1
|
Voloshin N, Tyurin-Kuzmin P, Karagyaur M, Akopyan Z, Kulebyakin K. Practical Use of Immortalized Cells in Medicine: Current Advances and Future Perspectives. Int J Mol Sci 2023; 24:12716. [PMID: 37628897 PMCID: PMC10454025 DOI: 10.3390/ijms241612716] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/23/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
In modern science, immortalized cells are not only a convenient tool in fundamental research, but they are also increasingly used in practical medicine. This happens due to their advantages compared to the primary cells, such as the possibility to produce larger amounts of cells and to use them for longer periods of time, the convenience of genetic modification, the absence of donor-to-donor variability when comparing the results of different experiments, etc. On the other hand, immortalization comes with drawbacks: possibilities of malignant transformation and/or major phenotype change due to genetic modification itself or upon long-term cultivation appear. At first glance, such issues are huge hurdles in the way of immortalized cells translation into medicine. However, there are certain ways to overcome such barriers that we describe in this review. We determined four major areas of usage of immortalized cells for practical medicinal purposes, and each has its own means to negate the drawbacks associated with immortalization. Moreover, here we describe specific fields of application of immortalized cells in which these problems are of much lesser concern, for example, in some cases where the possibility of malignant growth is not there at all. In general, we can conclude that immortalized cells have their niches in certain areas of practical medicine where they can successfully compete with other therapeutic approaches, and more preclinical and clinical trials with them should be expected.
Collapse
Affiliation(s)
- Nikita Voloshin
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.V.); (P.T.-K.); (M.K.)
| | - Pyotr Tyurin-Kuzmin
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.V.); (P.T.-K.); (M.K.)
| | - Maxim Karagyaur
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.V.); (P.T.-K.); (M.K.)
| | - Zhanna Akopyan
- Medical Research and Education Center, Lomonosov Moscow State University, 119234 Moscow, Russia;
| | - Konstantin Kulebyakin
- Faculty of Medicine, Lomonosov Moscow State University, 119991 Moscow, Russia; (N.V.); (P.T.-K.); (M.K.)
- Medical Research and Education Center, Lomonosov Moscow State University, 119234 Moscow, Russia;
| |
Collapse
|
2
|
Sutyagina OI, Beilin AK, Vorotelyak EA, Vasiliev AV. Immortalization Reversibility in the Context of Cell Therapy Biosafety. Int J Mol Sci 2023; 24:7738. [PMID: 37175444 PMCID: PMC10178325 DOI: 10.3390/ijms24097738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Immortalization (genetically induced prevention of replicative senescence) is a promising approach to obtain cellular material for cell therapy or for bio-artificial organs aimed at overcoming the problem of donor material shortage. Immortalization is reversed before cells are used in vivo to allow cell differentiation into the mature phenotype and avoid tumorigenic effects of unlimited cell proliferation. However, there is no certainty that the process of de-immortalization is 100% effective and that it does not cause unwanted changes in the cell. In this review, we discuss various approaches to reversible immortalization, emphasizing their advantages and disadvantages in terms of biosafety. We describe the most promising approaches in improving the biosafety of reversibly immortalized cells: CRISPR/Cas9-mediated immortogene insertion, tamoxifen-mediated self-recombination, tools for selection of successfully immortalized cells, using a decellularized extracellular matrix, and ensuring post-transplant safety with the use of suicide genes. The last process may be used as an add-on for previously existing reversible immortalized cell lines.
Collapse
Affiliation(s)
- Oksana I. Sutyagina
- N.K. Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Laboratory of Cell Biology, Vavilov Str. 26, 119334 Moscow, Russia
| | | | | | | |
Collapse
|
3
|
Tu T, Zhang H, Urban S. Hepatitis B Virus DNA Integration: In Vitro Models for Investigating Viral Pathogenesis and Persistence. Viruses 2021; 13:v13020180. [PMID: 33530322 PMCID: PMC7911709 DOI: 10.3390/v13020180] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/12/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) is a globally-distributed pathogen and is a major cause of liver disease. HBV (or closely-related animal hepadnaviruses) can integrate into the host genome, but (unlike retroviruses) this integrated form is replication-defective. The specific role(s) of the integrated HBV DNA has been a long-standing topic of debate. Novel in vitro models of HBV infection combined with sensitive molecular assays now enable researchers to investigate this under-characterised phenomenon with greater ease and precision. This review covers the contributions these systems have made to understanding how HBV DNA integration induces liver cancer and facilitates viral persistence. We summarise the current findings into a working model of chronic HBV infection and discuss the clinical implications of this hypothetical framework on the upcoming therapeutic strategies used to curb HBV-associated pathogenesis.
Collapse
Affiliation(s)
- Thomas Tu
- Storr Liver Centre, Faculty of Medicine and Health, Westmead Clinical School and Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
- Centre for Infectious Diseases and Microbiology, Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney at Westmead Hospital, Westmead, NSW 2145, Australia
- Correspondence:
| | - Henrik Zhang
- Storr Liver Centre, Faculty of Medicine and Health, Westmead Clinical School and Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
| | - Stephan Urban
- Department of Infectious Diseases, Molecular Virology, Heidelberg University Hospital, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany;
- German Center for Infection Research (DZIF), Heidelberg Partner Site, Im Neuenheimer Feld 345, 69120 Heidelberg, Germany
| |
Collapse
|
4
|
|
5
|
Chamuleau RAFM, Hoekstra R. End-stage liver failure: filling the treatment gap at the intensive care unit. J Artif Organs 2019; 23:113-123. [PMID: 31535298 PMCID: PMC7228976 DOI: 10.1007/s10047-019-01133-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022]
Abstract
End-stage liver failure is a condition of collapsing liver function with mortality rates up to 80. Liver transplantation is the only lifesaving therapy. There is an unmet need for therapy to extend the waiting time for liver transplantation or regeneration of the native liver. Here we review the state-of-the-art of non-cell based and cell-based artificial liver support systems, cell transplantation and plasma exchange, with the first therapy relying on detoxification, while the others aim to correct also other failing liver functions and/or modulate the immune response. Meta-analyses on the effect of non-cell based systems show contradictory outcomes for different types of albumin purification devices. For bioartificial livers proof of concept has been shown in animals with liver failure. However, large clinical trials with two different systems did not show a survival benefit. Two clinical trials with plasma exchange and one with transplantation of mesenchymal stem cells showed positive outcomes on survival. Detoxification therapies lack adequacy for most patients. Correction of additional liver functions, and also modulation of the immune system hold promise for future therapy of liver failure.
Collapse
Affiliation(s)
- Robert A F M Chamuleau
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, AG&M, Academic Medical Center, Meibergdreef 69-71, S1-176, 1105 BK, Amsterdam, The Netherlands.
| | - Ruurdtje Hoekstra
- Amsterdam UMC, University of Amsterdam, Tytgat Institute for Liver and Intestinal Research, AG&M, Academic Medical Center, Meibergdreef 69-71, S1-176, 1105 BK, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Wang Q, Zhang X, Wang B, Bai G, Pan D, Yang P, Tao K, Li X, Dou K. Immortalization of porcine hepatocytes with a α-1,3-galactosyltransferase knockout background. Xenotransplantation 2019; 27:e12550. [PMID: 31435990 DOI: 10.1111/xen.12550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/15/2019] [Accepted: 07/24/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND In vivo pig liver xenotransplantation preclinical trials appear to have poor efficiency compared to heart or kidney xenotransplantation because of xenogeneic rejection, including coagulopathy, and particularly thrombocytopenia. In contrast, ex vivo pig liver (wild type) perfusion systems have been proven to be effective in "bridging" liver failure patients until subsequent liver allotransplantation, and transgenic (human CD55/CD59) modifications have even prolonged the duration of pig liver perfusion. Despite the fact that hepatocyte cell lines have also been proposed for extracorporeal blood circulation in conditions of acute liver failure, porcine hepatocyte cell lines, and the GalT-KO background in particular, have not been developed and applied in this field. Herein, we established immortalized wild-type and GalT-KO porcine hepatocyte cell lines, which can be used for artificial liver support systems, cell transplantation, and even in vitro studies of xenotransplantation. METHODS Primary hepatocytes extracted from GalT-KO and wild-type pigs were transfected with SV40 LT lentivirus to establish immortalized GalT-KO porcine hepatocytes (GalT-KO-hep) and wild-type porcine hepatocytes (WT). Hepatocyte biomarkers and function-related genes were assessed by immunofluorescence, periodic acid-Schiff staining, indocyanine green (ICG) uptake, biochemical analysis, ELISA, and RT-PCR. Furthermore, the tumorigenicity of immortalized cells was detected. In addition, a complement-dependent cytotoxicity (CDC) assay was performed with GalT-KO-hep and WT cells. Cell death and viability rates were assessed by flow cytometry and CCK-8 assay. RESULTS GalT-KO and wild-type porcine hepatocytes were successfully immortalized and maintained the characteristics of primary porcine hepatocytes, including albumin secretion, ICG uptake, urea and glycogen production, and expression of hepatocyte marker proteins and specific metabolic enzymes. GalT-KO-hep and WT cells were confirmed as having no tumorigenicity. In addition, GalT-KO-hep cells showed less apoptosis and more viability than WT cells when exposed to complement and xenogeneic serum. CONCLUSIONS Two types of immortalized cell lines of porcine hepatocytes with GalT-KO and wild-type backgrounds were successfully established. GalT-KO-hep cells exhibited higher viability and injury resistance against a xenogeneic immune response.
Collapse
Affiliation(s)
- Quancheng Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xuan Zhang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Bo Wang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Ge Bai
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Dengke Pan
- Organ Transplant and Clinical Immunology Translational Medicine Key Laboratory of Sichuan Province, Sichuan Academy of an Transplant Science & Sichuan Provincial People's Hospital, Chengdu, China
| | - Peijun Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Xiao Li
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| | - Kefeng Dou
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
7
|
Torresi J, Tran BM, Christiansen D, Earnest-Silveira L, Schwab RHM, Vincan E. HBV-related hepatocarcinogenesis: the role of signalling pathways and innovative ex vivo research models. BMC Cancer 2019; 19:707. [PMID: 31319796 PMCID: PMC6637598 DOI: 10.1186/s12885-019-5916-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 07/09/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Hepatitis B virus (HBV) is the leading cause of liver cancer, but the mechanisms by which HBV causes liver cancer are poorly understood and chemotherapeutic strategies to cure liver cancer are not available. A better understanding of how HBV requisitions cellular components in the liver will identify novel therapeutic targets for HBV associated hepatocellular carcinoma (HCC). MAIN BODY The development of HCC involves deregulation in several cellular signalling pathways including Wnt/FZD/β-catenin, PI3K/Akt/mTOR, IRS1/IGF, and Ras/Raf/MAPK. HBV is known to dysregulate several hepatocyte pathways and cell cycle regulation resulting in HCC development. A number of these HBV induced changes are also mediated through the Wnt/FZD/β-catenin pathway. The lack of a suitable human liver model for the study of HBV has hampered research into understanding pathogenesis of HBV. Primary human hepatocytes provide one option; however, these cells are prone to losing their hepatic functionality and their ability to support HBV replication. Another approach involves induced-pluripotent stem (iPS) cell-derived hepatocytes. However, iPS technology relies on retroviruses or lentiviruses for effective gene delivery and pose the risk of activating a range of oncogenes. Liver organoids developed from patient-derived liver tissues provide a significant advance in HCC research. Liver organoids retain the characteristics of their original tissue, undergo unlimited expansion, can be differentiated into mature hepatocytes and are susceptible to natural infection with HBV. CONCLUSION By utilizing new ex vivo techniques like liver organoids it will become possible to develop improved and personalized therapeutic approaches that will improve HCC outcomes and potentially lead to a cure for HBV.
Collapse
Affiliation(s)
- Joseph Torresi
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010 Australia
| | - Bang Manh Tran
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010 Australia
| | - Dale Christiansen
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010 Australia
| | - Linda Earnest-Silveira
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010 Australia
| | - Renate Hilda Marianne Schwab
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010 Australia
| | - Elizabeth Vincan
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010 Australia
- Victorian Infectious Diseases Reference Laboratory, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Parkville, Victoria 3010 Australia
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, WA 6845 Australia
| |
Collapse
|
8
|
Sato M, Saitoh I, Inada E, Nakamura S, Watanabe S. Potential for Isolation of Immortalized Hepatocyte Cell Lines by Liver-Directed In Vivo Gene Delivery of Transposons in Mice. Stem Cells Int 2019; 2019:5129526. [PMID: 31281376 PMCID: PMC6589260 DOI: 10.1155/2019/5129526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2019] [Accepted: 05/06/2019] [Indexed: 12/14/2022] Open
Abstract
Isolation of hepatocytes and their culture in vitro represent important avenues to explore the function of such cells. However, these studies are often difficult to perform because of the inability of hepatocytes to proliferate in vitro. Immortalization of isolated hepatocytes is thus an important step toward continuous in vitro culture. For cellular immortalization, integration of relevant genes into the host chromosomes is a prerequisite. Transposons, which are mobile genetic elements, are known to facilitate integration of genes of interest (GOI) into chromosomes in vitro and in vivo. Here, we proposed that a combination of transposon- and liver-directed introduction of nucleic acids may confer acquisition of unlimited cellular proliferative potential on hepatocytes, enabling the possible isolation of immortalized hepatocyte cell lines, which has often failed using more traditional immortalization methods.
Collapse
Affiliation(s)
- Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima 890-8544, Japan
| | - Issei Saitoh
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata 951-8514, Japan
| | - Emi Inada
- Department of Pediatric Dentistry, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8544, Japan
| | - Shingo Nakamura
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan
| | - Satoshi Watanabe
- Animal Genome Unit, Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-0901, Japan
| |
Collapse
|
9
|
Nahar S, Nakashima Y, Miyagi-Shiohira C, Kinjo T, Toyoda Z, Kobayashi N, Saitoh I, Watanabe M, Noguchi H, Fujita J. Cytokines in adipose-derived mesenchymal stem cells promote the healing of liver disease. World J Stem Cells 2018; 10:146-159. [PMID: 30631390 PMCID: PMC6325075 DOI: 10.4252/wjsc.v10.i11.146] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/07/2018] [Accepted: 10/11/2018] [Indexed: 02/06/2023] Open
Abstract
Adipose-derived mesenchymal stem cells (ADSCs) are a treatment cell source for patients with chronic liver injury. ADSCs are characterized by being harvested from the patient's own subcutaneous adipose tissue, a high cell yield (i.e., reduced immune rejection response), accumulation at a disease nidus, suppression of excessive immune response, production of various growth factors and cytokines, angiogenic effects, anti-apoptotic effects, and control of immune cells via cell-cell interaction. We previously showed that conditioned medium of ADSCs promoted hepatocyte proliferation and improved the liver function in a mouse model of acute liver failure. Furthermore, as found by many other groups, the administration of ADSCs improved liver tissue fibrosis in a mouse model of liver cirrhosis. A comprehensive protein expression analysis by liquid chromatography with tandem mass spectrometry showed that the various cytokines and chemokines produced by ADSCs promote the healing of liver disease. In this review, we examine the ability of expressed protein components of ADSCs to promote healing in cell therapy for liver disease. Previous studies demonstrated that ADSCs are a treatment cell source for patients with chronic liver injury. This review describes the various cytokines and chemokines produced by ADSCs that promote the healing of liver disease.
Collapse
Affiliation(s)
- Saifun Nahar
- Department of Infectious, Respiratory, and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Yoshiki Nakashima
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Chika Miyagi-Shiohira
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Takao Kinjo
- Department of Basic Laboratory Sciences, School of Health Sciences in the Faculty of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | - Zensei Toyoda
- Department of Basic Laboratory Sciences, School of Health Sciences in the Faculty of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| | | | - Issei Saitoh
- Division of Pediatric Dentistry, Graduate School of Medical and Dental Science, Niigata University, Niigata 951-8514, Japan
| | - Masami Watanabe
- Department of Urology, Okayama Univer sity Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hirofumi Noguchi
- Department of Regenerative Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan.
| | - Jiro Fujita
- Department of Infectious, Respiratory, and Digestive Medicine, Graduate School of Medicine, University of the Ryukyus, Okinawa 903-0215, Japan
| |
Collapse
|
10
|
Hang HL, Liu XY, Wang HT, Xu N, Bian JM, Zhang JJ, Xia L, Xia Q. Hepatocyte nuclear factor 4A improves hepatic differentiation of immortalized adult human hepatocytes and improves liver function and survival. Exp Cell Res 2017; 360:81-93. [PMID: 28870599 DOI: 10.1016/j.yexcr.2017.08.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 08/10/2017] [Accepted: 08/12/2017] [Indexed: 12/22/2022]
Abstract
Immortalized human hepatocytes (IHH) could provide an unlimited supply of hepatocytes, but insufficient differentiation and phenotypic instability restrict their clinical application. This study aimed to determine the role of hepatocyte nuclear factor 4A (HNF4A) in hepatic differentiation of IHH, and whether encapsulation of IHH overexpressing HNF4A could improve liver function and survival in rats with acute liver failure (ALF). Primary human hepatocytes were transduced with lentivirus-mediated catalytic subunit of human telomerase reverse transcriptase (hTERT) to establish IHH. Cells were analyzed for telomerase activity, proliferative capacity, hepatocyte markers, and tumorigenicity (c-myc) expression. Hepatocyte markers, hepatocellular functions, and morphology were studied in the HNF4A-overexpressing IHH. Hepatocyte markers and karyotype analysis were completed in the primary hepatocytes using shRNA knockdown of HNF4A. Nuclear translocation of β-catenin was assessed. Rat models of ALF were treated with encapsulated IHH or HNF4A-overexpressing IHH. A HNF4A-positive IHH line was established, which was non-tumorigenic and conserved properties of primary hepatocytes. HNF4A overexpression significantly enhanced mRNA levels of genes related to hepatic differentiation in IHH. Urea levels were increased by the overexpression of HNF4A, as measured 24h after ammonium chloride addition, similar to that of primary hepatocytes. Chromosomal abnormalities were observed in primary hepatocytes transfected with HNF4A shRNA. HNF4α overexpression could significantly promote β-catenin activation. Transplantation of HNF4A overexpressing IHH resulted in better liver function and survival of rats with ALF compared with IHH. HNF4A improved hepatic differentiation of IHH. Transplantation of HNF4A-overexpressing IHH could improve the liver function and survival in a rat model of ALF.
Collapse
Affiliation(s)
- Hua-Lian Hang
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Xin-Yu Liu
- Department of General Surgery, Nanjing Hospital Affiliated to NanJing Medical University, Nanjing 210006, China
| | - Hai-Tian Wang
- Department of General Surgery, Nanjing Hospital Affiliated to NanJing Medical University, Nanjing 210006, China
| | - Ning Xu
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jian-Min Bian
- Department of General Surgery, Nanjing Hospital Affiliated to NanJing Medical University, Nanjing 210006, China
| | - Jian-Jun Zhang
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lei Xia
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| | - Qiang Xia
- Department of Liver Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.
| |
Collapse
|
11
|
Ramboer E, De Craene B, De Kock J, Berx G, Rogiers V, Vanhaecke T, Vinken M. Development and characterization of a new human hepatic cell line. EXCLI JOURNAL 2015; 14:875-89. [PMID: 26869867 PMCID: PMC4747020 DOI: 10.17179/excli2015-424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 06/29/2015] [Indexed: 12/20/2022]
Abstract
The increasing demand and hampered use of primary human hepatocytes for research purposes have urged scientists to search for alternative cell sources, such as immortalized hepatic cell lines. The aim of this study was to develop a human hepatic cell line using the combined overexpression of TERT and the cell cycle regulators cyclin D1 and mutant isoform CDK4R24C. Following transduction of adult human primary hepatocytes with the selected immortalization genes, cell growth was triggered and a cell line was established. When cultured under appropriate conditions, the cell line expressed several hepatocytic markers and liver-enriched transcription factors at the transcriptional and/or translational level, secreted liver-specific proteins and showed glycogen deposition. These results suggest that the immortalization strategy applied to primary human hepatocytes could generate a novel hepatic cell line that seems to retain some key hepatic characteristics.
Collapse
Affiliation(s)
- Eva Ramboer
- In Vitro Toxicology and Dermato-Cosmetology research group, Center for Pharmaceutical Research, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussel, Belgium
| | - Bram De Craene
- Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, Technologiepark 927, 9052 Zwijnaarde, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Joey De Kock
- In Vitro Toxicology and Dermato-Cosmetology research group, Center for Pharmaceutical Research, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussel, Belgium
| | - Geert Berx
- Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, Technologiepark 927, 9052 Zwijnaarde, Belgium; Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Vera Rogiers
- In Vitro Toxicology and Dermato-Cosmetology research group, Center for Pharmaceutical Research, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussel, Belgium
| | - Tamara Vanhaecke
- In Vitro Toxicology and Dermato-Cosmetology research group, Center for Pharmaceutical Research, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussel, Belgium
| | - Mathieu Vinken
- In Vitro Toxicology and Dermato-Cosmetology research group, Center for Pharmaceutical Research, Vrije Universiteit Brussel, Laarbeeklaan 103, 1090 Brussel, Belgium
| |
Collapse
|
12
|
Zhou H, Liu H, Ezzelarab M, Schmelzer E, Wang Y, Gerlach J, Gridelli B, Cooper DKC. Experimental hepatocyte xenotransplantation--a comprehensive review of the literature. Xenotransplantation 2015; 22:239-48. [PMID: 25950141 PMCID: PMC4519403 DOI: 10.1111/xen.12170] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 04/18/2015] [Indexed: 12/11/2022]
Abstract
Hepatocyte transplantation (Tx) is a potential therapy for certain diseases of the liver, including hepatic failure. However, there is a limited supply of human livers as a source of cells and, after isolation, human hepatocytes can be difficult to expand in culture, limiting the number available for Tx. Hepatocytes from other species, for example, the pig, have therefore emerged as a potential alternative source. We searched the literature through the end of 2014 to assess the current status of experimental research into hepatocyte xenoTx. The literature search identified 51 reports of in vivo cross-species Tx of hepatocytes in a variety of experimental models. Most studies investigated the Tx of human (n = 23) or pig (n = 19) hepatocytes. No studies explored hepatocytes from genetically engineered pigs. The spleen was the most common site of Tx (n = 23), followed by the liver (through the portal vein [n = 6]) and peritoneal cavity (n = 19). In 47 studies (92%), there was evidence of hepatocyte engraftment and function across a species barrier. The data provided by this literature search strengthen the hypothesis that xenoTx of hepatocytes is feasible and potentially successful as a clinical therapy for certain liver diseases, including hepatic failure. By excluding vascular structures, hepatocytes isolated from genetically engineered pig livers may address some of the immunological problems of xenoTx.
Collapse
Affiliation(s)
- Huidong Zhou
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Kidney Transplantation, Second Affiliated Hospital of the University of South China, Heng(1)yang, Hunan, China
| | - Hong Liu
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
- Department of General Surgery, First Hospital of Shanxi Medical University, ShanXi, China
| | - Mohamed Ezzelarab
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eva Schmelzer
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Yi Wang
- Center for Kidney Transplantation, Second Affiliated Hospital of the University of South China, Heng(1)yang, Hunan, China
| | - Jörg Gerlach
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bruno Gridelli
- Mediterranean Institute for Transplantation and Advanced Specialized Therapies (ISMETT), Palermo, Italy
| | - David K. C. Cooper
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
13
|
Pan X, Wang Y, Yu X, Li J, Zhou N, Du W, Zhang Y, Cao H, Zhu D, Chen Y, Li L. Establishment and characterization of an immortalized human hepatic stellate cell line for applications in co-culturing with immortalized human hepatocytes. Int J Med Sci 2015; 12:248-255. [PMID: 25678842 PMCID: PMC4323363 DOI: 10.7150/ijms.11002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 01/21/2015] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND OBJECTIVE The liver-specific functions of hepatocytes are improved by co-culturing hepatocytes with primary hepatic stellate cells (HSC). However, primary HSC have a short lifespan in vitro, which is considered a major limitation for their use in various applications. This study aimed to establish immortalized human HSC using the simian virus 40 large T antigen (SV40LT) for applications in co-culturing with hepatocytes and HSC in vitro. METHODS Primary human HSC were transfected with a recombinant retrovirus containing SV40LT. The immortalized human HSC were characterized by analyzing their gene expression and functional characteristics. The liver-specific functions of hepatocytes were evaluated in a co-culture system incorporating immortalized human hepatocytes with HSC-Li cells. RESULTS The immortalized HSC line, HSC-Li, was obtained after infection with a recombinant retrovirus containing SV40LT. The HSC-Li cells were longitudinally spindle-like and had numerous fat droplets in their cytoplasm as shown using electron microscopy. Hepatocyte growth factor (HGF), VEGF Receptor 1(Flt-1), collagen type Iα1 and Iα2 mRNA expression levels were observed in the HSC-Li cells by RT-PCR. Immunofluorescence staining showed that the HSC-Li cells were positive for α-smooth muscle actin (α-SMA), platelet-derived growth factor receptor-beta (PDGFR-β), vimentin, and SV40LT protein expression. The HSC-Li cells produced both HGF and transforming growth factor-beta1 (TGF-β1) in a time-dependent manner. Real-time PCR showed that albumin, CYP3A5, CYP2E1, and UGT2B7 mRNA expression generally increased in the co-culture system. The enzymatic activity of CYP1A2 under the co-culture conditions also generally increased as compared to the monoculture of immortalized human hepatocytes. CONCLUSIONS We successfully established the immortalized human HSC cell line HSC-Li. It has the specific phenotypic and functional characteristics of primary human HSC, which would be a useful tool to develop anti-fibrotic therapies. Co-culturing with the HSC-Li cells improved the liver-specific functions of hepatocytes, which may be valuable and applicable for bioartificial liver systems.
Collapse
Affiliation(s)
- XiaoPing Pan
- 1. State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- 2. Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yini Wang
- 1. State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- 2. Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - XiaoPeng Yu
- 1. State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- 2. Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - JianZhou Li
- 1. State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- 2. Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Ning Zhou
- 1. State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- 2. Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - WeiBo Du
- 1. State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- 2. Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - YanHong Zhang
- 1. State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- 2. Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - HongCui Cao
- 1. State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- 2. Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - DanHua Zhu
- 1. State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- 2. Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - Yu Chen
- 1. State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- 2. Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| | - LanJuan Li
- 1. State Key Laboratory for the Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, 310003, China
- 2. Collaborative Innovation Center for the Diagnosis and Treatment of Infectious Diseases, Hangzhou, China
| |
Collapse
|
14
|
Ramboer E, Vanhaecke T, Rogiers V, Vinken M. Immortalized Human Hepatic Cell Lines for In Vitro Testing and Research Purposes. Methods Mol Biol 2015; 1250:53-76. [PMID: 26272134 PMCID: PMC4579543 DOI: 10.1007/978-1-4939-2074-7_4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The ubiquitous shortage of primary human hepatocytes has urged the scientific community to search for alternative cell sources, such as immortalized hepatic cell lines. Over the years, several human hepatic cell lines have been produced, whether or not using a combination of viral oncogenes and human telomerase reverse transcriptase protein. Conditional approaches for hepatocyte immortalization have also been established and allow generation of growth-controlled cell lines. A variety of immortalized human hepatocytes have already proven useful as tools for liver-based in vitro testing and fundamental research purposes. The present chapter describes currently applied immortalization strategies and provides an overview of the actually available immortalized human hepatic cell lines and their in vitro applications.
Collapse
Affiliation(s)
- Eva Ramboer
- Department of In Vitro Toxicology and Dermato-Cosmetology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels, 1090, Belgium,
| | | | | | | |
Collapse
|
15
|
Eva R, Bram DC, Joery DK, Tamara V, Geert B, Vera R, Mathieu V. Strategies for immortalization of primary hepatocytes. J Hepatol 2014; 61:925-43. [PMID: 24911463 PMCID: PMC4169710 DOI: 10.1016/j.jhep.2014.05.046] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 04/17/2014] [Accepted: 05/30/2014] [Indexed: 02/06/2023]
Abstract
The liver has the unique capacity to regenerate in response to a damaging event. Liver regeneration is hereby largely driven by hepatocyte proliferation, which in turn relies on cell cycling. The hepatocyte cell cycle is a complex process that is tightly regulated by several well-established mechanisms. In vitro, isolated hepatocytes do not longer retain this proliferative capacity. However, in vitro cell growth can be boosted by immortalization of hepatocytes. Well-defined immortalization genes can be artificially overexpressed in hepatocytes or the cells can be conditionally immortalized leading to controlled cell proliferation. This paper discusses the current immortalization techniques and provides a state-of-the-art overview of the actually available immortalized hepatocyte-derived cell lines and their applications.
Collapse
Affiliation(s)
- Ramboer Eva
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel Laarbeeklaan 103, 1090 Brussel, Belgium
| | - De Craene Bram
- Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, Technologiepark 927, 9052 Zwijnaarde, Belgium
,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - De Kock Joery
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel Laarbeeklaan 103, 1090 Brussel, Belgium
| | - Vanhaecke Tamara
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel Laarbeeklaan 103, 1090 Brussel, Belgium
| | - Berx Geert
- Unit of Molecular and Cellular Oncology, Inflammation Research Center, VIB, Technologiepark 927, 9052 Zwijnaarde, Belgium
,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Rogiers Vera
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel Laarbeeklaan 103, 1090 Brussel, Belgium
| | - Vinken Mathieu
- Department of Toxicology, Center for Pharmaceutical Research, Vrije Universiteit Brussel Laarbeeklaan 103, 1090 Brussel, Belgium
| |
Collapse
|
16
|
Abstract
BACKGROUND Orthotopic liver transplantation (OLT) is the most effective therapy for liver failure. However, OLT is severely limited by the shortage of liver donors. Bioartificial liver (BAL) shows great potential as an alternative therapy for liver failure. In recent years, progress has been made in BAL regarding genetically engineered cell lines, immortalized human hepatocytes, methods for preserving the phenotype of primary human hepatocytes, and other functional hepatocytes derived from stem cells. DATA SOURCES A systematic search of PubMed and ISI Web of Science was performed to identify relevant studies in English language literature using the key words such as liver failure, bioartificial liver, hepatocyte, stem cells, differentiation, and immortalization. More than 200 articles related to the cell sources of hepatocyte in BAL were systematically reviewed. RESULTS Methods for preserving the phenotype of primary human hepatocytes have been successfully developed. Many genetically engineered cell lines and immortalized human hepatocytes have also been established. Among these cell lines, the incorporation of BAL with GS-HepG2 cells or alginate-encapsulated HepG2 cells could prolong the survival time and improve pathophysiological parameters in an animal model of liver failure. The cBAL111 cells were evaluated using the AMC-BAL bioreactor, which could eliminate ammonia and lidocaine, and produce albumin. Importantly, BAL loading with HepLi-4 cells could significantly improve the blood biochemical parameters, and prolong the survival time in pigs with liver failure. Other functional hepatocytes differentiated from stem cells, such as human liver progenitor cells, have been successfully achieved. CONCLUSIONS Aside from genetically modified liver cell lines and immortalized human hepatocytes, other functional hepatocytes derived from stem cells show great potential as cell sources for BAL. BAL with safe and effective liver cells may be achieved for clinical liver failure in the near future.
Collapse
Affiliation(s)
- Xiao-Ping Pan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | | |
Collapse
|
17
|
Pan X, Li J, Du W, Yu X, Zhu C, Yu C, Cao H, Zhang Y, Chen Y, Li L. Establishment and characterization of immortalized human hepatocyte cell line for applications in bioartificial livers. Biotechnol Lett 2012; 34:2183-2190. [PMID: 22930002 DOI: 10.1007/s10529-012-1025-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 08/15/2012] [Indexed: 12/17/2022]
Abstract
An immortalized human hepatocyte cell line, HepLi5, was established via transfection of Simian virus 40 large T antigen (SV40 LT) into primary human hepatocytes. The morphologic and functional characteristics of HepLi5 cells were evaluated. The expression of SV40 LT in HepLi5 cells was detected by reverse transcription-PCR (RT-PCR) and western blotting. mRNA expression of liver-enriched genes, including glutamine synthetase, albumin, and cytochrome P450 was detected via RT-PCR in HepLi5 cells. Activity of CYP1A2, one of the drug-metabolizing P450 enzymes, was detected. Subcutaneous injection of HepLi5 cells into nude mice did not induce tumors within 3 months. Short Tandem Repeat results confirmed the authenticity of the cell line. Clinical-grade quantities of HepLi5 cells could be harvested using large-scale culture in roller bottles after which their cellular function was significantly enhanced. Therefore, the immortalized HepLi5 cells are a suitable cell source for applications in bioartificial livers.
Collapse
Affiliation(s)
- XiaoPing Pan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Zhao LF, Pan XP, Li LJ. Key challenges to the development of extracorporeal bioartificial liver support systems. Hepatobiliary Pancreat Dis Int 2012; 11:243-9. [PMID: 22672816 DOI: 10.1016/s1499-3872(12)60155-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND For nearly three decades, extracorporeal bioartificial liver (BAL) support systems have been anticipated as promising tools for the treatment of liver failure. However, these systems are still far from clinical application. This review aimed to analyze the key challenges to the development of BALs. DATA SOURCE We carried out a PubMed search of English-language articles relevant to extracorporeal BAL support systems and liver failure. RESULTS Extracorporeal BALs face a series of challenges. First, an appropriate cell source for BAL is not readily available. Second, existing bioreactors do not provide in vivo-like oxygenation and bile secretion. Third, emergency needs cannot be met by current BALs. Finally, the effectiveness of BALs, either in animals or in patients, has been difficult to document. CONCLUSIONS Extracorporeal BAL support systems are mainly challenged by incompetent cell sources and flawed bioreactors. To advance this technology, future research is needed to provide more insights into interpreting the conditions for hepatocyte differentiation and liver microstructure formation.
Collapse
Affiliation(s)
- Li-Fu Zhao
- Zhejiang University School of Medicine, Hangzhou, China
| | | | | |
Collapse
|
19
|
Hang HL, Zhang L, Shi XL, Bian JM, Ding YT. Isolation, culture and cryopreservation of adult human hepatocytes. Shijie Huaren Xiaohua Zazhi 2011; 19:2016-2021. [DOI: 10.11569/wcjd.v19.i19.2016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To establish a stable method for the isolation, culture and cryopreservation of adult primary hepatocytes to provide a potential hepatocyte resource for the treatment of acute and chronic liver diseases using hepatocyte transplantation and bioartificial liver support systems, and for the use of hepatocytes as an in vitro model of the liver.
METHODS: Adult hepatocytes were isolated from 20 separate donors using a two-step extracorporeal collagenase perfusion technique. The hepatocytes were preincubated in HepatoZYME-SFM medium for 2, 6, 12, 24, 36, 48 or 72 h, transferred to HepatoZYME-SFM medium containing 10% FBS and 10% DMSO, immediately put into an isopropanol progressive freezing container at -80 ℃ overnight, and immersed in liquid nitrogen the next day. During the post-thaw culture period, cell viability, plating efficiency, albumin secretion and urea synthesis were analyzed.
RESULTS: The viability and plating efficiency of hepatocytes isolated using the two-step extracorporeal collagenase perfusion technique were 75.0% ± 4.6% and 72.0% ± 6.0%, respectively. Preincubation at 4 ℃ for 12 or 24 hours proved to be optimal for albumin secretion. Compared to the immediate cryopreservation group, significant improvement was observed in viability (61.4% ± 4.8%, 62.0% ± 5.6% vs 53.4% ± 4.2%, both P < 0.05), plating efficiency (63.2% ± 5.8%, 62.6% ± 3.6% vs 55.2% ± 4.6%, both P < 0.05), albumin secretion and urea synthesis (P < 0.05) in cells preincubated at 4 ℃ for 12 and 24 hours.
CONCLUSION: The two-step extracorporeal collagenase perfusion technique provides a novel, simple, and reliable method for hepatocyte isolation. Preincubation of human hepatocytes at 4 ℃ for 12 to 24 hours prior to cryopreservation allows to obtain hepatocytes ideal for use in pharmacotoxicology, bioartificial liver and cell therapy.
Collapse
|
20
|
Sgroi A, Mai G, Morel P, Baertschiger RM, Gonelle-Gispert C, Serre-Beinier V, Buhler LH. Transplantation of encapsulated hepatocytes during acute liver failure improves survival without stimulating native liver regeneration. Cell Transplant 2011; 20:1791-803. [PMID: 21396154 DOI: 10.3727/096368911x564976] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The aim of this study was to evaluate the effects of intraperitoneal transplantation of encapsulated human hepatocytes on liver metabolism and regeneration of mice with acute liver failure. Primary human hepatocytes were immortalized using lentiviral vectors coding for antiapoptotic genes and microencapsulated using alginate-polylysine polymers. In vitro, immortalized human hepatocytes showed low, but stable, synthetic and catabolitic functions over time, when compared to primary hepatocytes. In vivo, mice with acute liver failure and transplanted with encapsulated immortalized human hepatocytes had a significantly improved survival and biochemical profile, compared to mice transplanted with empty capsules. Serum levels of cytokines implicated in liver regeneration were lower in mice transplanted with hepatocytes compared to mice receiving empty capsules. This decrease was significant for IL-6 and HGF at 3 h. Measurement of liver regeneration showed no significant difference between mice transplanted with hepatocytes compared to control groups. Intraperitoneal transplantation of encapsulated immortalized hepatocytes significantly improved survival of mice with acute liver failure by providing metabolic support and without modifying liver regeneration. The lower levels of cytokines implicated in liver regeneration suggest that the metabolic support provided by the encapsulated hepatocytes reduced the inflammatory stress on the liver and herein decreased the regenerative trigger on residual hepatocytes. These data emphasize that metabolic function and regeneration of hepatocytes are two distinct aspects that need to be studied and approached separately during acute liver failure.
Collapse
Affiliation(s)
- Antonino Sgroi
- Surgical Research Unit, Department of Surgery, University Hospital Geneva, Geneva, Switzerland
| | | | | | | | | | | | | |
Collapse
|
21
|
Wu HL, Wang Y, Zhang P, Li SF, Chen X, Chen YK, Li JG, Yang SM, Su YP, Wang JP, Chen B. Reversible immortalization of rat pancreatic β cells with a novel immortalizing and tamoxifen-mediated self-recombination tricistronic vector. J Biotechnol 2010; 151:231-41. [PMID: 21167227 DOI: 10.1016/j.jbiotec.2010.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Revised: 12/02/2010] [Accepted: 12/07/2010] [Indexed: 02/07/2023]
Abstract
Although the strategy of "Cre/LoxP-based reversible immortalization" holds great promise to overcome the cellular senescence of primary cell cultures for their further use, a secondary gene transfer for Cre expression is usually utilized to trigger the excision of the immortalizing genes in a large number of cells, thus presenting a formidable hurdle for large-scale application. We modified the strategy by utilizing a tricistronic retroviral vector pLCRSTP, in which Cre-ER, simian virus 40 large T antigen (SV40LTAg) oncogene, and a reporter gene were flanked by the same pair of LoxA sites. Five immortalized rat pancreatic β cell clones transduced with pLCRSTP, and six immortalized rat pancreatic β cell clones co-transduced with pLCRSTP and another vector encoding the human telomerase reverse transcriptase (hTERT) gene, were obtained, respectively. The Cre-ER protein could be induced to translocate from the cytoplasm to the nucleus by 4-hydroxytamoxifen to make SV40LTAg, hTERT and the Cre-ER gene itself excise without a secondary gene transfer. Our studies suggest that this system is useful to expand rat β cells and may allow for large-scale production due to its simpler manipulation.
Collapse
Affiliation(s)
- Hui-Ling Wu
- Department of Endocrinology, Southwest Hospital, Third Military Medical University, No. 29 Gaotanyan Street, Chongqing 400038, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Bioartificial liver devices: Perspectives on the state of the art. Front Med 2010; 5:15-9. [PMID: 21088931 DOI: 10.1007/s11684-010-0110-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Accepted: 10/12/2010] [Indexed: 01/28/2023]
Abstract
Acute liver failure remains a significant cause of morbidity and mortality. Bioartificial liver (BAL) devices have been in development for more than 20 years. Such devices aim to temporarily take over the metabolic and excretory functions of the liver until the patients' own liver has recovered or a donor liver becomes available for transplant. The important issues include the choice of cell materials and the design of the bioreactor. Ideal BAL cell materials should be of good viability and functionality, easy to access, and exclude immunoreactive and tumorigenic cell materials. Unfortunately, the current cells in use in BAL do not meet these requirements. One of the challenges in BAL development is the improvement of current materials; another key point concerning cell materials is the coculture of different cells. The bioreactor is an important component of BAL, because it determines the viability and function of the hepatocytes within it. From the perspective of bioengineering, a successful and clinically effective bioreactor should mimic the structure of the liver and provide an in vivo-like microenvironment for the growth of hepatocytes, thereby maintaining the cells' viability and function to the maximum extent. One future trend in the development of the bioreactor is to improve the oxygen supply system. Another direction for future research on bioreactors is the application of biomedical materials. In conclusion, BAL is, in principle, an important therapeutic strategy for patients with acute liver failure, and may also be a bridge to liver transplantation. It requires further research and development, however, before it can enter clinical practice.
Collapse
|
23
|
Bonavita AG, Quaresma K, Cotta-de-Almeida V, Pinto MA, Saraiva RM, Alves LA. Hepatocyte xenotransplantation for treating liver disease. Xenotransplantation 2010; 17:181-7. [PMID: 20636538 DOI: 10.1111/j.1399-3089.2010.00588.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The treatment of acute and chronic liver failure is still a challenge despite modern therapeutic innovations. While liver transplantation can restore liver function and improve patient survival, donor shortages limit this treatment to a small number of patients. Cellular xenotransplantation has emerged as an alternative for treating liver failure. Xenohepatocytes could be readily available in sufficient quantities to treat patients in critical condition and thereby reduce the donor shortage. The use of isolated encapsulated or non-encapsulated cells can reduce the immunorejection response. Several studies using animal models of acute or chronic liver failure have demonstrated improved survival and recovery of liver function after xenotransplantation of adult hepatocytes. Porcine liver cells are a potential source of xenohepatocytes due to similarities with human physiology and the great number of hepatocytes that can be obtained. The recent development of less immunogenic transgenic pigs, new immunosuppressive drugs, and cellular encapsulation systems represents important advances in the field of cellular xenotransplantation. In this study, we review the work carried out in animal models that deals with the advantages and limitations of hepatocyte xenotransplantation, and we propose new studies needed in this field.
Collapse
Affiliation(s)
- André Gustavo Bonavita
- Laboratório de Comunicação Celular, Instituto Oswaldo Cruz, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|
24
|
Xu YZ, Xue K, Gao Y, Pan MX, Jian GD, Liu XM, Rao JH. Establishment of a non-human primate model of acute liver failure. Shijie Huaren Xiaohua Zazhi 2010; 18:1985-1989. [DOI: 10.11569/wcjd.v18.i19.1985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To establish a non-human primate model of acute liver failure (ALF).
METHODS: Fifteen healthy cynomolgus monkeys (Macaca fascicularis) were randomly divided into three groups, which were administered with D-galactosamine via the jugular vein at doses of 0.45 (high-dose group), 0.3 (medium-dose group) and 0.15 g/kg (low-dose group), respectively, to induce ALF. At 0, 12, 24, 36, 48, 60, 72 and 96 h after administration, clinical and intracranial pressure (ICP) data were recorded, and blood samples were collected for measurement of alanine aminotransferase (ALT), prothrombin time (PT), total bilirubin (TBIL), and ammonia (NH3). Animal survival time was recorded to compare the survival rates among the three groups. Postmortem examination was performed in dead cynomolgus monkeys.
RESULTS: All animals were dead in the high- and medium-dose groups, and the mean survival time was 56.1 h ± 8.1 h and 109.8 h ± 11.2 h, respectively. Only one animal died at 98 h after treatment in the low-dose group. In the high- and medium-dose groups, serum levels of ALT, PT, TBIL and NH3, and ICP were significantly higher at all time points than at baseline (0 h) (all P < 0.05). All these parameters were normal at 60 h in the low-dose group. Inflammatory cell infiltration and hepatic cell necrosis were observed in dead cynomolgus monkeys.
CONCLUSION: A cynomolgus monkey model of AHF has been successfully established and can be used for future ALF research.
Collapse
|
25
|
Uygun BE, Soto-Gutierrez A, Yagi H, Izamis ML, Guzzardi MA, Shulman C, Milwid J, Kobayashi N, Tilles A, Berthiaume F, Hertl M, Nahmias Y, Yarmush ML, Uygun K. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat Med 2010; 16:814-20. [PMID: 20543851 PMCID: PMC2930603 DOI: 10.1038/nm.2170] [Citation(s) in RCA: 994] [Impact Index Per Article: 66.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 02/03/2010] [Indexed: 02/06/2023]
Abstract
Orthotopic liver transplantation is the only available treatment for severe liver failure, but it is currently limited by organ shortage. One technical challenge that has thus far limited the development of a tissue-engineered liver graft is oxygen and nutrient transport. Here we demonstrate a novel approach to generate transplantable liver grafts using decellularized liver matrix. The decellularization process preserves the structural and functional characteristics of the native microvascular network, allowing efficient recellularization of the liver matrix with adult hepatocytes and subsequent perfusion for in vitro culture. The recellularized graft supports liver-specific function including albumin secretion, urea synthesis and cytochrome P450 expression at comparable levels to normal liver in vitro. The recellularized liver grafts can be transplanted into rats, supporting hepatocyte survival and function with minimal ischemic damage. These results provide a proof of principle for the generation of a transplantable liver graft as a potential treatment for liver disease.
Collapse
Affiliation(s)
- Basak E Uygun
- Center for Engineering in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Meng FY, Chen ZS, Han M, Hu XP, He XX, Liu Y, He WT, Huang W, Guo H, Zhou P. Porcine hepatocyte isolation and reversible immortalization mediated by retroviral transfer and site-specific recombination. World J Gastroenterol 2010; 16:1660-4. [PMID: 20355246 PMCID: PMC2848376 DOI: 10.3748/wjg.v16.i13.1660] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To develop a hepatocyte cell line, we immortalized primary porcine hepatocytes with a retroviral vector SSR#69 containing the Simian Virus 40 T antigen (SV40Tag).
METHODS: We first established a method of porcine hepatocyte isolation with a modified four-step retrograde perfusion technique. Then the porcine hepatocytes were immortalized with retroviral vector SSR#69 expressing SV40T and hygromycin-resistance genes flanked by paired loxP recombination targets. SV40T cDNA in the expanded cells was subsequently excised by Cre/LoxP site-specific recombination.
RESULTS: The resultant hepatocytes with high viability (97%) were successfully immortalized with retroviral vector SSR#69. One of the immortalized clones showed the typical morphological appearance, TJPH-1, and was selected by clone rings and expanded in culture. After excision of the SV40T gene with Cre-recombinase, cells stopped growing. The population of reverted cells exhibited the characteristics of differentiated hepatocytes.
CONCLUSION: In conclusion, we herein describe a modified method of hepatocyte isolation and subsequently established a porcine hepatocyte cell line mediated by retroviral transfer and site-specific recombination.
Collapse
|
27
|
Hang H, Shi X, Gu GX, Wu Y, Gu J, Ding Y. In vitro analysis of cryopreserved alginate-poly-L-lysine-alginate-microencapsulated human hepatocytes. Liver Int 2010; 30:611-22. [PMID: 20070514 DOI: 10.1111/j.1478-3231.2009.02197.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
BACKGROUND The availability of well-characterized human hepatocytes that can be frozen and thawed will be critical for cell therapy. We addressed whether human hepatocytes can recover after microencapsulated cryopreservation and investigated whether these cryopreserved microencapsulated hepatocytes can be used for clinical applications. METHODS Adult hepatocytes of 18 separate donors were isolated with a two-step extracorporeal collagenase perfusion technique. After pre-incubation at 4 degrees C for 12-24 h in HepatoZYME-SFM, hepatocytes were microencapsulated using alginate-poly-L-lysine-alginate microcapsules. The microencapsulated hepatocytes were transferred to a complete medium containing 10% dimethyl sulphoxide. They were immediately placed into an isopropanol progressive freezing container at -80 degrees C overnight and immersed in liquid nitrogen the next day. During the post-thawing culture period, albumin secretion, urea synthesis, cell cycle, mRNA and protein levels, as well as the morphology and pathology structure of pre-incubation before microencapsulated cryopreservation (PMC) groups were analysed. RESULTS Compared with the immediate cryopreservation (IC) groups, we found significant improvement in the mRNA and protein levels in the attached cells, and higher secretion of albumin and urea levels after thawing. In the attached cultured human cryopreserved/thawed hepatocytes from the PMC group, albumin production was not significantly different from those of the direct culture groups on days 2, 3 and 4. The preserved morphology in the PMC group compared with the IC group was obvious. CONCLUSIONS The results of the present study suggested recovery of the functional and morphological integrity of human hepatocytes after pre-incubation at 4 degrees C for 12-24 h before microencapsulated cryopreservation. These studies offer the possibility for clinical applications in pharmacotoxicology, bioartificial liver and cell therapy in humans.
Collapse
Affiliation(s)
- Hualian Hang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical College of Nanjing University, Jiangsu Province's Key Medical Center for Hepatobiliary Disease, Nanjing, China
| | | | | | | | | | | |
Collapse
|
28
|
Hang H, Shi X, Gu G, Wu Y, Ding Y. A simple isolation and cryopreservation method for adult human hepatocytes. Int J Artif Organs 2010; 32:720-7. [PMID: 19943233 DOI: 10.1177/039139880903201003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVE The objective of this study was to establish a stable method of isolation, culture and cryopreservation of adult primary hepatocytes to provide potential hepatocyte resources for the treatment of acute and chronic liver diseases by hepatocyte transplantation and bioartificial liver support systems, and for the use of hepatocytes as an in vitro model of the liver. METHODS Adult hepatocytes of 20 separate donors were isolated with a two-step extracoporeal collagenase perfusion technique. Seven preincubation time points (2h, 6h, 12h, 24h, 36h, 48h and 72h) were selected, then the hepatocytes were transferred to HepatoZYME-SFM medium containing 10% FBS and 10% DMSO, and were immediately put into an isopropanol progressive freezing container at -80 degrees C overnight and immersed in liquid nitrogen the next day. During the postthawing culture period, viability, plating efficiency, albumin secretion and urea synthesis were analyzed. RESULTS The viability and plating efficiency of hepatocytes after partial hepatectomy using two-step extracorporeal collagenase perfusion technique were 75.0+/-4.6% and 72.0+/-6.0% respectively. Preincubation at 4? for 12 hours or 24 hours proved to be the optimal time at which the albumin secretion was higher than at other time points (p<0.05). Compared to the immediate cryopreservation groups (IC), we also found significant improvement in viability (61.4+/-4.8%/62.0+/-5.6% vs. 53.4+/-4.2%, p<0.05), plating efficiency (63.2+/-5.8%/62.6+/-3.6% vs. 55.2+/-4.6%, p<0.05), albumin secretion and urea synthesis (p<0.05) at these time points. CONCLUSIONS The two-step extracorporeal collagenase perfusion technique after partial hepatectomy provides a novel, simple, and reliable method for hepatocyte isolation. The results of the present study suggest that recovery of human hepatocytes after isolation preincubation at 4 degrees C for 12 hours to 24 hours prior to cryopreservation can obtain hepatocytes ideal for use in pharmacotoxicology, bioartificial liver and cell therapy research purposes.
Collapse
Affiliation(s)
- Hualian Hang
- Department of Hepatobiliary Surgery, Affiliated Drum Tower Hospital, Medical College of Nanjing University, Jiangsu Province's Key Medical Center for Hepatobiliary Disease, Nanjing, China
| | | | | | | | | |
Collapse
|
29
|
|
30
|
Nakahara H, Misawa H, Hayashi T, Kondo E, Yuasa T, Kubota Y, Seita M, Kawamoto H, Hassan WARA, Hassan RARA, Javed SM, Tanaka M, Endo H, Noguchi H, Matsumoto S, Takata K, Tashiro Y, Nakaji S, Ozaki T, Kobayashi N. Bone repair by transplantation of hTERT-immortalized human mesenchymal stem cells in mice. Transplantation 2009; 88:346-53. [PMID: 19667936 DOI: 10.1097/tp.0b013e3181ae5ba2] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Human mesenchymal stem cells (hMSCs) are multipotent stem cells found in the adult bone marrow that have the capacity to differentiate into various mesenchymal cell types. The hMSCs may provide a potential therapy to restore damaged tissues or organs of mesenchymal origin; however, a drawback is their limited life span in vitro. METHODS We immortalized normal hMSCs with retrovirally transmitted human telomerase reverse transcriptase cDNA. One of the immortalized clones (YKNK-12) was established, and the biological characteristics were investigated in vitro and in vivo. RESULTS YKNK-12 cells were capable of differentiating adipocytes, osetoblasts, and chondrocytes. Osteogenically differentiated YKNK-12 cells produced significant levels of growth factors BMP4, BMP6, FGF6, FGF7, transforming growth factor-beta1, and transforming growth factor-beta3.. Microcomputer tomography T and soft X-ray assays showed an excellent calvarial bone healing in mice after transplantation of osteogenically differentiated YKNK-12 cells. These cells expressed human-specific osteocalcin and increased the gene expression of runt-related transcription factor 2, alkaline phosphatase, osteocalcin, and osterix in the bone regenerating area. YKNK-12 cell transplant corrected the bone defect without inducing any adverse effects. CONCLUSIONS We conclude that hMSCs immortalized by transduction with human telomerase reverse transcriptase may provide an unlimited source of cells for therapeutic use in bone regeneration.
Collapse
Affiliation(s)
- Hiroyuki Nakahara
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
More than 30 years after the first hepatocyte transplant to treat the Gunn rat, the animal model for Crigler-Najjar syndrome, there are still a number of impediments to hepatocyte transplantation. Numerous animal models are still used in work aimed at improving hepatocyte engraftment and/or long-term function. Although other cell sources, particularly hepatic and extrahepatic stem cells, are being explored, adult hepatocytes remain the cells of choice for the treatment of liver diseases by cell therapy. In recent years, diverse approaches have been developed in various animal models to enhance hepatocyte transduction and amplification in vitro and cell engraftment and functionality in vivo. They have led to significant progress in hepatocyte transplantation for the treatment of patients with metabolic diseases and for bridging patients with acute injury until their own livers regenerate. This review presents and considers the results of this work with a special emphasis on procedures that might be clinically applicable.
Collapse
Affiliation(s)
- Anne Weber
- Institut National de la Santé et de la Recherche Médicale Unité 804, Université Paris-Sud, Bicêtre Hospital, Kremlin-Bicêtre, France.
| | | | | | | |
Collapse
|
32
|
Life support of artificial liver: development of a bioartificial liver to treat liver failure. ACTA ACUST UNITED AC 2008; 16:113-7. [PMID: 19110648 DOI: 10.1007/s00534-008-0022-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2008] [Accepted: 07/15/2008] [Indexed: 12/20/2022]
Abstract
In recent years there has been a particular focus on research regarding tissue engineering targeting the liver, especially in terms of what types of cells and extracellular matrices should be organized and in what type of environments to create an artificial liver, i.e., a life-saving organ. The ideal is to use healthy human liver cells as a source of cells for such research, but there is an extreme shortage of human-donor livers that can be used for cell isolation. Therefore, we are presently working on the differentiation of embryonic stem cells into liver cells as well as reversibly immortalized human liver cell lines that can be cultured in large quantities and at low cost. We are also working on the development of a bioartificial liver (BAL) using such cells as a source. Herein, we introduce our findings on the current status of BAL development.
Collapse
|
33
|
Abstract
In developing cell therapy, normal human cells are ideal as a cell source, but considering the serious lack of donor organs, it is unlikely to obtain a large enough amount of human cells. Moreover, even with current culturing techniques, the long-term culturing of normal human cells is difficult. On the other hand, in using xenogenic porcine cells and human tumor tissue-derived cell lines, there is concern that species-specific pathogens can be transmitted (such as infection by porcine endogenous retroviruses), and possible cancer may thus develop in recipients. Therefore, we are making efforts toward establishing reversible immortalized human cell lines that can be economically grown in tissue culture using the techniques of gene transfer in order to solve these problems. I here describe a strategy for establishing human reversibly immortalized cell lines that are intended for practical application in cell therapies. I would like to further contribute toward the realization of tissue engineering in fusional coordination with cell-processing technology by the utilization of such cell line constructing techniques.
Collapse
Affiliation(s)
- Naoya Kobayashi
- Department of Gastroenterological Surgery, Transplant and Surgical Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan.
| |
Collapse
|
34
|
Tsuruga Y, Kiyono T, Matsushita M, Takahashi T, Kasai H, Todo S. Establishment of Immortalized Human Hepatocytes by Introduction of HPV16 E6/E7 and hTERT as Cell Sources for Liver Cell-Based Therapy. Cell Transplant 2008; 17:1083-1094. [DOI: 10.3727/096368908786991542] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
For future cell-based therapies for liver diseases, the shortage of cell sources must be resolved. Immortalized human hepatocytes are expected to be among the new sources. In addition to telomerase activation by the introduction of human telomerase reverse transcriptase (hTERT), inactivation of the p16/RB pathway and/or p53 by E6/E7 of human papillomavirus type 16 (HPV16) has been shown to be useful for efficient immortalization of several human cell types. Here we report the immortalization of human hepatocytes by the introduction of HPV16 E6/E7 and hTERT. Human adult hepatocytes were lentivirally transduced with HPV16 E6/E7 and hTERT. Two human immortalized hepatocyte cell lines were established and were named HHE6E7T-1 and HHE6E7T-2. Those cells proliferated in culture beyond 200 population doublings (PDs). Albumin synthesis and expression of liver-enriched genes were confirmed, but gradually decreased as passages progressed. Karyotype analysis showed that HHE6E7T-1 cells remained near diploid but that HHE6E7T-2 cells showed severe aneuploidy at 150 PDs. Subcutaneous injection of these cells into severe combined immunodeficiency (SCID) mice did not induce tumor development. Intrasplenic transplantation of dedifferentiated HHE6E7T-1 cells over 200 PDs significantly improved the survival of acetaminophen-induced acute liver failure SCID mice. In conclusion, we successfully established immortalized human hepatocytes that retain the characteristics of differentiated hepatocytes. We also showed the reduction of hepatocyte-specific functions in long-term culture. However, the results of intrasplenic transplantation to SCID mice with acetaminophen-induced acute liver failure showed the possibility of HHE6E7T-1 serving as a cell source for hepatocyte transplantation.
Collapse
Affiliation(s)
- Yosuke Tsuruga
- Department of General Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan
| | - Tohru Kiyono
- Virology Division, National Cancer Center Research Institute, Tokyo 104-0045, Japan
| | - Michiaki Matsushita
- Department of General Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan
| | - Tohru Takahashi
- Department of General Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan
| | - Hironori Kasai
- Department of General Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan
| | - Satoru Todo
- Department of General Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8648, Japan
| |
Collapse
|
35
|
Navarro-Alvarez N, Soto-Gutierrez A, Kobayashi N. Hepatocyte transplantation: a step forward. Curr Opin Organ Transplant 2007; 12:652-658. [DOI: 10.1097/mot.0b013e3282f19f42] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|