1
|
Habudele Z, Chen G, Qian SE, Vaughn MG, Zhang J, Lin H. High Dietary Intake of Iron Might Be Harmful to Atrial Fibrillation and Modified by Genetic Diversity: A Prospective Cohort Study. Nutrients 2024; 16:593. [PMID: 38474722 DOI: 10.3390/nu16050593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/03/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Some studies suggest an association between iron overload and cardiovascular diseases (CVDs). However, the relationship between dietary iron intake and atrial fibrillation (AF) remains uncertain, as does the role of genetic loci on this association. The study involved 179,565 participants from UK Biobank, tracking incident atrial fibrillation (AF) cases. Iron intake was categorized into low, moderate, and high groups based on dietary surveys conducted from 2009 to 2012. The Cox regression model was used to estimate the risk of AF in relation to iron intake, assessing the hazard ratio (HR) and 95% confidence interval (95% CI). It also examined the impact of 165 AF-related and 20 iron-related genetic variants on this association. Pathway enrichment analyses were performed using Metascape and FUMA. During a median follow-up period of 11.6 years, 6693 (3.97%) incident AF cases were recorded. A total of 35,874 (20.0%) participants had high iron intake. High iron intake was associated with increased risk of AF [HR: 1.13 (95% CI: 1.05, 1.22)] in a fully adjusted model. Importantly, there were 83 SNPs (11 iron-related SNPs) that could enhance the observed associations. These genes are mainly involved in cardiac development and cell signal transduction pathways. High dietary iron intake increases the risk of atrial fibrillation, especially when iron intake exceeds 16.95 mg. The association was particularly significant among the 83 SNPs associated with AF and iron, the individuals with these risk genes. Gene enrichment analysis revealed that these genes are significantly involved in cardiac development and cell signal transduction processes.
Collapse
Affiliation(s)
- Zierdi Habudele
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou 510275, China
| | - Ge Chen
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou 510275, China
| | - Samantha E Qian
- College of Arts and Sciences, Saint Louis University, St. Louis, MO 63108, USA
| | - Michael G Vaughn
- School of Social Work, Saint Louis University, St. Louis, MO 63103, USA
| | - Junguo Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou 510275, China
| | - Hualiang Lin
- Department of Epidemiology, School of Public Health, Sun Yat-Sen University, Guangzhou 510275, China
| |
Collapse
|
2
|
Abstract
Haemochromatosis is one of the most common genetic diseases affecting patients of northern European ancestry. It is overdiagnosed in patients without iron overload and is underdiagnosed in many patients. Early diagnosis by genetic testing and therapy by periodic phlebotomy can prevent the most serious complications, which include liver cirrhosis, liver cancer, and death. This Seminar includes an update on the origins of haemochromatosis; and an overview pathophysiology, genetics, natural history, signs and symptoms, differential diagnoses, treatment with phlebotomy, outcomes, and future directions.
Collapse
Affiliation(s)
- Paul C Adams
- Department of Medicine, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada.
| | - Gary Jeffrey
- Medical School, University of Western Australia, Perth, WA, Australia
| | - John Ryan
- Royal College of Surgeons of Ireland, Dublin, Ireland
| |
Collapse
|
3
|
Pilling LC, Atkins JL, Melzer D. Genetic modifiers of penetrance to liver endpoints in HFE hemochromatosis: Associations in a large community cohort. Hepatology 2022; 76:1735-1745. [PMID: 35567766 PMCID: PMC9796074 DOI: 10.1002/hep.32575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/11/2022] [Accepted: 05/11/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND The iron overload condition hereditary hemochromatosis (HH) can cause liver cirrhosis and cancer, diabetes, and arthritis. Males homozygous for the p.C282Y missense mutation in the Homeostatin Iron Regulator (HFE) gene have greatest risk; yet, only a minority develop these conditions. We aimed to determine whether common genetic variants influencing iron levels or liver disease risk in the general population also modify clinical penetrance in HFE p.C282Y and p.H63D carriers. METHODS We studied 1294 male and 1596 female UK Biobank HFE p.C282Y homozygous participants of European ancestry with medical records up to 14 years after baseline assessment. Polygenic scores quantified genetic effects of blood iron biomarkers and relevant diseases (identified in the general population). Analyses were also performed in other HFE p.C282Y/p.H63D genotype groups. RESULTS In male p.C282Y homozygotes, a higher iron polygenic score increased the risk of liver fibrosis or cirrhosis diagnoses (odds ratio for the top 20% of iron polygenic score vs. the bottom 20% = 4.90: 95% confidence intervals, 1.63-14.73; p = 0.005), liver cancer, and osteoarthritis but not diabetes. A liver cirrhosis polygenic score was associated with liver cancer diagnoses. In female p.C282Y homozygotes, the osteoarthritis polygenic score was associated with increased osteoarthritis diagnoses and type-2 diabetes polygenic score with diabetes. However, the iron polygenic score was not robustly associated with diagnoses in p.C282Y female homozygotes or in other p.C282Y/p.H63D genotypes. CONCLUSIONS HFE p.C282Y homozygote penetrance to clinical disease in a large community cohort was partly explained by common genetic variants that influence iron and risks of related diagnoses in the general population, including polygenic scores in HH screening and diagnosis, may help in estimating prognosis and treatment planning.
Collapse
Affiliation(s)
- Luke C Pilling
- Epidemiology and Public Health GroupUniversity of ExeterExeterUK
| | | | | |
Collapse
|
4
|
Genetic Aspects of Micronutrients Important for Inflammatory Bowel Disease. Life (Basel) 2022; 12:life12101623. [PMID: 36295058 PMCID: PMC9604584 DOI: 10.3390/life12101623] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Inflammatory bowel disease (IBD), Crohn’s disease (CD) and ulcerative colitis (UC) are complex diseases whose etiology is associated with genetic and environmental risk factors, among which are diet and gut microbiota. To date, IBD is an incurable disease and the main goal of its treatment is to reduce symptoms, prevent complications, and improve nutritional status and the quality of life. Patients with IBD usually suffer from nutritional deficiency with imbalances of specific micronutrient levels that contribute to the further deterioration of the disease. Therefore, along with medications usually used for IBD treatment, therapeutic strategies also include the supplementation of micronutrients such as vitamin D, folic acid, iron, and zinc. Micronutrient supplementation tailored according to individual needs could help patients to maintain overall health, avoid the triggering of symptoms, and support remission. The identification of individuals’ genotypes associated with the absorption, transport and metabolism of micronutrients can modify future clinical practice in IBD and enable individualized treatment. This review discusses the personalized approach with respect to genetics related to micronutrients commonly used in inflammatory bowel disease treatment.
Collapse
|
5
|
Moksnes MR, Graham SE, Wu KH, Hansen AF, Gagliano Taliun SA, Zhou W, Thorstensen K, Fritsche LG, Gill D, Mason A, Cucca F, Schlessinger D, Abecasis GR, Burgess S, Åsvold BO, Nielsen JB, Hveem K, Willer CJ, Brumpton BM. Genome-wide meta-analysis of iron status biomarkers and the effect of iron on all-cause mortality in HUNT. Commun Biol 2022; 5:591. [PMID: 35710628 PMCID: PMC9203493 DOI: 10.1038/s42003-022-03529-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 05/24/2022] [Indexed: 01/19/2023] Open
Abstract
Iron is essential for many biological processes, but iron levels must be tightly regulated to avoid harmful effects of both iron deficiency and overload. Here, we perform genome-wide association studies on four iron-related biomarkers (serum iron, serum ferritin, transferrin saturation, total iron-binding capacity) in the Trøndelag Health Study (HUNT), the Michigan Genomics Initiative (MGI), and the SardiNIA study, followed by their meta-analysis with publicly available summary statistics, analyzing up to 257,953 individuals. We identify 123 genetic loci associated with iron traits. Among 19 novel protein-altering variants, we observe a rare missense variant (rs367731784) in HUNT, which suggests a role for DNAJC13 in transferrin recycling. We further validate recently published results using genetic risk scores for each biomarker in HUNT (6% variance in serum iron explained) and present linear and non-linear Mendelian randomization analyses of the traits on all-cause mortality. We find evidence of a harmful effect of increased serum iron and transferrin saturation in linear analyses that estimate population-averaged effects. However, there was weak evidence of a protective effect of increasing serum iron at the very low end of its distribution. Our findings contribute to our understanding of the genes affecting iron status and its consequences on human health.
Collapse
Affiliation(s)
- Marta R Moksnes
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.
| | - Sarah E Graham
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Kuan-Han Wu
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
| | - Ailin Falkmo Hansen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Sarah A Gagliano Taliun
- Department of Medicine and Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
- Montréal Heart Institute, Montréal, QC, Canada
| | - Wei Zhou
- Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ketil Thorstensen
- Department of Clinical Chemistry, St. Olavs hospital Trondheim University Hospital, Trondheim, Norway
| | - Lars G Fritsche
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, MI, USA
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Dipender Gill
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Clinical Pharmacology and Therapeutics Section, Institute for Infection and Immunity, St George's, University of London, London, UK
- Clinical Pharmacology Group, Pharmacy and Medicines Directorate, St George's University Hospitals NHS Foundation Trust, London, UK
- Novo Nordisk Research Centre Oxford, Old Road Campus, Oxford, UK
| | - Amy Mason
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Francesco Cucca
- Istituto di Ricerca Genetica e Biomedica, Consiglio Nazionale delle Ricerche (CNR), Cagliari, Italy
- Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Sassari, Italy
| | - David Schlessinger
- Laboratory of Genetics, National Institute on Aging, US National Institutes of Health, Baltimore, MD, USA
| | - Gonçalo R Abecasis
- Center for Statistical Genetics, University of Michigan School of Public Health, Ann Arbor, MI, USA
| | - Stephen Burgess
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Medical Research Council Biostatistics Unit, University of Cambridge, Cambridge, UK
| | - Bjørn Olav Åsvold
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- Department of Endocrinology, Clinic of Medicine, St. Olavs hospital Trondheim University Hospital, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, NTNU - Norwegian University of Science and Technology, Levanger, Norway
| | - Jonas B Nielsen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology Research, Statens Serum Institute, Copenhagen, Denmark
- Department of Cardiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, NTNU - Norwegian University of Science and Technology, Levanger, Norway
| | - Cristen J Willer
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
- Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Montréal Heart Institute, Montréal, QC, Canada
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Ben M Brumpton
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.
- HUNT Research Centre, Department of Public Health and Nursing, NTNU - Norwegian University of Science and Technology, Levanger, Norway.
- Clinic of Medicine, St. Olavs hospital Trondheim University Hospital, Trondheim, Norway.
| |
Collapse
|
6
|
Barton JC, Barton JC, Acton RT. HLA-A*03, the hemochromatosis ancestral haplotype, and phenotypes of referred hemochromatosis probands with HFE p.C282Y homozygosity. Hereditas 2022; 159:25. [PMID: 35659379 PMCID: PMC9169309 DOI: 10.1186/s41065-022-00237-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/11/2022] [Indexed: 11/10/2022] Open
Abstract
Background Human leukocyte antigen (HLA)-A*03, hemochromatosis ancestral haplotype marker, was associated with greater iron overload in hemochromatosis cohorts reported before discovery of the HFE gene. We sought to learn whether an A*03-linked locus influences phenotypes in referred HFE p.C282Y homozygotes. Methods We tabulated these phenotypes in probands with p.C282Y homozygosity: age, transferrin saturation (TS), serum ferritin (SF), conditions related to iron overload, fibrosis-four variables (FIB-4) index and aspartate aminotransferase-to-platelet ratio index (APRI) predictors of severe hepatic fibrosis, and iron removed to achieve depletion (QFe/age). We analyzed phenotypes of men and women separately across three A*03 subgroups. Results There were 104 men (57.8%) and 76 women (42.2%). Mean age (SD) was 49 ± 13 y. Mean TS was 79 ± 17%. Median SF (range) was 715 µg/L (28, 6103). Related conditions included: hemochromatosis arthropathy (21.7%); type 2 diabetes (18.9%); hypogonadotropic hypogonadism (5.8% of men); cardiomyopathy (0%); and cirrhosis (10.0%). Median QFe/age was 61 mg/y (0, 714). A*03 homozygosity, heterozygosity, and no A*03 occurred in 37 (20.6%), 104 (57.8%), and 39 probands (21.7%), respectively. In men, mean TS and median SF were significantly higher in A*03 homozygotes than heterozygotes but not A*03-negative probands. In men, median APRI was significantly lower in A*03 heterozygotes than homozygotes and A*03-negative probands. No other phenotypes, including QFe/age, differed significantly across A*03 subgroups in either men or women. Conclusions Our results suggest that an A*03-linked locus does not influence phenotypes in referred HFE p.C282Y homozygotes. It is unlikely that heritable factors that modify phenotypes of p.C282Y homozygotes are linked to the hemochromatosis ancestral haplotype.
Collapse
Affiliation(s)
- James C Barton
- Southern Iron Disorders Center, Birmingham, AL, USA. .,Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| | | | - Ronald T Acton
- Southern Iron Disorders Center, Birmingham, AL, USA.,Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
7
|
Stachowska L, Koziarska D, Karakiewicz B, Kotwas A, Knyszyńska A, Folwarski M, Dec K, Stachowska E, Hawryłkowicz V, Kulaszyńska M, Sołek-Pastuszka J, Skonieczna-Żydecka K. Hepcidin (rs10421768), Transferrin (rs3811647, rs1049296) and Transferrin Receptor 2 (rs7385804) Gene Polymorphism Might Be Associated with the Origin of Multiple Sclerosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19116875. [PMID: 35682458 PMCID: PMC9180173 DOI: 10.3390/ijerph19116875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 05/30/2022] [Accepted: 06/02/2022] [Indexed: 02/07/2023]
Abstract
Multiple sclerosis (MS) is a demyelinating disease of the central nervous system in which there is a multifocal damage to the nerve tissue. Additionally, the literature emphasizes the excessive accumulation of iron in the central nervous system of patients, which is negatively correlated with their psychophysical fitness. Iron metabolism genes polymorphisms may modulate iron deposition in the body and thus affect the clinical course of MS. We aimed to assess the frequency of HAMP, TFR2, and TF polymorphisms in MS patients and their impact on the clinical course of the disease. The studied polymorphisms were identified by the Real-Time PCR using TaqMan technology. Neurological assessment by means of EDSS scale was conducted. This cross-sectional study included 176 patients, with the mean age of onset of symptoms at 30.6 years. The frequency of alleles of the studied polymorphisms was as follows: (a) HAMP rs10421768: A 75.9% (n = 267), G 24.1% (n = 65), (b) TF rs1049296: C 89.2% (n = 314), T 10.8% (n = 38), (c) TF rs3811647: A 39.8% (n = 140), G 60.2% (n = 212), (d) TFR2 rs7385804: A 59.1% (n = 59.1%), C 40.9% (n = 144). In the codominant inheritance model of TF rs1049269, it was shown that people with the CT genotype scored statistically significantly lower points in the EDSS scale at the time of diagnosis than those with the CC genotype (CC Me = 1.5, CT Me = 1.0 p = 0.0236). In the recessive model of TF inheritance rs3811647, it was noticed that the primary relapses were significantly more frequent in patients with at least one G allele compared with those with the AA genotype (AG + GG = 81.2%, AA = 18.8%, p = 0.0354). In the overdominant model rs7385804 TFR2, it was shown that among patients with the AA genotype, multiple sclerosis occurs significantly more often in relatives in a straight line compared with people with the AC and CC genotypes (AA = 100.0%, AC + CC = 0.0%, p = 0.0437). We concluded that the studied polymorphisms might affect the clinical course of MS.
Collapse
Affiliation(s)
- Laura Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland; (L.S.); (K.D.); (E.S.); (V.H.)
| | - Dorota Koziarska
- Department of Neurology, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 72-252 Szczecin, Poland;
| | - Beata Karakiewicz
- Subdepartment of Social Medicine and Public Health Department of Social Medicine, Pomeranian Medical University in Szczecin, Żołnierska 48, 71-210 Szczecin, Poland; (B.K.); (A.K.)
| | - Artur Kotwas
- Subdepartment of Social Medicine and Public Health Department of Social Medicine, Pomeranian Medical University in Szczecin, Żołnierska 48, 71-210 Szczecin, Poland; (B.K.); (A.K.)
| | - Anna Knyszyńska
- Department of Functional Diagnostics and Physical Medicine, Pomeranian Medical University in Szczecin, 71-210 Szczecin, Poland;
| | - Marcin Folwarski
- Department of Clinical Nutrition and Dietetics, Medical University of Gdansk, 80-211 Gdańsk, Poland;
| | - Karolina Dec
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland; (L.S.); (K.D.); (E.S.); (V.H.)
| | - Ewa Stachowska
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland; (L.S.); (K.D.); (E.S.); (V.H.)
| | - Viktoria Hawryłkowicz
- Department of Human Nutrition and Metabolomics, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland; (L.S.); (K.D.); (E.S.); (V.H.)
| | - Monika Kulaszyńska
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland;
| | - Joanna Sołek-Pastuszka
- Department of Anaesthesiology and Intensive Therapy, Pomeranian Medical University in Szczecin, Unii Lubelskiej 1, 72-252 Szczecin, Poland;
| | - Karolina Skonieczna-Żydecka
- Department of Biochemical Science, Pomeranian Medical University in Szczecin, Broniewskiego 24, 71-460 Szczecin, Poland;
- Correspondence:
| |
Collapse
|
8
|
Distribution and Associated Factors of Hepatic Iron-A Population-Based Imaging Study. Metabolites 2021; 11:metabo11120871. [PMID: 34940629 PMCID: PMC8705957 DOI: 10.3390/metabo11120871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 12/09/2021] [Accepted: 12/11/2021] [Indexed: 11/17/2022] Open
Abstract
Hepatic iron overload can cause severe organ damage; therefore, an early diagnosis and the identification of potential risk factors is crucial. We aimed to investigate the sex-specific distribution of hepatic iron content (HIC) in a population-based cohort and identify relevant associated factors from a panel of markers. We analyzed N = 353 participants from a cross-sectional sample (KORA FF4) who underwent whole-body magnetic resonance imaging. HIC was assessed by single-voxel spectroscopy with a high-speed T2-corrected multi-echo technique. A large panel of markers, including anthropometric, genetic, and laboratory values, as well as behavioral risk factors were assessed. Relevant factors associated with HIC were identified by variable selection based on LASSO regression with bootstrap resampling. HIC in the study sample (mean age at examination: 56.0 years, 58.4% men) was significantly lower in women (mean ± SD: 39.2 ± 4.1 s-1) than in men (41.8 ± 4.7 s-1, p < 0.001). Relevant factors associated with HIC were HbA1c as well as prediabetes for men and visceral adipose tissue as well as age for women. Hepatic fat, alcohol consumption, and genetic risk score for iron levels were associated with HIC in both sexes. In conclusion, there are sex-specific associations of HIC with markers of body composition, glucose metabolism, and alcohol consumption.
Collapse
|
9
|
Baas FS, Rishi G, Swinkels DW, Subramaniam VN. Genetic Diagnosis in Hereditary Hemochromatosis: Discovering and Understanding the Biological Relevance of Variants. Clin Chem 2021; 67:1324-1341. [PMID: 34402502 DOI: 10.1093/clinchem/hvab130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/23/2021] [Indexed: 11/13/2022]
Abstract
BACKGROUND Hereditary hemochromatosis (HH) is a genetic disease, leading to iron accumulation and possible organ damage. Patients are usually homozygous for p. Cys282Tyr in the homeostatic iron regulator gene but may have mutations in other genes involved in the regulation of iron. Next-generation sequencing is increasingly being utilized for the diagnosis of patients, leading to the discovery of novel genetic variants. The clinical significance of these variants is often unknown. CONTENT Determining the pathogenicity of such variants of unknown significance is important for diagnostics and genetic counseling. Predictions can be made using in silico computational tools and population data, but additional evidence is required for a conclusive pathogenicity classification. Genetic disease models, such as in vitro models using cellular overexpression, induced pluripotent stem cells or organoids, and in vivo models using mice or zebrafish all have their own challenges and opportunities when used to model HH and other iron disorders. Recent developments in gene-editing technologies are transforming the field of genetic disease modeling. SUMMARY In summary, this review addresses methods and developments regarding the discovery and classification of genetic variants, from in silico tools to in vitro and in vivo models, and presents them in the context of HH. It also explores recent gene-editing developments and how they can be applied to the discussed models of genetic disease.
Collapse
Affiliation(s)
- Floor S Baas
- Translational Metabolic Laboratory (TML 831), Radboudumc, Nijmegen, the Netherlands.,Hepatogenomics Research Group, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Gautam Rishi
- Hepatogenomics Research Group, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Dorine W Swinkels
- Translational Metabolic Laboratory (TML 831), Radboudumc, Nijmegen, the Netherlands
| | - V Nathan Subramaniam
- Hepatogenomics Research Group, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| |
Collapse
|
10
|
Zeitoun T, Dehghan Noudeh N, Garcia-Bailo B, El-Sohemy A. Genetics of Iron Metabolism and Premenstrual Symptoms: A Mendelian Randomization Study. J Nutr 2021; 151:1747-1754. [PMID: 33758941 DOI: 10.1093/jn/nxab048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/16/2021] [Accepted: 02/10/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Many women of reproductive age experience adverse psychological and physiological premenstrual symptoms. These symptoms may last for most of the reproductive years and can negatively affect the quality of life of many women. Some studies have examined the role of micronutrients in premenstrual symptoms, but the research on iron has been limited. OBJECTIVES The objective of this study was to evaluate the effects of genetic predictors of iron overload and low iron status on premenstrual symptoms using Mendelian randomization. METHODS We examined 254 White females aged 20-29 y from the Toronto Nutrigenomics and Health Study. DNA was isolated from peripheral white blood cells and genotyped for the homeostatic regulatory iron gene (HFE; rs1800562 and rs1799945), transmembrane protease serine 6 (TMPRSS6; rs482026), transferrin receptor 2 (TFR2; rs3811647), and transferrin (TF; rs738584) polymorphisms. Risk of iron overload or low iron status was determined based on combined genotypes. Binomial logistic regressions were carried out to examine the association between genetic risk of iron overload or low iron status and the presence of premenstrual symptoms. RESULTS Compared with participants with typical risk of iron overload, those with an elevated risk of iron overload were less likely to experience premenstrual symptoms of confusion (OR: 0.13; 95% CI: 0.02, 1.00), headaches (OR: 0.28; 95% CI: 0.08, 0.98), and nausea (OR: 0.13; 95% CI: 0.02, 0.99) after adjusting for BMI, age, and vitamin C and calcium intake. No associations were seen with the other symptoms. There were also no associations between low iron status genotypes and premenstrual symptoms. CONCLUSIONS This Mendelian randomization study demonstrates that women with an elevated risk of iron overload may have a lower risk of experiencing some premenstrual symptoms (headache, confusion, and nausea), suggesting that iron status could impact the risk of certain premenstrual symptoms.
Collapse
Affiliation(s)
- Tara Zeitoun
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Negar Dehghan Noudeh
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Bibiana Garcia-Bailo
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Ahmed El-Sohemy
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
11
|
Bitaraf Sani M, Zare Harofte J, Banabazi MH, Esmaeilkhanian S, Shafei Naderi A, Salim N, Teimoori A, Bitaraf A, Zadehrahmani M, Burger PA, Landi V, Silawi M, Taghipour Sheshdeh A, Faghihi MA. Genomic prediction for growth using a low-density SNP panel in dromedary camels. Sci Rep 2021; 11:7675. [PMID: 33828208 PMCID: PMC8027435 DOI: 10.1038/s41598-021-87296-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 03/26/2021] [Indexed: 11/29/2022] Open
Abstract
For thousands of years, camels have produced meat, milk, and fiber in harsh desert conditions. For a sustainable development to provide protein resources from desert areas, it is necessary to pay attention to genetic improvement in camel breeding. By using genotyping-by-sequencing (GBS) method we produced over 14,500 genome wide markers to conduct a genome- wide association study (GWAS) for investigating the birth weight, daily gain, and body weight of 96 dromedaries in the Iranian central desert. A total of 99 SNPs were associated with birth weight, daily gain, and body weight (p-value < 0.002). Genomic breeding values (GEBVs) were estimated with the BGLR package using (i) all 14,522 SNPs and (ii) the 99 SNPs by GWAS. Twenty-eight SNPs were associated with birth weight, daily gain, and body weight (p-value < 0.001). Annotation of the genomic region (s) within ± 100 kb of the associated SNPs facilitated prediction of 36 candidate genes. The accuracy of GEBVs was more than 0.65 based on all 14,522 SNPs, but the regression coefficients for birth weight, daily gain, and body weight were 0.39, 0.20, and 0.23, respectively. Because of low sample size, the GEBVs were predicted using the associated SNPs from GWAS. The accuracy of GEBVs based on the 99 associated SNPs was 0.62, 0.82, and 0.57 for birth weight, daily gain, and body weight. This report is the first GWAS using GBS on dromedary camels and identifies markers associated with growth traits that could help to plan breeding program to genetic improvement. Further researches using larger sample size and collaboration of the camel farmers and more profound understanding will permit verification of the associated SNPs identified in this project. The preliminary results of study show that genomic selection could be the appropriate way to genetic improvement of body weight in dromedary camels, which is challenging due to a long generation interval, seasonal reproduction, and lack of records and pedigrees.
Collapse
Affiliation(s)
- Morteza Bitaraf Sani
- Animal Science Research Department, Yazd Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education & Extension Organization (AREEO), 8915813155 Yazd, Iran
| | - Javad Zare Harofte
- Animal Science Research Department, Yazd Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education & Extension Organization (AREEO), 8915813155 Yazd, Iran
| | - Mohammad Hossein Banabazi
- Department of Biotechnology, Animal Science Research Institute of IRAN (ASRI), Agricultural Research, Education & Extension Organization (AREEO), 3146618361 Karaj, Iran
| | - Saeid Esmaeilkhanian
- Department of Biotechnology, Animal Science Research Institute of IRAN (ASRI), Agricultural Research, Education and Extension Organization (AREEO), 3146618361 Karaj, Iran
| | - Ali Shafei Naderi
- Animal Science Research Department, Yazd Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education & Extension Organization (AREEO), 8915813155 Yazd, Iran
| | - Nader Salim
- Organization of Agriculture - Jahad -Yazd, Ministry of Agriculture-Jahad, 8916713449 Yazd, Iran
| | - Abbas Teimoori
- Organization of Agriculture - Jahad -Yazd, Ministry of Agriculture-Jahad, 8916713449 Yazd, Iran
| | - Ahmad Bitaraf
- Animal Science Research Department, Yazd Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education & Extension Organization (AREEO), 8915813155 Yazd, Iran
| | | | - Pamela Anna Burger
- Research Institute of Wildlife Ecology, Vetmeduni Vienna, 1160 Vienna, Austria
| | - Vincenzo Landi
- Departement of Veterinary Medicine, Università Di Bari “Aldo Moro”, Bari, Italy
| | - Mohammad Silawi
- Persian BayanGene Research and Training Center, 7134767617 Shiraz, Iran
| | | | - Mohammad Ali Faghihi
- Persian BayanGene Research and Training Center, 7134767617 Shiraz, Iran
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL 33136 USA
| |
Collapse
|
12
|
Anderson GJ, Bardou-Jacquet E. Revisiting hemochromatosis: genetic vs. phenotypic manifestations. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:731. [PMID: 33987429 PMCID: PMC8106074 DOI: 10.21037/atm-20-5512] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Iron overload disorders represent an important class of human diseases. Of the primary iron overload conditions, by far the most common and best studied is HFE-related hemochromatosis, which results from homozygosity for a mutation leading to the C282Y substitution in the HFE protein. This disease is characterized by reduced expression of the iron-regulatory hormone hepcidin, leading to increased dietary iron absorption and iron deposition in multiple tissues including the liver, pancreas, joints, heart and pituitary. The phenotype of HFE-related hemochromatosis is quite variable, with some individuals showing little or no evidence of increased body iron, yet others showing severe iron loading, tissue damage and clinical sequelae. The majority of genetically predisposed individuals show at least some evidence of iron loading (increased transferrin saturation and serum ferritin), but a minority show clinical symptoms and severe consequences are rare. Thus, the disorder has a high biochemical penetrance, but a low clinical prevalence. Nevertheless, it is such a common condition in Caucasian populations (1:100–200) that it remains an important clinical entity. The phenotypic variability can largely be explained by a range of environmental, genetic and physiological factors. Men are far more likely to manifest significant disease than women, with the latter losing iron through menstrual blood loss and childbirth. Other forms of blood loss, immune system influences, the amount of bioavailable iron in the diet and lifestyle factors such as high alcohol intake can also contribute to iron loading and disease expression. Polymorphisms in a range of genes have been linked to variations in body iron levels, both in the general population and in hemochromatosis. Some of the genes identified play well known roles in iron homeostasis, yet others are novel. Other factors, including both co-morbidities and genetic polymorphisms, do not affect iron levels per se, but determine the propensity for tissue pathology.
Collapse
Affiliation(s)
- Gregory J Anderson
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute and School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Edouard Bardou-Jacquet
- Liver Disease Department, University of Rennes and French Reference Center for Hemochromatosis and Iron Metabolism Disease, Rennes, France
| |
Collapse
|
13
|
Piperno A, Pelucchi S, Mariani R. Inherited iron overload disorders. Transl Gastroenterol Hepatol 2020; 5:25. [PMID: 32258529 DOI: 10.21037/tgh.2019.11.15] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022] Open
Abstract
Hereditary iron overload includes several disorders characterized by iron accumulation in tissues, organs, or even single cells or subcellular compartments. They are determined by mutations in genes directly involved in hepcidin regulation, cellular iron uptake, management and export, iron transport and storage. Systemic forms are characterized by increased serum ferritin with or without high transferrin saturation, and with or without functional iron deficient anemia. Hemochromatosis includes five different genetic forms all characterized by high transferrin saturation and serum ferritin, but with different penetrance and expression. Mutations in HFE, HFE2, HAMP and TFR2 lead to inadequate or severely reduced hepcidin synthesis that, in turn, induces increased intestinal iron absorption and macrophage iron release leading to tissue iron overload. The severity of hepcidin down-regulation defines the severity of iron overload and clinical complications. Hemochromatosis type 4 is caused by dominant gain-of-function mutations of ferroportin preventing hepcidin-ferroportin binding and leading to hepcidin resistance. Ferroportin disease is due to loss-of-function mutation of SLC40A1 that impairs the iron export efficiency of ferroportin, causes iron retention in reticuloendothelial cell and hyperferritinemia with normal transferrin saturation. Aceruloplasminemia is caused by defective iron release from storage and lead to mild microcytic anemia, low serum iron, and iron retention in several organs including the brain, causing severe neurological manifestations. Atransferrinemia and DMT1 deficiency are characterized by iron deficient erythropoiesis, severe microcytic anemia with high transferrin saturation and parenchymal iron overload due to secondary hepcidin suppression. Diagnosis of the different forms of hereditary iron overload disorders involves a sequential strategy that combines clinical, imaging, biochemical, and genetic data. Management of iron overload relies on two main therapies: blood removal and iron chelators. Specific therapeutic options are indicated in patients with atransferrinemia, DMT1 deficiency and aceruloplasminemia.
Collapse
Affiliation(s)
- Alberto Piperno
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Centre for Rare Diseases, Disorder of Iron Metabolism, ASST-Monza, S. Gerardo Hospital, Monza, Italy
| | - Sara Pelucchi
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Raffaella Mariani
- Centre for Rare Diseases, Disorder of Iron Metabolism, ASST-Monza, S. Gerardo Hospital, Monza, Italy
| |
Collapse
|
14
|
An P, Wang J, Wang H, Jiang L, Wang J, Min J, Wang F. Gnpat does not play an essential role in systemic iron homeostasis in murine model. J Cell Mol Med 2020; 24:4118-4126. [PMID: 32108988 PMCID: PMC7171407 DOI: 10.1111/jcmm.15068] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 12/13/2022] Open
Abstract
The GNPAT variant rs11558492 (p.D519G) was identified as a novel genetic factor that modifies the iron‐overload phenotype in homozygous carriers of the HFE p.C282Y variant. However, the reported effects of the GNPAT p.D519G variant vary among study populations. Here, we investigated the role of GNPAT in iron metabolism using Gnpat‐knockout (Gnpat−/−), Gnpat/Hfe double‐knockout (Gnpat−/−Hfe−/− or DKO) mice and hepatocyte‐specific Gnpat‐knockout mice (Gnpatfl/fl;Alb‐Cre). Our analysis revealed no significant difference between wild‐type (Gnpat+/+) and Gnpat−/− mice, between Hfe−/− and DKO mice, or between Gnpatfl/fl and Gnpatfl/fl;Alb‐Cre with respect to serum iron and tissue iron. In addition, the expression of hepcidin was not affected by deleting Gnpat expression in the presence or absence of Hfe. Feeding Gnpat−/− and DKO mice a high‐iron diet had no effect on tissue iron levels compared with wild‐type and Hfe−/− mice, respectively. Gnpat knockdown in primary hepatocytes from wild‐type or Hfe−/− mice did not alter hepcidin expression, but it repressed BMP6‐induced hepcidin expression. Taken together, these results support the hypothesis that deleting Gnpat expression has no effect on either systemic iron metabolism or the iron‐overload phenotype that develops in Hfe−/− mice, suggesting that GNPAT does not directly mediate iron homeostasis under normal or high‐iron dietary conditions.
Collapse
Affiliation(s)
- Peng An
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China
| | - Jiaming Wang
- School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hao Wang
- Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Li Jiang
- School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jia Wang
- Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
| | - Junxia Min
- School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China
| | - Fudi Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.,School of Public Health, The First Affiliated Hospital, Institute of Translational Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Zhejiang University, Hangzhou, China.,Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
15
|
The Prevalence of Insomnia and the Link between Iron Metabolism Genes Polymorphisms, TF rs1049296 C>T, TF rs3811647 G>A, TFR rs7385804 A>C, HAMP rs10421768 A>G and Sleep Disorders in Polish Individuals with ASD. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17020400. [PMID: 31936202 PMCID: PMC7014185 DOI: 10.3390/ijerph17020400] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 12/31/2019] [Accepted: 01/06/2020] [Indexed: 02/07/2023]
Abstract
Iron deficiency have been found to be linked to sleep disorders. Both genetic and environmental factors are risk factors for skewed iron metabolism, thus sleep disruptions in autism spectrum disorders (ASD). The aim of our study was to assess the prevalence of single nucleotide polymorphisms (SNPs) within transferrin gene (TF) rs1049296 C>T, rs3811647 G>A, transferrin receptor gene (TFR) rs7385804 A>C, and hepcidin antimicrobial peptide gene (HAMP) rs10421768 A>G in Polish individuals with ASD and their impact on sleep pattern. There were 61 Caucasian participants with ASD and 57 non-ASD controls enrolled. Genotypes were determined by real-time PCR using TaqMan SNP assays. The Athens Insomnia Scale (AIS) was used to identify sleep disruptions. There were 32 cases (57.14%) with insomnia identified. In the ASD group, the defined counts of genotypes were as follows: TF rs1049296, C/C n = 41 and C/T n = 20; TF rs3811647, G/G n = 22, G/A n = 34, and A/A n = 5; TFR rs7385804, A/A n = 22, A/C n = 29, and C/C n = 10; and HAMP rs10421768, A/A n = 34, A/G n = 23, and G/G n = 4. There were no homozygous carriers of the TF rs1049296 C>T minor allele in the ASD group. All analyzed SNPs were not found to be linked to insomnia. The investigated polymorphisms are not predictors of sleep disorders in the analyzed cohort of individuals with ASD.
Collapse
|
16
|
A Genome-Wide Association Study Identifies Quantitative Trait Loci Affecting Hematological Traits in Camelus bactrianus. Animals (Basel) 2020; 10:ani10010096. [PMID: 31936121 PMCID: PMC7023321 DOI: 10.3390/ani10010096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/06/2020] [Accepted: 01/06/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Bactrian camels can adapt to harsh natural environments. This unique tolerance of camels is tightly linked to their hematological traits, which are related to their immune, metabolic, and disease status. Therefore, mapping genomic regions that affect blood cell traits can help identify genomic characteristics that can be used as biomarkers of immune, metabolic, and disease states. This knowledge will further our understanding of the camel’s tolerance mechanisms. Abstract Bactrian camels (Camelus bactrianus) are one of the few large livestock species that can survive in the Gobi Desert. Animal immunity and disease resistance are related to hematological traits, which are also associated with tolerance observed in Bactrian camels. However, no genome-wide association studies have examined the genetic mechanism of the immune capability of Bactrian camels. In the present study, we used genotyping-by-sequencing data generated from 366 Bactrian camel accessions to perform a genome-wide association study for 17 hematological traits. Of the 256,616 single-nucleotide polymorphisms (SNPs) obtained, 1,635 trait–SNP associations were among the top quantitative trait locus candidates. Lastly, 664 candidate genes associated with 13 blood traits were identified. The most significant were ZNF772, MTX2, ESRRG, MEI4, IL11, FRMPD4, GABPA, NTF4, CRYBG3, ENPP5, COL16A1, and CD207. The results of our genome-wide association study provide a list of significant SNPs and candidate genes, which offer valuable information for further dissection of the molecular mechanisms that regulate the camel’s hematological traits to ultimately reveal their tolerance mechanisms.
Collapse
|
17
|
Saraf SL, Gordeuk VR. Iron. ESSENTIAL AND TOXIC TRACE ELEMENTS AND VITAMINS IN HUMAN HEALTH 2020:83-102. [DOI: 10.1016/b978-0-12-805378-2.00006-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
18
|
Horwitz T, Lam K, Chen Y, Xia Y, Liu C. A decade in psychiatric GWAS research. Mol Psychiatry 2019; 24:378-389. [PMID: 29942042 PMCID: PMC6372350 DOI: 10.1038/s41380-018-0055-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 12/29/2017] [Accepted: 02/19/2018] [Indexed: 02/08/2023]
Abstract
After more than 10 years of accumulated efforts, genome-wide association studies (GWAS) have led to many findings, most of which have been deposited into the GWAS Catalog. Between GWAS's inception and March 2017, the GWAS Catalog has collected 2429 studies, 1818 phenotypes, and 28,462 associated SNPs. We reclassified the psychology-related phenotypes into 217 reclassified phenotypes, which accounted for 514 studies and 7052 SNPs. In total, 1223 of the SNPs reached genome-wide significance. Of these, 147 were replicated for the same psychological trait in different studies. Another 305 SNPs were replicated within one original study. The SNPs rs2075650 and rs4420638 were linked to the most replications within a single reclassified phenotype or very similar reclassified phenotypes; both were associated with Alzheimer's disease (AD). Schizophrenia was associated with 74 within-phenotype SNPs reported in independents studies. Alzheimer's disease and schizophrenia were both linked to some physical phenotypes, including cholesterol and body mass index, through common GWAS signals. Alzheimer's disease also shared risk SNPs with age-related phenotypes such as age-related macular degeneration and longevity. Smoking-related SNPs were linked to lung cancer and respiratory function. Alcohol-related SNPs were associated with cardiovascular and digestive system phenotypes and disorders. Two separate studies also identified a shared risk SNP for bipolar disorder and educational attainment. This review revealed a list of reproducible SNPs worthy of future functional investigation. Additionally, by identifying SNPs associated with multiple phenotypes, we illustrated the importance of studying the relationships among phenotypes to resolve the nature of their causal links. The insights within this review will hopefully pave the way for future evidence-based genetic studies.
Collapse
Affiliation(s)
- Tanya Horwitz
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Katie Lam
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA
| | - Yu Chen
- School of Life Science, Central South University, Changsha, China
| | - Yan Xia
- School of Life Science, Central South University, Changsha, China
| | - Chunyu Liu
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, USA.
- School of Life Science, Central South University, Changsha, China.
- School of Psychology, Shaanxi Normal University, Xi'an, China.
| |
Collapse
|
19
|
A gene-based recessive diplotype exome scan discovers FGF6, a novel hepcidin-regulating iron-metabolism gene. Blood 2019; 133:1888-1898. [PMID: 30814063 DOI: 10.1182/blood-2018-10-879585] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 02/20/2019] [Indexed: 12/14/2022] Open
Abstract
Standard analyses applied to genome-wide association data are well designed to detect additive effects of moderate strength. However, the power for standard genome-wide association study (GWAS) analyses to identify effects from recessive diplotypes is not typically high. We proposed and conducted a gene-based compound heterozygosity test to reveal additional genes underlying complex diseases. With this approach applied to iron overload, a strong association signal was identified between the fibroblast growth factor-encoding gene, FGF6, and hemochromatosis in the central Wisconsin population. Functional validation showed that fibroblast growth factor 6 protein (FGF-6) regulates iron homeostasis and induces transcriptional regulation of hepcidin. Moreover, specific identified FGF6 variants differentially impact iron metabolism. In addition, FGF6 downregulation correlated with iron-metabolism dysfunction in systemic sclerosis and cancer cells. Using the recessive diplotype approach revealed a novel susceptibility hemochromatosis gene and has extended our understanding of the mechanisms involved in iron metabolism.
Collapse
|
20
|
Reduced phenotypic expression in genetic hemochromatosis with time: Role of exposure to non-genetic modifiers. J Hepatol 2019; 70:118-125. [PMID: 30244162 DOI: 10.1016/j.jhep.2018.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/24/2018] [Accepted: 09/04/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND & AIMS Genetic hemochromatosis is mainly related to the homozygous p.Cys282Tyr (C282Y) mutation in the HFE gene, which causes hepcidin deficiency. Its low penetrance suggests the involvement of cofactors that modulate its expression. We aimed to describe the evolution of disease presentation and of non-genetic factors liable to impact hepcidin production in the long term. METHODS Clinical symptoms, markers of iron load, and risk factors according to the year of diagnosis were recorded over 30 years in a cohort of adult C282Y homozygotes. A total of 2,050 patients (1,460 probands [804 males and 656 females] and 542 relatives [244 males and 346 females]) were studied. RESULTS Over time: (i) the proband-to-relative ratio remained roughly stable; (ii) the gender ratio tended towards equilibrium among probands; (iii) age at diagnosis did not change among males and increased among females; (iv) the frequency of diabetes and hepatic fibrosis steadily decreased while that of chronic fatigue and distal joint symptoms remained stable; (v) transferrin saturation, serum ferritin and the amount of iron removed decreased; and (vi) the prevalence of excessive alcohol consumption decreased while that of patients who were overweight increased. Tobacco smoking was associated with increased transferrin saturation. CONCLUSION Genetic testing did not alter the age at diagnosis, which contrasts with the dramatic decrease in iron load in both genders. Tobacco smoking could be involved in the extent of iron loading. Besides HFE testing, which enables the diagnosis of minor forms of the disease, the reduction of alcohol consumption and the increased frequency of overweight patients may have played a role in the decreased long-term iron load, as these factors are likely to improve hepcidin production. LAY SUMMARY Genetic hemochromatosis is an inherited disorder that leads to progressive iron overload in the body. It results in chronic fatigue and in potential liver (cirrhosis), pancreas (diabetes) and joint (arthritis) damage in adulthood. The present study showed that tobacco smoking may aggravate iron loading, but that hemochromatosis has become less and less severe over the last 30 years despite patients being older at diagnosis, likely because of the protective effects of lower alcohol consumption and of increased weight in the French population.
Collapse
|
21
|
Loréal O, Cavey T, Robin F, Kenawi M, Guggenbuhl P, Brissot P. Iron as a Therapeutic Target in HFE-Related Hemochromatosis: Usual and Novel Aspects. Pharmaceuticals (Basel) 2018; 11:ph11040131. [PMID: 30486249 PMCID: PMC6315470 DOI: 10.3390/ph11040131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/16/2018] [Accepted: 11/19/2018] [Indexed: 12/13/2022] Open
Abstract
Genetic hemochromatosis is an iron overload disease that is mainly related to the C282Y mutation in the HFE gene. This gene controls the expression of hepcidin, a peptide secreted in plasma by the liver and regulates systemic iron distribution. Homozygous C282Y mutation induces hepcidin deficiency, leading to increased circulating transferrin saturation, and ultimately, iron accumulation in organs such as the liver, pancreas, heart, and bone. Iron in excess may induce or favor the development of complications such as cirrhosis, liver cancer, diabetes, heart failure, hypogonadism, but also complaints such as asthenia and disabling arthritis. Iron depletive treatment mainly consists of venesections that permit the removal of iron contained in red blood cells and the subsequent mobilization of stored iron in order to synthesize hemoglobin for new erythrocytes. It is highly efficient in removing excess iron and preventing most of the complications associated with excess iron in the body. However, this treatment does not target the biological mechanisms involved in the iron metabolism disturbance. New treatments based on the increase of hepcidin levels, by using hepcidin mimetics or inducers, or inhibitors of the iron export activity of ferroportin protein that is the target of hepcidin, if devoid of significant secondary effects, should be useful to better control iron parameters and symptoms, such as arthritis.
Collapse
Affiliation(s)
- Olivier Loréal
- INSERM, Univ Rennes, INRA, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), F-35033 Rennes, France.
| | - Thibault Cavey
- INSERM, Univ Rennes, INRA, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), F-35033 Rennes, France.
| | - François Robin
- INSERM, Univ Rennes, INRA, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), F-35033 Rennes, France.
| | - Moussa Kenawi
- INSERM, Univ Rennes, INRA, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), F-35033 Rennes, France.
| | - Pascal Guggenbuhl
- INSERM, Univ Rennes, INRA, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), F-35033 Rennes, France.
| | - Pierre Brissot
- INSERM, Univ Rennes, INRA, CHU Rennes, Institut NUMECAN (Nutrition Metabolisms and Cancer), F-35033 Rennes, France.
| |
Collapse
|
22
|
Abstract
Dietary iron absorption and systemic iron traffic are tightly controlled by hepcidin, a liver-derived peptide hormone. Hepcidin inhibits iron entry into plasma by binding to and inactivating the iron exporter ferroportin in target cells, such as duodenal enterocytes and tissue macrophages. Hepcidin is induced in response to increased body iron stores to inhibit further iron absorption and prevent iron overload. The mechanism involves the BMP/SMAD signaling pathway, which triggers transcriptional hepcidin induction. Inactivating mutations in components of this pathway cause hepcidin deficiency, which allows inappropriately increased iron absorption and efflux into the bloodstream. This leads to hereditary hemochromatosis (HH), a genetically heterogenous autosomal recessive disorder of iron metabolism characterized by gradual buildup of unshielded non-transferrin bound iron (NTBI) in plasma and excessive iron deposition in tissue parenchymal cells. The predominant HH form is linked to mutations in the HFE gene and constitutes the most frequent genetic disorder in Caucasians. Other, more severe and rare variants are caused by inactivating mutations in HJV (hemojuvelin), HAMP (hepcidin) or TFR2 (transferrin receptor 2). Mutations in SLC40A1 (ferroportin) that cause hepcidin resistance recapitulate the biochemical phenotype of HH. However, ferroportin-related hemochromatosis is transmitted in an autosomal dominant manner. Loss-of-function ferroportin mutations lead to ferroportin disease, characterized by iron overload in macrophages and low transferrin saturation. Aceruloplasminemia and atransferrinemia are further inherited disorders of iron overload caused by deficiency in ceruloplasmin or transferrin, the plasma ferroxidase and iron carrier, respectively.
Collapse
Affiliation(s)
- Kostas Pantopoulos
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, QC, Canada.,Department of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
23
|
Association of SNPs in transferrin and transferrin receptor genes with blood iron levels in human. Leg Med (Tokyo) 2018; 36:17-20. [PMID: 30312834 DOI: 10.1016/j.legalmed.2018.09.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 09/10/2018] [Accepted: 09/30/2018] [Indexed: 11/22/2022]
Abstract
Iron is bound to mobile transferrin (TF) and ferritin in blood. TF receptors (TFRC and TFR2) regulate intracellular iron by delivering iron from TF into the cytoplasm. In this study, we examined the effects of 10 single nucleotide polymorphisms (SNPs) in each of the genes for TF and TF receptors on blood iron concentrations in Japanese subjects. Blood iron levels were determined by microwave plasma-atomic emission spectrometry and the SNPs were analyzed by polymerase chain reaction followed by restriction fragment length polymorphism analysis. Blood iron levels in males were significantly higher than those in females. Therefore, the analysis was performed only in males. Blood iron concentrations did not correlate with age and postmortem intervals in males. Among the 10 SNPs in TF, TFRC, and TFR2 genes, significant associations were observed between TF genotypes (rs12769) and male iron concentrations. Individuals with genotype GG in rs12769 had significantly higher blood iron concentrations than those with GA. Previous studies have shown the association between high tissue iron concentrations and disease, liver iron levels are higher in infants dying from sudden infant death syndrome and decreased blood iron concentrations were observed in critically ill children. Therefore, rs12769 in TF might be related to diseases and mortality risk.
Collapse
|
24
|
Single-nucleotide rs738409 polymorphisms in the PNPLA3 gene are strongly associated with alcoholic liver disease in Han Chinese males. Hepatol Int 2018; 12:429-437. [PMID: 30132178 DOI: 10.1007/s12072-018-9889-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/21/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Alcoholic liver disease (ALD) is a chronic liver disorder caused by the consumption of large amounts of alcohol. Genome-wide association studies have recently confirmed that polymorphisms in PNPLA3 predispose individuals to ALD and have identified risk loci of MBOAT7 and TM6SF2 in persons of European descent. However, the association with alcoholic liver damage has not been evaluated thus far in a Han Chinese population. METHODS We performed a large case-control multicenter study of 507 ALD patients and 645 ethnically matched healthy controls. Five SNPs were genotyped using matrix-assisted laser desorption/ionization time of flight mass spectrometry, and association analysis was performed using PLINK 1.07 software. RESULTS The rs738409 in the PNPLA3 gene was found to be significantly associated with ALD in allele and genotype frequencies (p = 6.25 × 10-14 and p = 9.05 × 10-13). The frequencies of the risk allele G in rs738409 were notably higher in ALD compared to controls (odds ratio = 1.93, 95% confidence interval = 1.63-2.28). The current study showed that the genotype frequencies of three genetic models were also statistically significant (p = 1.07 × 10-13, p = 9.3 × 10-8, and p = 1.57 × 10-12). Additionally, the G-allele of rs738409 was associated with a variety of clinical manifestations such as elevated alanine aminotransferase (ALT), aspartate aminotransferase (AST), γ-glutamyl transpeptidase (GGT), and mean corpuscular volume (MCV) in the patients with ALD. CONCLUSION In a Han Chinese population, the present study confirmed that PNPLA3 polymorphism rs738409 was more likely to influence the susceptibility to ALD. However, no statistically significant differences for the allele and genotype frequencies of rs626283, rs641738 in MBOAT7, rs10401969 in SUGP1 and rs58542926 in TM6SF2 were found between ALD patients and healthy controls.
Collapse
|
25
|
Abstract
Haemochromatosis is defined as systemic iron overload of genetic origin, caused by a reduction in the concentration of the iron regulatory hormone hepcidin, or a reduction in hepcidin-ferroportin binding. Hepcidin regulates the activity of ferroportin, which is the only identified cellular iron exporter. The most common form of haemochromatosis is due to homozygous mutations (specifically, the C282Y mutation) in HFE, which encodes hereditary haemochromatosis protein. Non-HFE forms of haemochromatosis due to mutations in HAMP, HJV or TFR2 are much rarer. Mutations in SLC40A1 (also known as FPN1; encoding ferroportin) that prevent hepcidin-ferroportin binding also cause haemochromatosis. Cellular iron excess in HFE and non-HFE forms of haemochromatosis is caused by increased concentrations of plasma iron, which can lead to the accumulation of iron in parenchymal cells, particularly hepatocytes, pancreatic cells and cardiomyocytes. Diagnosis is noninvasive and includes clinical examination, assessment of plasma iron parameters, imaging and genetic testing. The mainstay therapy is phlebotomy, although iron chelation can be used in some patients. Hepcidin supplementation might be an innovative future approach.
Collapse
Affiliation(s)
- Pierre Brissot
- INSERM, Univ. Rennes, INRA, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| | - Antonello Pietrangelo
- Division of Internal Medicine 2 and Center for Haemochromatosis, University Hospital of Modena, Modena, Italy
| | - Paul C. Adams
- Department of Medicine, University of Western Ontario, London, Ontario, Canada
| | - Barbara de Graaff
- Menzies Institute for Medical Research, University of Tasmania, Tasmania, Australia
| | | | - Olivier Loréal
- INSERM, Univ. Rennes, INRA, Institut NUMECAN (Nutrition Metabolisms and Cancer) UMR_A 1341, UMR_S 1241, F-35000 Rennes, France
| |
Collapse
|
26
|
Bardou-Jacquet E, Lainé F, Guggenbuhl P, Morcet J, Jézéquel C, Guyader D, Moirand R, Deugnier Y. Worse Outcomes of Patients With HFE Hemochromatosis With Persistent Increases in Transferrin Saturation During Maintenance Therapy. Clin Gastroenterol Hepatol 2017; 15:1620-1627. [PMID: 28111337 DOI: 10.1016/j.cgh.2016.12.039] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Even if patients with hemochromatosis maintain low serum levels of ferritin, they still have an increased risk of general and joint symptoms, which reduce quality of life. This could be related to persistently increased transferrin saturation. We assessed whether duration of exposure to increased transferrin saturation during maintenance therapy is associated with more severe general and joint symptoms. METHODS We performed a longitudinal cohort study of 266 individuals homozygous for the C282Y substitution in HFE, seen at a tertiary reference center in Rennes, France, and followed for 3 or more years after initial iron removal. Serum ferritin and transferrin saturation were measured at the same time points; values were used to calculate duration of exposure to serum ferritin 50 μg/L or more (FRT50exp) and to determine transferrin saturation 50% or greater (SAT50exp). Clinical and biochemical follow-up data were recorded from log books completed during maintenance therapy. The primary outcome was change in general and joint symptoms, determined from answers to a self-administered questionnaire. RESULTS Patients were followed for 13.5 ± 5.9 years. FRT50exp (3.2 ± 3.5 years) and SAT50exp (4.5 ± 3.4 years) values correlated (r = 0.38; P < .0001), but each associated with different variables in multivariate analysis. We found independent associations, regardless of follow-up time, between SAT50exp ≥6 years and worsened joint symptoms (odds ratio [OR], 4.19; 95% confidence interval [CI], 1.88-9.31), and between SAT50exp ≥6 years and decreased athletic ability (OR, 2.35; 95% CI, 1.16-4.73). SAT50exp ≥8 years associated independently with decreased work ability (OR, 3.20; 95% CI, 1.40-7.30) and decreased libido (OR, 3.49; 95% CI, 1.56-7.80). CONCLUSIONS In a longitudinal study of patients treated for hemochromatosis, we associated duration of exposure to increased transferrin saturation (longer than 6 years) with more severe general and joint symptoms. Maintenance of serum levels of ferritin at 50 μg/L or less does not indicate control of transferrin saturation, so guidelines on the management of hemochromatosis require revision.
Collapse
Affiliation(s)
- Edouard Bardou-Jacquet
- CHU Rennes, Service des Maladies du Foie and Centre National de Référence des Surcharges en Fer Rares, Rennes, France; INSERM, CIC 1414, Rennes, France; University of Rennes 1, Faculty of Medicine, Rennes, France.
| | - Fabrice Lainé
- CHU Rennes, Service des Maladies du Foie and Centre National de Référence des Surcharges en Fer Rares, Rennes, France; INSERM, CIC 1414, Rennes, France
| | - Pascal Guggenbuhl
- University of Rennes 1, Faculty of Medicine, Rennes, France; CHU Rennes, Service de Rhumatologie, Rennes, France; INSERM UMR 991, Rennes, France
| | | | - Caroline Jézéquel
- CHU Rennes, Service des Maladies du Foie and Centre National de Référence des Surcharges en Fer Rares, Rennes, France; INSERM, CIC 1414, Rennes, France
| | - Dominique Guyader
- CHU Rennes, Service des Maladies du Foie and Centre National de Référence des Surcharges en Fer Rares, Rennes, France; University of Rennes 1, Faculty of Medicine, Rennes, France
| | - Romain Moirand
- CHU Rennes, Service des Maladies du Foie and Centre National de Référence des Surcharges en Fer Rares, Rennes, France; University of Rennes 1, Faculty of Medicine, Rennes, France
| | - Yves Deugnier
- CHU Rennes, Service des Maladies du Foie and Centre National de Référence des Surcharges en Fer Rares, Rennes, France; INSERM, CIC 1414, Rennes, France; University of Rennes 1, Faculty of Medicine, Rennes, France
| |
Collapse
|
27
|
Lucchini V. Nutrigenetics in practice: little is better than nothing. Curr Opin Food Sci 2017. [DOI: 10.1016/j.cofs.2017.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Hollerer I, Bachmann A, Muckenthaler MU. Pathophysiological consequences and benefits of HFE mutations: 20 years of research. Haematologica 2017; 102:809-817. [PMID: 28280078 PMCID: PMC5477599 DOI: 10.3324/haematol.2016.160432] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/01/2017] [Indexed: 12/15/2022] Open
Abstract
Mutations in the HFE (hemochromatosis) gene cause hereditary hemochromatosis, an iron overload disorder that is hallmarked by excessive accumulation of iron in parenchymal organs. The HFE mutation p.Cys282Tyr is pathologically most relevant and occurs in the Caucasian population with a carrier frequency of up to 1 in 8 in specific European regions. Despite this high prevalence, the mutation causes a clinically relevant phenotype only in a minority of cases. In this review, we summarize historical facts and recent research findings about hereditary hemochromatosis, and outline the pathological consequences of the associated gene defects. In addition, we discuss potential advantages of HFE mutations in asymptomatic carriers.
Collapse
Affiliation(s)
- Ina Hollerer
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Germany
| | | | - Martina U Muckenthaler
- Molecular Medicine Partnership Unit (MMPU), Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, University of Heidelberg, Germany
| |
Collapse
|
29
|
Stickel F, Moreno C, Hampe J, Morgan MY. The genetics of alcohol dependence and alcohol-related liver disease. J Hepatol 2017; 66:195-211. [PMID: 27575312 DOI: 10.1016/j.jhep.2016.08.011] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/15/2016] [Accepted: 08/16/2016] [Indexed: 12/19/2022]
Abstract
The susceptibility to developing alcohol dependence and significant alcohol-related liver injury is determined by a number of constitutional, environmental and genetic factors, although the nature and level of interplay between them remains unclear. The familiality and heritability of alcohol dependence is well-documented but, to date, no strong candidate genes conferring increased risk have emerged, although variants in alcohol dehydrogenase and acetaldehyde dehydrogenase have been shown to confer protection, predominantly in individuals of East Asian ancestry. Population contamination with confounders such as drug co-dependence and psychiatric and physical co-morbidity may explain the essentially negative genome-wide association studies in this disorder. The familiality and hereditability of alcohol-related cirrhosis is not as well-documented but three strong candidate genes PNPLA3, TM6SF2 and MBOAT7, have been identified. The mechanisms by which variants in these genes confer risk and the nature of the functional interplay between them remains to be determined but, when elucidated, will undoubtedly increase our understanding of the pathophysiology of this disease. The way in which this genetic information could potentially inform patient management has yet to be determined and tested.
Collapse
Affiliation(s)
- Felix Stickel
- Department of Gastroenterology and Hepatology, University Hospital of Zurich, Switzerland.
| | - Christophe Moreno
- Department of Gastroenterology, Hepatopancreatology and Digestive Oncology, CUB Hôpital Erasme, Université Libre de Bruxelles, Brussels, Belgium; Laboratory of Experimental Gastroenterology, Université Libre de Bruxelles, Brussels, Belgium
| | - Jochen Hampe
- Medical Department 1, University Hospital Dresden, TU Dresden, Germany
| | - Marsha Y Morgan
- UCL Institute for Liver & Digestive Health, Division of Medicine, Royal Free Campus, University College London, UK
| |
Collapse
|
30
|
Abstract
Haemochromatosis is now known to be an iron-storage disease with genetic heterogeneity but with a final common metabolic pathway resulting in inappropriately low production of the hormone hepcidin. This leads to increase in intestinal absorption and deposition of excessive amounts of iron in parenchymal cells which in turn results in eventual tissue damage and organ failure. A clinical enigma has been the variable clinical expression with some patients presenting with hepatic cirrhosis at a young age and others almost asymptomatic for life. Research is unravelling this puzzle by identifying environmental factors-especially alcohol consumption-and associated modifying genes that modulate phenotypic expression. A high index of suspicion is required for early diagnosis but this can lead to presymptomatic therapy and a normal life expectancy. Venesection (phlebotomy) therapy remains the mainstay of therapy, but alternative therapies are the subject of current research.
Collapse
Affiliation(s)
- Lawrie W Powell
- Centre for the Advancement of Clinical Research, Royal Brisbane and Women's Hospital, Brisbane, The University of Queensland, Brisbane, Australia.
| | - Rebecca C Seckington
- Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Yves Deugnier
- University Hospital and University of Rennes 1, Rennes, France
| |
Collapse
|
31
|
Pelucchi S, Galimberti S, Greni F, Rametta R, Mariani R, Pelloni I, Girelli D, Busti F, Ravasi G, Valsecchi MG, Valenti L, Piperno A. Proprotein convertase 7 rs236918 associated with liver fibrosis in Italian patients with HFE-related hemochromatosis. J Gastroenterol Hepatol 2016; 31:1342-8. [PMID: 26868056 DOI: 10.1111/jgh.13315] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/26/2016] [Accepted: 02/06/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIM p.Cys282Tyr homozygosity is the prevalent genotype in (HFE)-related Hereditary Hemochromatosis with low penetrance and variable expression. However, liver cirrhosis and hepatocellular carcinoma remain the main causes of mortality in these patients. Detection of genetic modifiers identifying patients at risk for liver damage would be relevant for their clinical management. We evaluated proprotein convertase 7 (PCSK7) rs236918 as genetic marker of risk of liver fibrosis in an Italian cohort of p.Cys282Tyr homozygotes. METHODS Liver fibrosis was histologically assessed by Ishak score. We evaluated PCSK7 alleles and genotypes frequencies according to single or grouped staging scores: absent/mild fibrosis (stage: 0-2), moderate (stage: 3-4), and severe fibrosis/cirrhosis (stage: 5-6). Single nucleotide polymorphism genotyping was performed by restriction fragment length polymorphism or Taqman 5'-nuclease assays. RESULTS The rs236918 allele C frequency increased from stages 0-2 to 5-6 (7.1% vs 13.6%, vs 21.9%, P = 0.003). The wild-type genotype was significantly more frequent in the absent/mild fibrosis group (54.2%) compared with only 17% in patients with severe fibrosis/cirrhosis. At univariate proportional odds model, patients with GC + CC genotypes were 2.77 times (P = 0.0018) more likely to have worse liver staging scores than wild-type patients. In the adjusted analysis, odds ratio was 2.37 (P = 0.0218), and 2.56 (P = 0.0233) when the analysis was restricted to males. An exploratory mediation analysis suggested a direct effect of genotype on severe fibrosis/cirrhosis (odds ratio = 3.11, P = 0.0157), and a mild non-significant indirect effect mediated through iron accounting for 28%. CONCLUSIONS These findings confirm that PCSK7 rs236918 C allele is a risk factor for cirrhosis development in Italian patients with HFE-Hemochromatosis.
Collapse
Affiliation(s)
- Sara Pelucchi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Stefania Galimberti
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Centre of Biostatistics for Clinical Epidemiology, University of Milano-Bicocca, Monza, Italy
| | - Federico Greni
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Raffaela Rametta
- Department of Medicine, Second Division of Gastroenterology, IRCCS, Ospedale Maggiore Policlinico, University of Milano, Milano, Italy
| | - Raffaella Mariani
- Centre for disorder of iron metabolism, S.Gerardo Hospital, Monza, Italy
| | - Irene Pelloni
- Centre for disorder of iron metabolism, S.Gerardo Hospital, Monza, Italy
| | - Domenico Girelli
- Department of Medicine Policlinico GB Rossi, University of Verona, Verona, Italy
| | - Fabiana Busti
- Department of Medicine Policlinico GB Rossi, University of Verona, Verona, Italy
| | - Giulia Ravasi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Maria Grazia Valsecchi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Centre of Biostatistics for Clinical Epidemiology, University of Milano-Bicocca, Monza, Italy
| | - Luca Valenti
- Department of Medicine, Second Division of Gastroenterology, IRCCS, Ospedale Maggiore Policlinico, University of Milano, Milano, Italy
| | - Alberto Piperno
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Centre for disorder of iron metabolism, S.Gerardo Hospital, Monza, Italy.,Consortium of Human Molecular Genetics, Monza, Italy
| |
Collapse
|
32
|
Badar S, Busti F, Ferrarini A, Xumerle L, Bozzini P, Capelli P, Pozzi-Mucelli R, Campostrini N, De Matteis G, Marin Vargas S, Giorgetti A, Delledonne M, Olivieri O, Girelli D. Identification of novel mutations in hemochromatosis genes by targeted next generation sequencing in Italian patients with unexplained iron overload. Am J Hematol 2016; 91:420-5. [PMID: 26799139 DOI: 10.1002/ajh.24304] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/08/2016] [Accepted: 01/13/2016] [Indexed: 12/14/2022]
Abstract
Hereditary hemochromatosis, one of the commonest genetic disorder in Caucasians, is mainly associated to homozygosity for the C282Y mutation in the HFE gene, which is highly prevalent (allele frequency up to near 10% in Northern Europe) and easily detectable through a widely available "first level" molecular test. However, in certain geographical regions like the Mediterranean area, up to 30% of patients with a HH phenotype has a negative or non-diagnostic (i.e. simple heterozygosity) test, because of a known heterogeneity involving at least four other genes (HAMP, HJV, TFR2, and SLC40A1). Mutations in such genes are generally rare/private, making the diagnosis of atypical HH essentially a matter of exclusion in clinical practice (from here the term of "non-HFE" HH), unless cumbersome traditional sequencing is applied. We developed a Next Generation Sequencing (NGS)-based test targeting the five HH genes, and applied it to patients with clinically relevant iron overload (IO) and a non-diagnostic first level genetic test. We identified several mutations, some of which were novel (i.e. HFE W163X, HAMP R59X, and TFR2 D555N) and allowed molecular reclassification of "non-HFE" HH clinical diagnosis, particularly in some highly selected IO patients without concurring acquired risk factors. This NGS-based "second level" genetic test may represent a useful tool for molecular diagnosis of HH in patients in whom HH phenotype remains unexplained after the search of common HFE mutations.
Collapse
Affiliation(s)
- Sadaf Badar
- Department of Medicine; Section of Internal Medicine, University of Verona; Verona Italy
| | - Fabiana Busti
- Department of Medicine; Section of Internal Medicine, University of Verona; Verona Italy
| | | | - Luciano Xumerle
- Department of Biotechnology; University of Verona; Verona Italy
| | - Paolo Bozzini
- Department of Medicine; Section of Internal Medicine, University of Verona; Verona Italy
| | - Paola Capelli
- Unit of Pathology, Azienda Ospedaliera Universitaria Integrata Verona; Verona Italy
| | - Roberto Pozzi-Mucelli
- Department of Diagnostics and Public Health; Section of Radiology, University of Verona; Verona Italy
| | - Natascia Campostrini
- Department of Medicine; Section of Internal Medicine, University of Verona; Verona Italy
| | - Giovanna De Matteis
- Unit of Clinical Chemistry, Azienda Ospedaliera Universitaria Integrata Verona; Verona Italy
| | | | | | | | - Oliviero Olivieri
- Department of Medicine; Section of Internal Medicine, University of Verona; Verona Italy
| | - Domenico Girelli
- Department of Medicine; Section of Internal Medicine, University of Verona; Verona Italy
- Veneto Regional Referral Center for Iron Metabolism Disorders, GIMFer (Gruppo Interdisciplinare Sulle Malattie Del Ferro); Azienda Ospedaliera Uiversitaria Integrata Verona; Verona Italy
| |
Collapse
|
33
|
Ryan E, Russell J, Ryan JD, Crowe J, Stewart S. GNPAT variant is not associated with severe iron overload in Irish C282Y homozygotes. Hepatology 2016; 63:2055-6. [PMID: 26418756 DOI: 10.1002/hep.28258] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Eleanor Ryan
- Liver Centre, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Jennifer Russell
- Liver Centre, Mater Misericordiae University Hospital, Dublin, Ireland
| | - John D Ryan
- Translational Gastroenterology Unit, Nuffield Department of Experimental Medicine, University of Oxford, Oxford, UK
| | - John Crowe
- Liver Centre, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Stephen Stewart
- Liver Centre, Mater Misericordiae University Hospital, Dublin, Ireland
| |
Collapse
|
34
|
Iron metabolism and related genetic diseases: A cleared land, keeping mysteries. J Hepatol 2016; 64:505-515. [PMID: 26596411 DOI: 10.1016/j.jhep.2015.11.009] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/06/2015] [Accepted: 11/09/2015] [Indexed: 12/14/2022]
Abstract
Body iron has a very close relationship with the liver. Physiologically, the liver synthesizes transferrin, in charge of blood iron transport; ceruloplasmin, acting through its ferroxidase activity; and hepcidin, the master regulator of systemic iron. It also stores iron inside ferritin and serves as an iron reservoir, both protecting the cell from free iron toxicity and ensuring iron delivery to the body whenever needed. The liver is first in line for receiving iron from the gut and the spleen, and is, therefore, highly exposed to iron overload when plasma iron is in excess, especially through its high affinity for plasma non-transferrin bound iron. The liver is strongly involved when iron excess is related either to hepcidin deficiency, as in HFE, hemojuvelin, hepcidin, and transferrin receptor 2 related haemochromatosis, or to hepcidin resistance, as in type B ferroportin disease. It is less involved in the usual (type A) form of ferroportin disease which targets primarily the macrophagic system. Hereditary aceruloplasminemia raises important pathophysiological issues in light of its peculiar organ iron distribution.
Collapse
|
35
|
Barton JC, Edwards CQ, Acton RT. HFE gene: Structure, function, mutations, and associated iron abnormalities. Gene 2015; 574:179-92. [PMID: 26456104 PMCID: PMC6660136 DOI: 10.1016/j.gene.2015.10.009] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 10/04/2015] [Accepted: 10/06/2015] [Indexed: 01/05/2023]
Abstract
The hemochromatosis gene HFE was discovered in 1996, more than a century after clinical and pathologic manifestations of hemochromatosis were reported. Linked to the major histocompatibility complex (MHC) on chromosome 6p, HFE encodes the MHC class I-like protein HFE that binds beta-2 microglobulin. HFE influences iron absorption by modulating the expression of hepcidin, the main controller of iron metabolism. Common HFE mutations account for ~90% of hemochromatosis phenotypes in whites of western European descent. We review HFE mapping and cloning, structure, promoters and controllers, and coding region mutations, HFE protein structure, cell and tissue expression and function, mouse Hfe knockouts and knockins, and HFE mutations in other mammals with iron overload. We describe the pertinence of HFE and HFE to mechanisms of iron homeostasis, the origin and fixation of HFE polymorphisms in European and other populations, and the genetic and biochemical basis of HFE hemochromatosis and iron overload.
Collapse
Affiliation(s)
- James C Barton
- Southern Iron Disorders Center, Birmingham, AL, USA and Department of Medicine; University of Alabama at Birmingham, Birmingham, AL, USA.
| | - Corwin Q Edwards
- Department of Medicine, Intermountain Medical Center and University of Utah, Salt Lake City, UT, USA.
| | - Ronald T Acton
- Southern Iron Disorders Center, Birmingham, AL, USA and Department of Medicine; Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
36
|
McLaren CE, Emond MJ, Subramaniam VN, Phatak PD, Barton JC, Adams PC, Powell LW, Gurrin LC, Ramm GA, Anderson GJ, McLaren GD. Reply: To PMID 25605615. Hepatology 2015; 62:1918-9. [PMID: 25914125 DOI: 10.1002/hep.27851] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | - Mary J Emond
- Department of Biostatistics, University of Washington, Seattle, WA
| | - V Nathan Subramaniam
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Medicine and Biomedical Sciences, The University of Queensland Brisbane, Australia
| | | | | | - Paul C Adams
- Department of Medicine, London Health Sciences Center, London, Ontario, Canada
| | - Lawrie W Powell
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Medicine and Biomedical Sciences, The University of Queensland Brisbane, Australia.,Royal Brisbane & Women's Hospital, Brisbane, Australia
| | - Lyle C Gurrin
- Center for MEGA Epidemiology, The University of Melbourne, Melbourne, Australia
| | - Grant A Ramm
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,Faculty of Medicine and Biomedical Sciences, The University of Queensland Brisbane, Australia
| | - Gregory J Anderson
- QIMR Berghofer Medical Research Institute, Brisbane, Australia.,School of Medicine and School of Chemistry and Molecular Bioscience, University of Queensland, St. Lucia, Australia
| | - Gordon D McLaren
- Department of Veterans Affairs Long Beach Healthcare System, Long Beach, CA.,Division of Hematology/Oncology, Department of Medicine, University of California Irvine, CA
| |
Collapse
|
37
|
Bardou-Jacquet E, de Tayrac M, Mosser J, Deugnier Y. GNPAT variant associated with severe iron overload in HFE hemochromatosis. Hepatology 2015; 62:1917-8. [PMID: 25891252 DOI: 10.1002/hep.27854] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Affiliation(s)
- Edouard Bardou-Jacquet
- CHU Rennes French Reference Center for Rare Iron Overload Diseases of Genetic Origin, Rennes, France.,Université Rennes 1, Rennes, France.,INSERM, UMR 991, Rennes, France
| | - Marie de Tayrac
- Université Rennes 1, Rennes, France.,CNRS UMR 6290, Rennes, France.,CHU Rennes Service de Génétique Moléculaire et Génomique, Rennes, France
| | - Jean Mosser
- Université Rennes 1, Rennes, France.,CNRS UMR 6290, Rennes, France.,CHU Rennes Service de Génétique Moléculaire et Génomique, Rennes, France
| | - Yves Deugnier
- CHU Rennes French Reference Center for Rare Iron Overload Diseases of Genetic Origin, Rennes, France.,Université Rennes 1, Rennes, France.,INSERM, UMR 991, Rennes, France
| |
Collapse
|
38
|
Pietrangelo A. Genetics, Genetic Testing, and Management of Hemochromatosis: 15 Years Since Hepcidin. Gastroenterology 2015; 149:1240-1251.e4. [PMID: 26164493 DOI: 10.1053/j.gastro.2015.06.045] [Citation(s) in RCA: 86] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 06/19/2015] [Accepted: 06/30/2015] [Indexed: 12/13/2022]
Abstract
The discovery of hepcidin in 2000 and the subsequent unprecedented explosion of research and discoveries in the iron field have dramatically changed our understanding of human disorders of iron metabolism. Today, hereditary hemochromatosis, the paradigmatic iron-loading disorder, is recognized as an endocrine disease due to the genetic loss of hepcidin, the iron hormone produced by the liver. This syndrome is due to unchecked transfer of iron into the bloodstream in the absence of increased erythropoietic needs and its toxic effects in parenchymatous organs. It is caused by mutations that affect any of the proteins that help hepcidin to monitor serum iron, including HFE and, in rarer instances, transferrin-receptor 2 and hemojuvelin, or make its receptor ferroportin, resistant to the hormone. In Caucasians, C282Y HFE homozygotes are numerous, but they are only predisposed to hemochromatosis; complete organ disease develops in a minority, due to alcohol abuse or concurrent genetic modifiers that are now being identified. HFE gene testing can be used to diagnose hemochromatosis in symptomatic patients, but analyses of liver histology and full gene sequencing are required to identify patients with rare, non-HFE forms of the disease. Due to the central pathogenic role of hepcidin, it is anticipated that nongenetic causes of hepcidin loss (eg, end-stage liver disease) can cause acquired forms of hemochromatosis. The mainstay of hemochromatosis management is still removal of iron by phlebotomy, first introduced in 1950s, but identification of hepcidin has not only shed new light on the pathogenesis of the disease and the approach to diagnosis, but etiologic therapeutic applications from these advances are now foreseen.
Collapse
Affiliation(s)
- Antonello Pietrangelo
- Unit of Internal Medicine 2 and Centre for Hemochromatosis, University Hospital of Modena, Modena, Italy.
| |
Collapse
|
39
|
McLaren CE, Emond MJ, Subramaniam VN, Phatak PD, Barton JC, Adams PC, Goh JB, McDonald CJ, Powell LW, Gurrin LC, Allen KJ, Nickerson DA, Louie T, Ramm GA, Anderson GJ, McLaren GD. Exome sequencing in HFE C282Y homozygous men with extreme phenotypes identifies a GNPAT variant associated with severe iron overload. Hepatology 2015; 62:429-39. [PMID: 25605615 PMCID: PMC4508230 DOI: 10.1002/hep.27711] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 01/13/2015] [Indexed: 12/12/2022]
Abstract
UNLABELLED To identify polymorphisms associated with variability of iron overload severity in HFE-associated hemochromatosis, we performed exome sequencing of DNA from 35 male HFE C282Y homozygotes with either markedly increased iron stores (n = 22; cases) or with normal or mildly increased iron stores (n = 13; controls). The 35 participants, residents of the United States, Canada, and Australia, reported no or light alcohol consumption. Sequencing data included 82,068 single-nucleotide variants, and 10,337 genes were tested for a difference between cases and controls. A variant in the GNPAT gene showed the most significant association with severe iron overload (P = 3 × 10(-6) ; P = 0.033 by the likelihood ratio test after correction for multiple comparisons). Sixteen of twenty-two participants with severe iron overload had glyceronephosphate O-acyltransferase (GNPAT) polymorphism p.D519G (rs11558492; 15 heterozygotes, one homozygote). No control participant had this polymorphism. To examine functional consequences of GNPAT deficiency, we performed small interfering RNA-based knockdown of GNPAT in the human liver-derived cell line, HepG2/C3A. This knockdown resulted in a >17-fold decrease in expression of the messenger RNA encoding the iron-regulatory hormone, hepcidin. CONCLUSION GNPAT p.D519G is associated with a high-iron phenotype in HFE C282Y homozygotes and may participate in hepcidin regulation.
Collapse
Affiliation(s)
| | - Mary J. Emond
- Department of Biostatistics, University of Washington, Seattle, WA
| | - V. Nathan Subramaniam
- QIMR Berghofer Medical Research Institute, Brisbane, Australia,Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | | | | | - Paul C. Adams
- Department of Medicine, London Health Sciences Centre, London, ON, Canada
| | - Justin B. Goh
- QIMR Berghofer Medical Research Institute, Brisbane, Australia,Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | | | - Lawrie W. Powell
- QIMR Berghofer Medical Research Institute, Brisbane, Australia,Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, Australia,Royal Brisbane & Women’s Hospital, Brisbane, Australia
| | - Lyle C. Gurrin
- Centre for MEGA Epidemiology, The University of Melbourne, Melbourne, Australia
| | | | | | - Tin Louie
- Department of Biostatistics, University of Washington, Seattle, WA
| | - Grant A. Ramm
- QIMR Berghofer Medical Research Institute, Brisbane, Australia,Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | - Gregory J. Anderson
- QIMR Berghofer Medical Research Institute, Brisbane, Australia,School of Medicine and School of Chemistry and Molecular Bioscience, University of Queensland
| | - Gordon D. McLaren
- Department of Veterans Affairs Long Beach Healthcare System, Long Beach, CA,Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, CA
| |
Collapse
|