective forest management should focus on precisely adjusting the thinning intensity to enhance the soil physicochemical conditions, thereby promoting more efficient nitrogen cycling and improving forest ecosystem health in subtropical regions.
Collapse
Affiliation(s)
- Liangjin Yao
- Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Chuping Wu
- Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Bo Jiang
- Zhejiang Academy of Forestry, Hangzhou 310023, China
| | - Ming Wu
- Wetland Ecosystem Research Station of Hangzhou Bay, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Xuexin Shao
- Wetland Ecosystem Research Station of Hangzhou Bay, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China
| | - Niu Li
- Wetland Ecosystem Research Station of Hangzhou Bay, Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou 311400, China.
| |
Collapse
|
8
|
Zhou Y, Wang Q, Xiao G, Zhang Z. Effects of the catastrophic 2020 Yangtze River seasonal floods on microcystins and environmental conditions in Three Gorges Reservoir Area, China. Front Microbiol 2024; 15:1380668. [PMID: 38511001 PMCID: PMC10951095 DOI: 10.3389/fmicb.2024.1380668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction During July and August 2020, Three Gorges Reservoir Area (TGRA) suffered from catastrophic seasonal floods. Floods changed environmental conditions and caused increase in concentration of microcystins (MCs) which is a common and potent cyanotoxin. However, the effects and seasonal variations of MCs, cyanobacteria, and environmental conditions in TGRA after the 2020 Yangtze River extreme seasonal floods remain largely unclear, and relevant studies are lacking in the literature. Methods A total of 12 representative sampling sites were selected to perform concentration measurement of relevant water quality objectives and MCs in the representative area of the TGRA. The sampling period was from July 2020 to October 2021, which included the flood period. Organic membrane filters were used to perform the DNA extraction and analyses of the 16S rRNA microbiome sequencing data. Results Results showed the seasonal floods result in significant increases in the mean values of microcystin-RR (MCRR), microcystin-YR (MCYR), and microcystin-LR (MCLR) concentration and some water quality objectives (i.e., turbidity) in the hinterland of TGRA compared with that in non-flood periods (p < 0.05). The mean values of some water quality objectives (i.e., total nitrogen (TN), total phosphorus (TP), total dissolved phosphorus (TDP), and turbidity), MC concentration (i.e., MCRR, MCYR, and MCLR), and cyanobacteria abundance (i.e., Cyanobium_PCC-6307 and Planktothrix_NIVA-CYA_15) displayed clear tendency of increasing in summer and autumn and decreasing in winter and spring in the hinterland of TGRA. Discussions The results suggest that seasonal floods lead to changes in MC concentration and environmental conditions in the hinterland of TGRA. Moreover, the increase in temperature leads to changes in water quality objectives, which may cause water eutrophication. In turn, water eutrophication results in the increase in cyanobacteria abundance and MC concentration. In particular, the increased MC concentration may further contribute to adverse effects on human health.
Collapse
Affiliation(s)
- Yuanhang Zhou
- Key Laboratory of the Three Gorges Reservoir Regions Eco-Environment of Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, China
| | - Qilong Wang
- Engineering Technology Research Center of Characteristic Biological Resources in Northeast Chongqing, College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Guosheng Xiao
- Engineering Technology Research Center of Characteristic Biological Resources in Northeast Chongqing, College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, Chongqing, China
| | - Zhi Zhang
- Key Laboratory of the Three Gorges Reservoir Regions Eco-Environment of Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing, China
| |
Collapse
|