1
|
Garibay-Nieto N, Pedraza-Escudero K, Omaña-Guzmán I, Garcés-Hernández MJ, Villanueva-Ortega E, Flores-Torres M, Pérez-Hernández JL, León-Hernández M, Laresgoiti-Servitje E, Palacios-González B, López-Alvarenga JC, Lisker-Melman M, Vadillo-Ortega F. Metabolomic Phenotype of Hepatic Steatosis and Fibrosis in Mexican Children Living with Obesity. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1785. [PMID: 37893503 PMCID: PMC10608521 DOI: 10.3390/medicina59101785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/13/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023]
Abstract
Background and Objectives: Metabolic-dysfunction-associated steatotic liver disease or MASLD is the main cause of chronic liver diseases in children, and it is estimated to affect 35% of children living with obesity. This study aimed to identify metabolic phenotypes associated with two advanced stages of MASLD (hepatic steatosis and hepatic steatosis plus fibrosis) in Mexican children with obesity. Materials and Methods: This is a cross-sectional analysis derived from a randomized clinical trial conducted in children and adolescents with obesity aged 8 to 16 years. Anthropometric and biochemical data were measured, and targeted metabolomic analyses were carried out using mass spectrometry. Liver steatosis and fibrosis were estimated using transient elastography (Fibroscan® Echosens, Paris, France). Three groups were studied: a non-MASLD group, an MASLD group, and a group for MASLD + fibrosis. A partial least squares discriminant analysis (PLS-DA) was performed to identify the discrimination between the study groups and to visualize the differences between their heatmaps; also, Variable Importance Projection (VIP) plots were graphed. A VIP score of >1.5 was considered to establish the importance of metabolites and biochemical parameters that characterized each group. Logistic regression models were constructed considering VIP scores of >1.5, and the receiver operating characteristic (ROC) curves were estimated to evaluate different combinations of variables. Results: The metabolic MASLD phenotype was associated with increased concentrations of ALT and decreased arginine, glycine, and acylcarnitine (AC) AC5:1, while MASLD + fibrosis, an advanced stage of MASLD, was associated with a phenotype characterized by increased concentrations of ALT, proline, and alanine and a decreased Matsuda Index. Conclusions: The metabolic MASLD phenotype changes as this metabolic dysfunction progresses. Understanding metabolic disturbances in MASLD would allow for early identification and the development of intervention strategies focused on limiting the progression of liver damage in children and adolescents.
Collapse
Affiliation(s)
- Nayely Garibay-Nieto
- Pediatric Obesity Clinic and Wellness Unit, General Hospital of Mexico, Mexico City 06720, Mexico; (N.G.-N.); (K.P.-E.); (I.O.-G.); (M.J.G.-H.); (E.V.-O.)
| | - Karen Pedraza-Escudero
- Pediatric Obesity Clinic and Wellness Unit, General Hospital of Mexico, Mexico City 06720, Mexico; (N.G.-N.); (K.P.-E.); (I.O.-G.); (M.J.G.-H.); (E.V.-O.)
| | - Isabel Omaña-Guzmán
- Pediatric Obesity Clinic and Wellness Unit, General Hospital of Mexico, Mexico City 06720, Mexico; (N.G.-N.); (K.P.-E.); (I.O.-G.); (M.J.G.-H.); (E.V.-O.)
| | - María José Garcés-Hernández
- Pediatric Obesity Clinic and Wellness Unit, General Hospital of Mexico, Mexico City 06720, Mexico; (N.G.-N.); (K.P.-E.); (I.O.-G.); (M.J.G.-H.); (E.V.-O.)
| | - Eréndira Villanueva-Ortega
- Pediatric Obesity Clinic and Wellness Unit, General Hospital of Mexico, Mexico City 06720, Mexico; (N.G.-N.); (K.P.-E.); (I.O.-G.); (M.J.G.-H.); (E.V.-O.)
| | - Mariana Flores-Torres
- Unidad de Vinculación de la Facultad de Medicina, UNAM, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico;
| | - José Luis Pérez-Hernández
- Hepatology Clinic, Gastroenterology Department, General Hospital of Mexico, Mexico City 06720, Mexico;
| | | | | | - Berenice Palacios-González
- Laboratorio de Envejecimiento Saludable, Centro de Investigación Sobre el Envejecimiento, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico;
| | - Juan Carlos López-Alvarenga
- Department of Population Health & Biostatistics, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA;
| | - Mauricio Lisker-Melman
- Division of Gastroenterology, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Felipe Vadillo-Ortega
- Unidad de Vinculación de la Facultad de Medicina, UNAM, Instituto Nacional de Medicina Genómica, Mexico City 14610, Mexico;
| |
Collapse
|
2
|
Liu C, Guo Y, Cheng Y, Qian H. Torularhodin-Loaded Bilosomes Ameliorate Lipid Accumulation and Amino Acid Metabolism in Hypercholesterolemic Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3250-3260. [PMID: 36693047 DOI: 10.1021/acs.jafc.2c06483] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
SCOPE Hypercholesterolemia is a cause of cardiovascular disease. Torularhodin is a carotenoid, and its entrapment in bilosomes helps to improve its bioavailability. METHODS AND RESULTS The effects of torularhodin-loaded bilosomes on lipid accumulation, inflammatory response, and serum metabolic profiles in hypercholesterolemic ApoE-/- C57BL/6J mice were investigated by feeding a high-fat, high-cholesterol diet (HFHCD) for 20 weeks. At the same time, mice were gavaged with torularhodin-loaded bilosomes for 10 weeks. The results showed that torularhodin successfully alleviated weight gain and insulin resistance in mice and could also lower blood lipids. Meanwhile, torularhodin improved liver lipid accumulation in mice and modulated inflammatory factors in the "blood-liver-ileum." Nontargeted metabolomics revealed that torularhodin significantly increased the concentrations of l-tryptophan, glyceraldehyde, hypotaurine, pyrophosphate, and niacinamide in serum (p < 0.01). In addition, targeted amino acid metabolomics verification found that torularhodin promoted the metabolism of serum amino acids in mice, particularly for branched-chain amino acids, thereby helping to improve hypercholesterolemia in mice. Finally, interaction network bioinformatics was used to demonstrate that amino acid metabolism represented an important mechanism by which torularhodin improves lipid accumulation and inflammatory response in mice. CONCLUSIONS Torularhodin can improve hypercholesterolemia in HFHCD-fed mice, thereby supporting the feasibility of its usage in food applications for cardiovascular disease prevention.
Collapse
Affiliation(s)
- Chang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Yahui Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - Yuliang Cheng
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| | - He Qian
- State Key Laboratory of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- School of Food Science and Technology, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, No.1800 Lihu Avenue, Wuxi 214122, Jiangsu Province, China
| |
Collapse
|
3
|
Novel Combinatorial Regimen of Garcinol and Curcuminoids for Non-alcoholic Steatohepatitis (NASH) in Mice. Sci Rep 2020; 10:7440. [PMID: 32366854 PMCID: PMC7198554 DOI: 10.1038/s41598-020-64293-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/12/2020] [Indexed: 02/07/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a progressive form of Non-alcoholic fatty liver disease (NAFLD), a chronic liver disease with a significant unmet clinical need. In this study, we examined the protective effects of Garcinia indica extract standardized to contain 20% w/w of Garcinol (GIE) and 95% Curcuminoids w/w from Curcuma longa (Curcuminoids) in a Stelic animal model (STAM) of NASH. The STAM mice developed steatosis, hepatocyte ballooning, and inflammation, which were significantly reduced by the combination of GIE and Curcuminoids, resulting in a lower NAFLD activity score. The treatment reduced fibrosis as observed by Sirius red staining, liver hydroxyproline content and mRNA levels of TGF- β and collagen in the liver. Immunostaining with alpha-smooth muscle actin (α SMA) revealed a significant reduction in hepatic stellate cells. Intriguingly, the combination regimen markedly decreased the mRNA levels of MCP1 and CRP and both mRNA and protein levels of TNF-α. NF-kB, reduced the hepatic and circulating FGF21 levels and altered the nonenzymatic (glutathione) and enzymatic antioxidant markers (Glutathione peroxidase, and superoxide dismutase). Our results suggest that the combination of GIE and Curcuminoids can reduce the severity of NASH by reducing steatosis, fibrosis, oxidative stress, and inflammation. The results suggest that the combinatorial regimen could be an effective supplement to prevent the progression of liver steatosis to inflammation and fibrosis in NASH.
Collapse
|
4
|
Dietary and metabolic modulators of hepatic immunity. Semin Immunopathol 2017; 40:175-188. [PMID: 29110070 DOI: 10.1007/s00281-017-0659-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 10/18/2017] [Indexed: 12/13/2022]
Abstract
The liver is the central metabolic organ of the organism and is thus constantly exposed to gut-derived dietary and microbial antigens. The liver maintains homoeostatic tolerance to these mostly harmless antigens. However, the liver also functions as a barrier organ to harmful pathogens and is thus permissive to liver inflammation. The regulation of the delicate balance between liver tolerance and liver inflammation is of vital importance for the organism. In recent years, a general role for dietary components and metabolites as immune mediators has been emerging. However, although the liver is exposed to a great deal of metabolic mediators, surprisingly, little is known about their actual role in the regulation of hepatic immune responses. Here, we will explore the possible impacts of metabolic mediators for homoeostatic and pathological immunity in the liver, by highlighting selected examples of metabolic immune regulation in the liver.
Collapse
|
5
|
The Role of Tissue Macrophage-Mediated Inflammation on NAFLD Pathogenesis and Its Clinical Implications. Mediators Inflamm 2017; 2017:8162421. [PMID: 28115795 PMCID: PMC5237469 DOI: 10.1155/2017/8162421] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 11/22/2016] [Accepted: 12/04/2016] [Indexed: 02/06/2023] Open
Abstract
The obese phenotype is characterized by a state of chronic low-grade systemic inflammation that contributes to the development of comorbidities, including nonalcoholic fatty liver disease (NAFLD). In fact, NAFLD is often associated with adipocyte enlargement and consequent macrophage recruitment and inflammation. Macrophage polarization is often associated with the proinflammatory state in adipose tissue. In particular, an increase of M1 macrophages number or of M1/M2 ratio triggers the production and secretion of various proinflammatory signals (i.e., adipocytokines). Next, these inflammatory factors may reach the liver leading to local M1/M2 macrophage polarization and consequent onset of the histological damage characteristic of NAFLD. Thus, the role of macrophage polarization and inflammatory signals appears to be central for pathogenesis and progression of NAFLD, even if the heterogeneity of macrophages and molecular mechanisms that govern their phenotype switch remain incompletely understood. In this review, we discuss the role of adipose and liver tissue macrophage-mediated inflammation in experimental and human NAFLD. This focus is relevant because it may help researchers that approach clinical and experimental studies on this disease advancing the knowledge of mechanisms that could be targeted in order to revert NAFLD-related fibrosis.
Collapse
|