1
|
Wang B, Yang L, Yuan X, Zhang Y. Roles and therapeutic targeting of dendritic cells in liver fibrosis. J Drug Target 2024; 32:647-654. [PMID: 38682473 DOI: 10.1080/1061186x.2024.2347365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
Liver fibrosis is a common pathological condition marked by excessive accumulation of extracellular matrix proteins, resulting in irreversible cirrhosis and cancer. Dendritic cells (DCs) act as the crucial component of hepatic immunity and are believed to affect fibrosis by regulating the proliferation and differentiation of hepatic stellate cells (HSCs), a key mediator of fibrogenesis, and by interplaying with immune cells in the liver. This review concisely describes the process of fibrogenesis, and the phenotypic and functional characteristics of DCs in the liver. Besides, it focuses on the interaction between DCs and HSCs, T cells, and natural killer (NK) cells, as well as the dual roles of DCs in liver fibrosis, for the sake of exploring the potential of targeting DCs as a therapeutic strategy for the disease.
Collapse
Affiliation(s)
- Bingyu Wang
- Heilongjiang University of Chinese Medicine, Harbin, P.R. China
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, P.R. China
| | - Liuxin Yang
- Heilongjiang University of Chinese Medicine, Harbin, P.R. China
| | - Xingxing Yuan
- Heilongjiang University of Chinese Medicine, Harbin, P.R. China
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, P.R. China
| | - Yang Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Harbin, P.R. China
| |
Collapse
|
2
|
Li L, Huang RW, Liu XN, Xiang XY, Zhou YT, Feng XX, Tao LY, Yu J, Qin Yi, Wang YC, Liu XM. Modulation of plasmacytoid dendritic cell and CD4 + T cell differentiation accompanied by upregulation of the cholinergic anti-inflammatory pathway induced by enterovirus 71. Arch Virol 2024; 169:73. [PMID: 38472498 DOI: 10.1007/s00705-024-05974-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/12/2023] [Indexed: 03/14/2024]
Abstract
Enterovirus 71 (EV71) is a neurotropic enterovirus associated with hand, foot, and mouth disease (HFMD) fatalities. In this study, we investigated the impact of EV71 on plasmacytoid dendritic cells (pDCs) and CD4+ T cells. The results showed that pDCs were promptly activated, secreting interferon (IFN)-α and inducing CD4+ T cell proliferation and differentiation during early EV71 infection. This initiated adaptive immune responses and promoted proinflammatory cytokine production by CD4+ T cells. Over time, viral nucleic acids and proteins were synthesized in pDCs and CD4+ T cells. Concurrently, the cholinergic anti-inflammatory pathway (CAP) was activated, exhibiting an anti-inflammatory role. With constant viral stimulation, pDCs and CD4+ T cells showed reduced differentiation and cytokine secretion. Defects in pDCs were identified as a key factor in CD4+ T cell tolerance. CAP had a more significant regulatory effect on CD4+ T cells than on pDCs and was capable of inhibiting inflammation in these cells.
Collapse
Affiliation(s)
- Li Li
- Yunnan Medical Center for Pediatric Diseases, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming, 650228, Yunnan, China
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Province Clinical Research Center for Children's Health and Disease, Kunming, 650228, Yunnan, China
| | - Rong-Wei Huang
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Province Clinical Research Center for Children's Health and Disease, Kunming, 650228, Yunnan, China
| | - Xiao-Ning Liu
- Department of Pharmacy, Kunming Children's Hospital, Kunming, 650228, Yunnan, China
| | - Xiao-Yi Xiang
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Province Clinical Research Center for Children's Health and Disease, Kunming, 650228, Yunnan, China
| | - Yuan-Tao Zhou
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Province Clinical Research Center for Children's Health and Disease, Kunming, 650228, Yunnan, China
| | - Xing-Xing Feng
- Department of Clinical Laboratory, Kunming Children's Hospital, Kunming, 650228, Yunnan, China
| | - Lv-Yuan Tao
- Yunnan Medical Center for Pediatric Diseases, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming, 650228, Yunnan, China
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Province Clinical Research Center for Children's Health and Disease, Kunming, 650228, Yunnan, China
| | - Jia Yu
- Yunnan Medical Center for Pediatric Diseases, Yunnan Institute of Pediatrics, Kunming Children's Hospital, Kunming, 650228, Yunnan, China
| | - Qin Yi
- Department of Clinical Laboratory, Zouping People's Hospital, Binzhou, 256200, Shandong, China
| | - Yan-Chun Wang
- Department of 2nd Infection, Kunming Children's Hospital, Zouping People's Hospital, Kunming, 650228, Yunnan, China
| | - Xiao-Mei Liu
- Kunming Key Laboratory of Children Infection and Immunity, Yunnan Key Laboratory of Children's Major Disease Research, Yunnan Province Clinical Research Center for Children's Health and Disease, Kunming, 650228, Yunnan, China.
| |
Collapse
|
3
|
Dustin LB. Innate and Adaptive Immune Responses in Chronic HCV Infection. Curr Drug Targets 2018; 18:826-843. [PMID: 26302811 DOI: 10.2174/1389450116666150825110532] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 07/25/2015] [Accepted: 07/27/2015] [Indexed: 12/14/2022]
Abstract
Hepatitis C virus (HCV) remains a public health problem of global importance, even in the era of potent directly-acting antiviral drugs. In this chapter, I discuss immune responses to acute and chronic HCV infection. The outcome of HCV infection is influenced by viral strategies that limit or delay the initiation of innate antiviral responses. This delay may enable HCV to establish widespread infection long before the host mounts effective T and B cell responses. HCV's genetic agility, resulting from its high rate of replication and its error prone replication mechanism, enables it to evade immune recognition. Adaptive immune responses fail to keep up with changing viral epitopes. Neutralizing antibody epitopes may be hidden by decoy structures, glycans, and lipoproteins. T cell responses fail due to changing epitope sequences and due to exhaustion, a phenomenon that may have evolved to limit immune-mediated pathology. Despite these difficulties, innate and adaptive immune mechanisms do impact HCV replication. Immune-mediated clearance of infection is possible, occurring in 20-50% of people who contract the disease. New developments raise hopes for effective immunological interventions to prevent or treat HCV infection.
Collapse
Affiliation(s)
- Lynn B Dustin
- University of Oxford, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, Kennedy Institute of Rheumatology, Peter Medawar Building for Pathogen Research, South Parks Road, Oxford OX1 3SY, United Kingdom
| |
Collapse
|
4
|
Schulz S, Landi A, Garg R, Wilson JA, van Drunen Littel-van den Hurk S. Indolamine 2,3-dioxygenase expression by monocytes and dendritic cell populations in hepatitis C patients. Clin Exp Immunol 2015; 180:484-98. [PMID: 25605587 DOI: 10.1111/cei.12586] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 12/31/2014] [Accepted: 01/09/2015] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DCs) play an important role in the induction of the primary immune response to infection. DCs may express the tryptophan-catabolizing enzyme indolamine2,3-dioxygenase (IDO), which is an inducer of immune tolerance. Because there is evidence that chronic hepatitis C virus (HCV) infection leads to functional impairment of certain DC populations, we analysed IDO expression in DCs and monocytes from chronically infected and recovered HCV patients. The IDO1 and -2 expression was increased significantly in the monocytes of chronic HCV patients but, interestingly, not in those from recovered patients. The myeloid DCs from chronically infected HCV patients also showed enhanced IDO1 expression, while no change in either IDO1 or -2 was found for plasmacytoid DCs. Up-regulation of IDO1 gene expression was confirmed by the presence of enhanced kynurenine/tryptophan ratios in the plasma from chronic HCV patients. Increased IDO1 and -2 expression was also observed in monocytes from healthy donors infected with an adapted mutant of the HCV JFH-1 strain ex vivo, confirming a direct effect of HCV infection. These changes in IDO expression could be prevented by treatment with the IDO inhibitor 1-methyl tryptophan (1-mT). Furthermore, maturation of monocyte-derived DCs from chronically infected HCV patients, as well as well as monocyte-derived DCs infected ex vivo with HCV, was impaired, but this was reversed by 1-mT treatment. This suggests that IDO inhibitors may be used to treat chronic HCV patients in vivo, in conjunction with current therapies, or to activate DCs from patients ex vivo, such that they can be administered back as a DC-based therapeutic vaccine.
Collapse
Affiliation(s)
- S Schulz
- VIDO-InterVac, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - A Landi
- Li Ka Shing Institute of Virology, Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta, Canada
| | - R Garg
- VIDO-InterVac, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - J A Wilson
- Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - S van Drunen Littel-van den Hurk
- VIDO-InterVac, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.,Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
5
|
Mihm S. Activation of Type I and Type III Interferons in Chronic Hepatitis C. J Innate Immun 2015; 7:251-259. [PMID: 25766746 PMCID: PMC6738759 DOI: 10.1159/000369973] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/13/2014] [Accepted: 11/13/2014] [Indexed: 12/29/2022] Open
Abstract
Infection with hepatitis C virus (HCV) results in chronic and progressive liver disease. Persistency rates add up to 85%. Despite recognition of the virus by the human host in peripheral blood and in the liver, immune response appears to be ineffective in clearing infection. The ability to spontaneously eradicate the virus as well as the outcome of infection upon therapy with human recombinant interferon-α (IFN-α) was found to correlate most closely with genetic variations within the region encoding the IFN-λ genes, as revealed by genome-wide association studies on main ethnic populations in 2009. This review summarizes the induction of type I and type III IFN genes and their effectors, the IFN-stimulated genes. It focusses on the in vivo situation in chronic HCV infection in man both in the peripheral blood compartment and in the liver. It also addresses the impact of genetic polymorphisms in the region of type III IFN genes on their activation. Finally, it discusses how antiviral drugs (i.e. IFN-α, ribavirin and the direct-acting antivirals) may complementarily control the activation of endogenous IFNs and succeed in combatting infections.
Collapse
Affiliation(s)
- Sabine Mihm
- Department of Gastroenterology II, University Medical Center Goettingen, Goettingen, Germany
| |
Collapse
|
6
|
Fénéant L, Levy S, Cocquerel L. CD81 and hepatitis C virus (HCV) infection. Viruses 2014; 6:535-72. [PMID: 24509809 PMCID: PMC3939471 DOI: 10.3390/v6020535] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Revised: 01/29/2014] [Accepted: 02/02/2014] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C Virus (HCV) infection is a global public health problem affecting over 160 million individuals worldwide. Its symptoms include chronic hepatitis, liver cirrhosis and hepatocellular carcinoma. HCV is an enveloped RNA virus mainly targeting liver cells and for which the initiation of infection occurs through a complex multistep process involving a series of specific cellular entry factors. This process is likely mediated through the formation of a tightly orchestrated complex of HCV entry factors at the plasma membrane. Among HCV entry factors, the tetraspanin CD81 is one of the best characterized and it is undoubtedly a key player in the HCV lifecycle. In this review, we detail the current knowledge on the involvement of CD81 in the HCV lifecycle, as well as in the immune response to HCV infection.
Collapse
Affiliation(s)
- Lucie Fénéant
- Center for Infection and Immunity of Lille, CNRS-UMR8204, Inserm-U1019, Institut Pasteur de Lille, Université Lille Nord de France, Institut de Biologie de Lille, 1 rue du Pr Calmette, CS50447, 59021 Lille Cedex, France.
| | - Shoshana Levy
- Department of Medicine, Division of Oncology, CCSR, Stanford University Medical Center, Stanford, CA 94305, USA.
| | - Laurence Cocquerel
- Center for Infection and Immunity of Lille, CNRS-UMR8204, Inserm-U1019, Institut Pasteur de Lille, Université Lille Nord de France, Institut de Biologie de Lille, 1 rue du Pr Calmette, CS50447, 59021 Lille Cedex, France.
| |
Collapse
|
7
|
Losikoff PT, Self AA, Gregory SH. Dendritic cells, regulatory T cells and the pathogenesis of chronic hepatitis C. Virulence 2012; 3:610-20. [PMID: 23076334 PMCID: PMC3545943 DOI: 10.4161/viru.21823] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hepatitis C virus (HCV) is a small, enveloped RNA virus and a major cause of chronic liver disease. Resolution of primary HCV infections depends upon the vigorous responses of CD4+ and CD8+ T cells to multiple viral epitopes. Although such broad-based responses are readily detected early during the course of infection regardless of clinical outcome, they are not maintained in individuals who develop chronic disease. Ostensibly, a variety of factors contribute to the diminished T cell responses observed in chronic, HCV-infected patients including impaired dendritic cell function and the induction of CD4+FoxP3+ regulatory T cells. Overwhelming evidence suggests that the complex interaction of dendritic cells and regulatory T cells plays a critical role in the pathogenesis of chronic hepatitis C.
Collapse
Affiliation(s)
- Phyllis T Losikoff
- Department of Medicine, Rhode Island Hospital and the Warren Alpert Medical School at Brown University, Providence, RI, USA
| | | | | |
Collapse
|
8
|
Buonaguro L, Petrizzo A, Tornesello ML, Buonaguro FM. Innate immunity and hepatitis C virus infection: a microarray's view. Infect Agent Cancer 2012; 7:7. [PMID: 22448617 PMCID: PMC3511806 DOI: 10.1186/1750-9378-7-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 02/24/2012] [Indexed: 12/20/2022] Open
Abstract
Hepatitis C virus (HCV) induces a chronic infection in more than two-thirds of HCV infected subjects. The inefficient innate and adaptive immune responses have been shown to play a major pathogenetic role in the development and persistence of HCV chronic infection. Several aspects of the interactions between the virus and the host immune system have been clarified and, in particular, mechanisms have been identified which underlie the ability of HCV to seize and subvert innate as well as adaptive immune responses. The present review summarizes recent findings on the interaction between HCV infection and innate immune response whose final effect is the downstream inefficient development of antigen-specific adaptive immunity, thereby contributing to virus persistence.
Collapse
Affiliation(s)
- Luigi Buonaguro
- Molecular Biology and Viral Oncogenesis Unit, Istituto Nazionale Tumori “Fond. G. Pascale”, 80131, Naples, Italy
| | - Annacarmen Petrizzo
- Molecular Biology and Viral Oncogenesis Unit, Istituto Nazionale Tumori “Fond. G. Pascale”, 80131, Naples, Italy
| | - Maria Lina Tornesello
- Molecular Biology and Viral Oncogenesis Unit, Istituto Nazionale Tumori “Fond. G. Pascale”, 80131, Naples, Italy
| | - Franco M Buonaguro
- Molecular Biology and Viral Oncogenesis Unit, Istituto Nazionale Tumori “Fond. G. Pascale”, 80131, Naples, Italy
| |
Collapse
|
9
|
Chinnadurai R, Velazquez V, Grakoui A. Hepatic transplant and HCV: a new playground for an old virus. Am J Transplant 2012; 12:298-305. [PMID: 22044693 DOI: 10.1111/j.1600-6143.2011.03812.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Hepatitis C virus (HCV) infection is a major global health problem affecting 170 million people worldwide. The majority of infected individuals fail to resolve their infection, with a significant number developing chronic, progressive HCV-related liver disease. HCV infection is the leading indication for liver transplantation and unfortunately, all patients with detectable viral load before transplantation will have rapid, recurrent infection. What remain to be determined are factors contributing to the severity of HCV recurrence. Such factors are unique to the posttransplant setting and include: viral genetic diversity and composition, immunosuppression, donor/recipient age and sex, genetic factors and the liver microenvironment. Importantly, the possibility that the severity of HCV recurrence might be also influenced by factors related to the primary course of disease (i.e. viral set point, previously acquired adaptations of the virus) must be further evaluated. In this sense, recurrent HCV infection should not be regarded merely as another acute infection, but rather, it should be cautioned that problems first arising during the primary course of disease may be accentuated during recurrence. Development of novel therapeutic approaches will require a thorough understanding of viral and host determinants of infection resolution and how these factors may change in the posttransplant setting.
Collapse
Affiliation(s)
- R Chinnadurai
- Department of Medicine, Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | | | | |
Collapse
|
10
|
Abstract
The human immune system is under constant challenge from many viruses, some of which the body is successfully able to clear. Other viruses have evolved to escape the host immune responses and thus persist, leading to the development of chronic diseases. Dendritic cells are professional antigen-presenting cells that play a major role in both innate and adaptive immunity against different pathogens. This review focuses on the interaction of different chronic viruses with dendritic cells and the viruses' ability to exploit this critical cell type to their advantage so as to establish persistence within the host.
Collapse
Affiliation(s)
- Saifur Rahman
- Department of Microbiology and Immunology, Drexel Institute for Biotechnology and Virology Research, Drexel University College of Medicine, 3805 Old Easton Road, Doylestown, PA 18902, USA
| | | | | |
Collapse
|
11
|
Reizis B, Bunin A, Ghosh HS, Lewis KL, Sisirak V. Plasmacytoid dendritic cells: recent progress and open questions. Annu Rev Immunol 2011; 29:163-83. [PMID: 21219184 DOI: 10.1146/annurev-immunol-031210-101345] [Citation(s) in RCA: 470] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Plasmacytoid dendritic cells (pDCs) are specialized in rapid and massive secretion of type I interferon (IFN-α/β) in response to foreign nucleic acids. Combined with their antigen presentation capacity, this powerful functionality enables pDCs to orchestrate innate and adaptive immune responses. pDCs combine features of both lymphocytes and classical dendritic cells and display unique molecular adaptations to nucleic acid sensing and IFN production. In the decade since the identification of the pDC as a distinct immune cell type, our understanding of its molecular underpinnings and role in immunity has progressed rapidly. Here we review select aspects of pDC biology including cell fate establishment and plasticity, specific molecular mechanisms of pDC function, and the role of pDCs in T cell responses, antiviral immunity, and autoimmune diseases. Important unresolved questions remain in these areas, promising exciting times in pDC research for years to come.
Collapse
Affiliation(s)
- Boris Reizis
- Department of Microbiology and Immunology, Columbia University Medical Center, New York, New York 10032, USA
| | | | | | | | | |
Collapse
|
12
|
Bailey J. An assessment of the use of chimpanzees in hepatitis C research past, present and future: 1. Validity of the chimpanzee model. Altern Lab Anim 2011; 38:387-418. [PMID: 21105756 DOI: 10.1177/026119291003800501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The USA is the only significant user of chimpanzees in biomedical research in the world, since many countries have banned or limited the practice due to substantial ethical, economic and scientific concerns. Advocates of chimpanzee use cite hepatitis C research as a major reason for its necessity and continuation, in spite of supporting evidence that is scant and often anecdotal. This paper examines the scientific and ethical issues surrounding chimpanzee hepatitis C research, and concludes that claims of the necessity of chimpanzees in historical and future hepatitis C research are exaggerated and unjustifiable, respectively. The chimpanzee model has several major scientific, ethical, economic and practical caveats. It has made a relatively negligible contribution to knowledge of, and tangible progress against, the hepatitis C virus compared to non-chimpanzee research, and must be considered scientifically redundant, given the array of alternative methods of inquiry now available. The continuation of chimpanzee use in hepatitis C research adversely affects scientific progress, as well as chimpanzees and humans in need of treatment. Unfounded claims of its necessity should not discourage changes in public policy regarding the use of chimpanzees in US laboratories.
Collapse
Affiliation(s)
- Jarrod Bailey
- New England Anti-Vivisection Society, Boston, MA 02108-5100, USA.
| |
Collapse
|
13
|
Barnaba V. Hepatitis C virus infection: a "liaison a trois" amongst the virus, the host, and chronic low-level inflammation for human survival. J Hepatol 2010; 53:752-61. [PMID: 20673595 DOI: 10.1016/j.jhep.2010.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2010] [Revised: 05/20/2010] [Accepted: 06/09/2010] [Indexed: 01/26/2023]
Abstract
This review covers the various aspects of the immune system that allows the relationship between the hepatitis-C virus, the host and chronic low-level inflammation, to be highly flexible and able to defend the host from persistent infections. This ambiguity mainly stems from the property of the immune system that can be both protective and harmful. Immunity cannot be fully protective without producing a certain degree of damage (acute hepatitis resulting in resolving HCV infection). In addition, the balance between protection and tissue damage is critical for the development of chronic HCV infection. The establishment of a state of chronic low-level inflammation is instrumental to limit liver immunopathology, to limit viral spread, and ultimately to ensure a long-lasting survival of the host. It is dictated by a fine equilibrium maintained by multiple immunologic mechanisms, including: sensory perception of innate immunity, virus-specific T and B cell functions, control of immune responses, and finally the balance between immunity and immunopathology that has principally evolved to favor the survival of the species.
Collapse
Affiliation(s)
- Vincenzo Barnaba
- Departimento of Medicina Interna, Sapienza Università di Roma, Fondazione Andrea Cesalpino, Fondazione Cenci Bolognetti, Italy.
| |
Collapse
|
14
|
Abstract
Plasmacytoid dendritic cells (PDCs) have perplexed pathologists for decades, undergoing multiple adjustments in nomenclature as their lineage and functions have been characterized. Although PDCs account for less than 0.1% of peripheral blood mononuclear cells, they serve as a principal source of interferon-alpha and are also known as interferon-I producing cells (IPCs). Upon activation in vitro, they can differentiate into dendritic cells, and recent studies have substantiated a potential role in antigen presentation. Thus, PDCs may act as a link between innate and adaptive immunity. Normally found in small quantities in primary and secondary lymphoid organs, PDCs accumulate in a variety of inflammatory conditions, including Kikuchi-Fujimoto lymphadenopathy, hyaline-vascular Castleman disease, and autoimmune diseases, and in certain malignancies such as classical Hodgkin lymphoma and carcinomas. Demonstrating potential for neoplastic transformation reflective of varying stages of maturation, clonal proliferations range from PDC nodules most commonly associated with chronic myelomonocytic leukemia to the rare but highly aggressive malignancy now known as blastic plasmacytoid dendritic cell neoplasm (BPDCN). Formerly called blastic natural killer cell lymphoma or CD4/CD56 hematodermic neoplasm, BPDCN, unlike natural killer cell lymphomas, is not associated with Epstein-Barr virus infection and is generally not curable with treatment regimens for non-Hodgkin lymphomas. In fact, this entity is no longer considered to be a lymphoma and instead represents a unique precursor hematopoietic neoplasm. Acute leukemia therapy regimens may lead to sustained clinical remission of BPDCN, with bone marrow transplantation in first complete remission potentially curative in adult patients.
Collapse
|
15
|
Coinfection with hepatitis C virus and human immunodeficiency virus: virological, immunological, and clinical outcomes. J Virol 2009; 83:7366-74. [PMID: 19420073 DOI: 10.1128/jvi.00191-09] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
16
|
Osna NA. Hepatitis C virus and ethanol alter antigen presentation in liver cells. World J Gastroenterol 2009; 15:1201-1208. [PMID: 19291820 PMCID: PMC2658850 DOI: 10.3748/wjg.15.1201] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 01/14/2009] [Accepted: 01/21/2009] [Indexed: 02/06/2023] Open
Abstract
Alcoholic patients have a high incidence of hepatitis C virus (HCV) infection. Alcohol consumption enhances the severity of the HCV disease course and worsens the outcome of chronic hepatitis C. The accumulation of virally infected cells in the liver is related to the HCV-induced inability of the immune system to recognize infected cells and to develop the immune responses. This review covers the effects of HCV proteins and ethanol on major histocompatibility complex (MHC) class I- and class II-restricted antigen presentation. Here, we discuss the liver which functions as an immune privilege organ; factors, which affect cleavage and loading of antigenic peptides onto MHC class I and class II in hepatocytes and dendritic cells, and the modulating effects of ethanol and HCV on antigen presentation by liver cells. Altered antigen presentation in the liver limits the ability of the immune system to clear HCV and infected cells and contributes to disease progression. HCV by itself affects dendritic cell function, switching their cytokine profile to the suppressive phenotype of interleukin-10 (IL-10) and transforming growth factor beta (TGFbeta) predominance, preventing cell maturation and allostimulation capacity. The synergistic action of ethanol with HCV results in the suppression of MHC class II-restricted antigen presentation. In addition, ethanol metabolism and HCV proteins reduce proteasome function and interferon signaling, thereby suppressing the generation of peptides for MHC class I-restricted antigen presentation. Collectively, ethanol exposure further impairs antigen presentation in HCV-infected liver cells, which may provide a partial explanation for exacerbations and the poor outcome of HCV infection in alcoholics.
Collapse
|