1
|
Gao Y, Feng J, Yang G, Zhang S, Liu Y, Bu Y, Sun M, Zhao M, Chen F, Zhang W, Ye L, Zhang X. Hepatitis B virus X protein-elevated MSL2 modulates hepatitis B virus covalently closed circular DNA by inducing degradation of APOBEC3B to enhance hepatocarcinogenesis. Hepatology 2017; 66:1413-1429. [PMID: 28608964 DOI: 10.1002/hep.29316] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 05/10/2017] [Accepted: 06/06/2017] [Indexed: 12/12/2022]
Abstract
UNLABELLED Chronic hepatitis B virus (HBV) infection is a leading cause in the occurrence of hepatitis B, liver cirrhosis, and liver cancer, in which nuclear HBV covalently closed circular DNA (cccDNA), the genomic form that templates viral transcription and sustains viral persistence, plays crucial roles. In the present study, we explored the hypothesis that HBV X protein (HBx)-elevated male-specific lethal 2 (MSL2) activated HBV replication by modulating cccDNA in hepatoma cells, leading to hepatocarcinogenesis. Immunohistochemical analysis revealed that the expression of MSL2 was positively associated with that of HBV and was increased in the liver tissues of HBV-transgenic mice and clinical HCC patients. Interestingly, microarray profiling identified that MSL2 was associated with those genes responding to the virus. Mechanistically, MSL2 could maintain HBV cccDNA stability through degradation of APOBEC3B by ubiquitylation in hepatoma cells. Above all, HBx accounted for the up-regulation of MSL2 in stably HBx-transfected hepatoma cell lines and liver tissues of HBx-transgenic mice. Luciferase reporter gene assays revealed that the promoter region of MSL2 regulated by HBx was located at nucleotide -1317/-1167 containing FoxA1 binding element. Chromatin immunoprecipitation assay validated that HBx could enhance the binding property of FoxA1 to MSL2 promoter region. HBx up-regulated MSL2 by activating YAP/FoxA1 signaling. Functionally, silencing MSL2 was able to block the growth of hepatoma cells in vitro and in vivo. CONCLUSION HBx-elevated MSL2 modulates HBV cccDNA in hepatoma cells to promote hepatocarcinogenesis, forming a positive feedback loop of HBx/MSL2/cccDNA/HBV. Our finding uncovers insights into the mechanism by which MSL2 as a promotion factor in host cells selectively activates extrachromosomal DNA. (Hepatology 2017;66:1413-1429).
Collapse
Affiliation(s)
- Yuen Gao
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, China
| | - Jinyan Feng
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, China
| | - Guang Yang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, China
| | - Shuqin Zhang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, China
| | - Yunxia Liu
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, China
| | - Yanan Bu
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, China
| | - Mingming Sun
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, China
| | - Man Zhao
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, China
| | - Fuquan Chen
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, China
| | - Weiying Zhang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, China
| | - Lihong Ye
- State Key Laboratory of Medicinal Chemical Biology, Department of Biochemistry, College of Life Sciences, Nankai University, Tianjin, China
| | - Xiaodong Zhang
- State Key Laboratory of Medicinal Chemical Biology, Department of Cancer Research, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
2
|
Zhou Y, Li S, Tang Z, Xu C, Huang S, Wu J, Dittmer U, Dickow J, Sutter K, Lu M, Yang D, Song J. Different antiviral effects of IFNα and IFNβ in an HBV mouse model. Immunobiology 2016; 222:562-570. [PMID: 27839836 DOI: 10.1016/j.imbio.2016.11.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 11/02/2016] [Accepted: 11/02/2016] [Indexed: 02/07/2023]
Abstract
Interferons α and β (IFNα and IFNβ) are type I interferons produced by the host to control pathogen propagation. However, only a minority of chronic hepatitis B (CHB) patients generate a sustained response after treatment with recombinant IFNα. The anti-HBV effect of IFNβ and the underlying mechanism are not well-understood. Here, we compared the antiviral activities of IFNα and IFNβ by application of IFNα or IFNβ expression plasmids using the well-established HBV hydrodynamic injection (HI) mouse model. Injection of IFNα expression plasmid could significantly reduce HBV serum markers including HBsAg, HBeAg and HBV DNA as well as the number of HBcAg positive cells in the liver, while IFNβ showed only a weak inhibition of HBV replication. In contrast to IFNβ, IFNα resulted in elevated expression levels of IFN stimulated genes (ISGs) as well as the proinflammatory cytokine interleukin 6 (IL6) in the liver. Moreover, IFNβ treated mice showed higher expression levels of the anti-inflammatory cytokines IL10 and TGFβ in the liver compared to IFNα. Our results demonstrated that both IFNα and IFNβ exert antiviral activities against HBV in HI mouse model, but IFNα is more effective than IFNβ.
Collapse
Affiliation(s)
- Yun Zhou
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; School of Medicine, Henan University, Kaifeng, PR China.
| | - Sheng Li
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| | - Zongsheng Tang
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| | - Chunli Xu
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| | - Shunmei Huang
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| | - Jun Wu
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| | - Ulf Dittmer
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany.
| | - Julia Dickow
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany.
| | - Kathrin Sutter
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany.
| | - Mengji Lu
- Institute of Virology, University Hospital of Essen, University of Duisburg-Essen, Essen, Germany.
| | - Dongliang Yang
- Department of Infectious Diseases, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| | - Jingjiao Song
- Experimental Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China.
| |
Collapse
|
3
|
Ohkoshi S, Hirono H, Watanabe K, Hasegawa K, Yano M. Contributions of transgenic mouse studies on the research of hepatitis B virus and hepatitis C virus-induced hepatocarcinogenesis. World J Hepatol 2015; 7:2834-2840. [PMID: 26668695 PMCID: PMC4670955 DOI: 10.4254/wjh.v7.i28.2834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 09/28/2015] [Accepted: 11/24/2015] [Indexed: 02/06/2023] Open
Abstract
Transgenic mouse technology has enabled the investigation of the pathogenic effects, including those on development, immunological reactions and carcinogenesis, of viral genes directly in living organism in a real-time manner. Although viral hepatocarcinogenesis comprises multiple sequences of pathological events, that is, chronic necroinflammation and the subsequent regeneration of hepatocytes that induces the accumulation of genetic alterations and hepatocellular carcinoma (HCC), the direct action of viral proteins also play significant roles. The pathogenesis of hepatitis B virus X and hepatitis C virus (HCV) core genes has been extensively studied by virtue of their functions as a transactivator and a steatosis inducer, respectively. In particular, the mechanism of steatosis in HCV infection and its possible association with HCC has been well studied using HCV core gene transgenic mouse models. Although transgenic mouse models have remarkable advantages, they are intrinsically accompanied by some drawbacks when used to study human diseases. Therefore, the results obtained from transgenic mouse studies should be carefully interpreted in the context of whether or not they are well associated with human pathogenesis.
Collapse
Affiliation(s)
- Shogo Ohkoshi
- Shogo Ohkoshi, Haruka Hirono, Kazuhiko Watanabe, Katsuhiko Hasegawa, Department of Internal Medicine, School of Life Dentistry at Niigata, the Nippon Dental University, Niigata-city 951-8580, Japan
| | - Haruka Hirono
- Shogo Ohkoshi, Haruka Hirono, Kazuhiko Watanabe, Katsuhiko Hasegawa, Department of Internal Medicine, School of Life Dentistry at Niigata, the Nippon Dental University, Niigata-city 951-8580, Japan
| | - Kazuhiko Watanabe
- Shogo Ohkoshi, Haruka Hirono, Kazuhiko Watanabe, Katsuhiko Hasegawa, Department of Internal Medicine, School of Life Dentistry at Niigata, the Nippon Dental University, Niigata-city 951-8580, Japan
| | - Katsuhiko Hasegawa
- Shogo Ohkoshi, Haruka Hirono, Kazuhiko Watanabe, Katsuhiko Hasegawa, Department of Internal Medicine, School of Life Dentistry at Niigata, the Nippon Dental University, Niigata-city 951-8580, Japan
| | - Masahiko Yano
- Shogo Ohkoshi, Haruka Hirono, Kazuhiko Watanabe, Katsuhiko Hasegawa, Department of Internal Medicine, School of Life Dentistry at Niigata, the Nippon Dental University, Niigata-city 951-8580, Japan
| |
Collapse
|
4
|
Zhang W, Song TQ, Zhang T, Wu Q, Kong DAL, Li Q, Sun HC. Adjuvant interferon for early or late recurrence of hepatocellular carcinoma and mortality from hepatocellular carcinoma following curative treatment: A meta-analysis with comparison of different types of hepatitis. Mol Clin Oncol 2014; 2:1125-1134. [PMID: 25279210 DOI: 10.3892/mco.2014.386] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/30/2014] [Indexed: 01/27/2023] Open
Abstract
Adjuvant interferon (IFN) therapy following curative treatment for hepatocellular carcinoma (HCC) has been extensively investigated; however, the clinical benefits with different hepatitis backgrounds remain unclear. Medline, Embase, PubMed and the Cochrane Library databases were searched to identify randomized trials and cohort studies that enrolled HCC patients who received curative surgery or ablation therapy followed by IFN and control subjects; the studies were required to include data on early or late recurrence and mortality rates of HCC. Hepatitis B virus (HBV) associated with HCC (HBV-HCC) and hepatitis C virus (HCV) associated with HCC (HCV-HCC) were separately analyzed and recurrence, mortality and clinicopathological factors were compared. A total of 14 studies (9 randomized trials and 5 cohort studies, including 1,385 patients in total) were eligible for meta-analysis. IFN was found to decrease mortality and early recurrence rates, but exerted no effect on late recurrence rate. The effect of IFN differed between HBV-HCC and HCV-HCC cases. In HCV-HCC, IFN significantly reduced mortality as well as recurrence rates. However, in HBV-HCC patients, IFN reduced mortality rather than recurrence rates, although it also reduced the recurrence rate in certain subgroups. In conclusion, the effect of adjuvant IFN on postoperative recurrence differed between HBV-HCC and HCV-HCC cases; therefore, different strategies with adjuvant IFN should be used to treat HCC with different hepatitis backgrounds.
Collapse
Affiliation(s)
- Wei Zhang
- Key Laboratory of Cancer Prevention and Therapy, Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Tian-Qiang Song
- Key Laboratory of Cancer Prevention and Therapy, Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Ti Zhang
- Key Laboratory of Cancer Prevention and Therapy, Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Qiang Wu
- Key Laboratory of Cancer Prevention and Therapy, Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - DA-Lu Kong
- Key Laboratory of Cancer Prevention and Therapy, Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Qiang Li
- Key Laboratory of Cancer Prevention and Therapy, Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, P.R. China
| | - Hui-Chuan Sun
- Key Laboratory for Carcinogenesis and Cancer Invasion, Liver Cancer Institute and Zhongshan Hospital, Fudan University, The Chinese Ministry of Education, Shanghai 200032, P.R. China
| |
Collapse
|
5
|
Yano M, Ohkoshi S, Aoki YH, Takahashi H, Kurita S, Yamazaki K, Suzuki K, Yamagiwa S, Sanpei A, Fujimaki S, Wakai T, Kudo SE, Matsuda Y, Aoyagi Y. Hepatitis B virus X induces cell proliferation in the hepatocarcinogenesis via up-regulation of cytoplasmic p21 expression. Liver Int 2013; 33:1218-1229. [PMID: 23590292 DOI: 10.1111/liv.12176] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 03/10/2013] [Indexed: 12/22/2022]
Abstract
BACKGROUND Hepatitis B virus X protein (HBx) has been shown to induce hepatocarcinogenesis by disrupting the functions of intracellular molecules. Cyclin-dependent kinase inhibitor p21 (Cip1/WAF1), known as a tumour-suppressor gene, has been reported to have paradoxical function, that is, acting as an oncogene, particularly when expressed in the cytoplasm. The effects of HBx on the expression and function of p21 also remain controversial. AIMS We attempted to investigate the role of HBx in the hepatocarcinogenic process, focusing on the association with this paradoxical function of p21. The results obtained were further verified with experiments using the antihepatocarcinogenic action of interferon (IFN)-β. METHODS HBx transgenic mice (Xg) and HBx-transfected hepatoma cell lines were used. Intracellular localization of p21 was determined by Western blot analysis and immunofluorescence. RESULTS Xg and HBx-transfected cells exhibited increased expression of p21. Up-regulation of p21 was positively correlated with the expression of cyclin D1 and inactive phosphorylation of retinoblastoma protein (pRb). These HBx-induced cell proliferative responses were cancelled by knockdown of p21, which resulted in growth reduction in HBx-expressing cells, suggesting the oncogenic properties of HBx-induced p21. HBx induced accumulation of p21 in the cytoplasm, and activation of PKCα was involved. Finally, IFN-β-treated Xg liver, as well as hepatoma cells, showed a shift of cytoplasmic p21 to the nucleus, accompanied by the abrogation of HBx-induced oncogenic modulation. CONCLUSIONS Our results suggest that HBx induces hepatocarcinogenesis via PKCα-mediated overexpression of cytoplasmic p21 and IFN-β suppressed these molecular events by shifting p21 to the nucleus.
Collapse
Affiliation(s)
- Masahiko Yano
- Division of Gastroenterology and Hepatology, Graduate School of Medical and Dental Sciences Niigata University, Niigata, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Matsuda Y, Ichida T. Impact of hepatitis B virus X protein on the DNA damage response during hepatocarcinogenesis. Med Mol Morphol 2009; 42:138-42. [PMID: 19784739 DOI: 10.1007/s00795-009-0457-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Accepted: 06/04/2009] [Indexed: 12/24/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most prevalent and lethal cancers worldwide. The main HCC-associated diseases are chronic infections with hepatitis B virus (HBV) and hepatitis C virus (HCV), and HBV-associated HCC is still prevalent in Asia. Many studies have suggested that HBV X protein (HBX), which is the most common ORF integrated into the host genome, plays a crucial role in hepatocarcinogenesis. However, the accumulated evidence regarding HBX-mediated signaling pathways is not concordant, and it is difficult to understand the mechanistic nature of HBX-associated hepatocarcinogenesis. For example, HBX was reported to inactivate the early responses to DNA damage via p53-dependent and -independent pathways by interacting with several DNA damage-binding proteins and was also reported to sensitize cells to p53-mediated apoptosis via ataxia-telangiectasia and Rad3-related (ATR)-dependent signaling. HBX also interferes with the centrosome replication process, resulting in rearrangement of chromosomes with micronuclei. Moreover, HBX was found to sensitize protein kinases such as Ras/Raf/mitogen-activated protein kinase (MAPK), extracellular signal-regulated kinase (ERK), stress-activated protein kinase/NH2-terminal-Jun kinase (SAPK/JNK), protein kinase B (PKB/Akt), and Janus kinase/STAT (JAK/STAT), indicating that a variety of signaling pathways may be activated by HBX. In this review, we focus on the roles of HBX in DNA damage repair during HCC development, with a view to achieving a better understanding of the significance of HBX in the early steps of hepatocarcinogenesis.
Collapse
Affiliation(s)
- Yasunobu Matsuda
- Department of Medical Technology, Niigata University Graduate School of Health Sciences, Niigata, 951-8518, Japan.
| | | |
Collapse
|
7
|
Abstract
Hepatitis B virus (HBV) infection is a major worldwide healthy problem and now the virus and the virus-caused diseases have been known deeply. However, due to lack of a practical and convenient animal model, the study of HBV biology and the therapeutic development of HBV infection are still at a low level. As a common species used in laboratory, mice are studied most and the genetic and immune system are clearly understood. In this paper, we briefly describes the mouse models currently available in HBV.
Collapse
|
8
|
Re: Interferon: The Magic Bullet to Prevent Hepatocellular Carcinoma Recurrence After Resection? Ann Surg 2008. [DOI: 10.1097/sla.0b013e31816ffbc4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|