1
|
Girelli D, Busti F, Brissot P, Cabantchik I, Muckenthaler MU, Porto G, on behalf of the Nomenclature Committee of the International Society for the Study of Iron in Biology and Medicine (BIOIRON Society). Hemochromatosis classification: update and recommendations by the BIOIRON Society. Blood 2022; 139:3018-3029. [PMID: 34601591 PMCID: PMC11022970 DOI: 10.1182/blood.2021011338] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 09/05/2021] [Indexed: 12/15/2022] Open
Abstract
Hemochromatosis (HC) is a genetically heterogeneous disorder in which uncontrolled intestinal iron absorption may lead to progressive iron overload (IO) responsible for disabling and life-threatening complications such as arthritis, diabetes, heart failure, hepatic cirrhosis, and hepatocellular carcinoma. The recent advances in the knowledge of pathophysiology and molecular basis of iron metabolism have highlighted that HC is caused by mutations in at least 5 genes, resulting in insufficient hepcidin production or, rarely, resistance to hepcidin action. This has led to an HC classification based on different molecular subtypes, mainly reflecting successive gene discovery. This scheme was difficult to adopt in clinical practice and therefore needs revision. Here we present recommendations for unambiguous HC classification developed by a working group of the International Society for the Study of Iron in Biology and Medicine (BIOIRON Society), including both clinicians and basic scientists during a meeting in Heidelberg, Germany. We propose to deemphasize the use of the molecular subtype criteria in favor of a classification addressing both clinical issues and molecular complexity. Ferroportin disease (former type 4a) has been excluded because of its distinct phenotype. The novel classification aims to be of practical help whenever a detailed molecular characterization of HC is not readily available.
Collapse
Affiliation(s)
- Domenico Girelli
- Department of Medicine, Section of Internal Medicine, EuroBloodNet Center, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Fabiana Busti
- Department of Medicine, Section of Internal Medicine, EuroBloodNet Center, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Pierre Brissot
- INSERM, Univ-Rennes, Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1241, Institut NuMeCan, Rennes, France
| | - Ioav Cabantchik
- Alexander Silberman Institute of Life Sciences, Hebrew University, Jerusalem, Israel
| | - Martina U. Muckenthaler
- Department of Pediatric Oncology, Hematology, and Immunology and Molecular Medicine Partnership Unit, University of Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Translational Lung Research Center, German Center for Lung Research, Heidelberg, Germany
- German Centre for Cardiovascular Research, Partner Site Heidelberg, Mannheim, Germany
| | - Graça Porto
- Institute for Molecular and Cell Biology, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Clinical Hematology, Santo António Hospital, Porto University, Porto, Portugal
| | - on behalf of the Nomenclature Committee of the International Society for the Study of Iron in Biology and Medicine (BIOIRON Society)
- Department of Medicine, Section of Internal Medicine, EuroBloodNet Center, University of Verona and Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
- INSERM, Univ-Rennes, Institut National de la Recherche Agronomique, Unité Mixte de Recherche 1241, Institut NuMeCan, Rennes, France
- Alexander Silberman Institute of Life Sciences, Hebrew University, Jerusalem, Israel
- Department of Pediatric Oncology, Hematology, and Immunology and Molecular Medicine Partnership Unit, University of Heidelberg, Heidelberg, Germany
- Molecular Medicine Partnership Unit, European Molecular Biology Laboratory, Heidelberg, Germany
- Translational Lung Research Center, German Center for Lung Research, Heidelberg, Germany
- German Centre for Cardiovascular Research, Partner Site Heidelberg, Mannheim, Germany
- Institute for Molecular and Cell Biology, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Clinical Hematology, Santo António Hospital, Porto University, Porto, Portugal
| |
Collapse
|
2
|
Hemochromatosis redefined. Blood 2022; 139:3001-3002. [PMID: 35587868 DOI: 10.1182/blood.2021014036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/23/2021] [Indexed: 11/20/2022] Open
|
3
|
Ravasi G, Pelucchi S, Bertola F, Capelletti MM, Mariani R, Piperno A. Identification of Novel Mutations by Targeted NGS Panel in Patients with Hyperferritinemia. Genes (Basel) 2021; 12:genes12111778. [PMID: 34828384 PMCID: PMC8623017 DOI: 10.3390/genes12111778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/03/2021] [Accepted: 11/06/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Several inherited diseases cause hyperferritinemia with or without iron overload. Differential diagnosis is complex and requires an extensive work-up. Currently, a clinical-guided approach to genetic tests is performed based on gene-by-gene sequencing. Although reasonable, this approach is expensive and time-consuming and Next Generation Sequencing (NGS) technology may provide cheaper and quicker large-scale DNA sequencing. METHODS We analysed 36 patients with non-HFE-related hyperferritinemia. Liver iron concentration was measured in 33 by magnetic resonance. A panel of 25 iron related genes was designed using SureDesign software. Custom libraries were generated and then sequenced using Ion Torrent PGM. RESULTS We identified six novel mutations in SLC40A1, three novel and one known mutation in TFR2, one known mutation and a de-novo deletion in HJV, and a novel mutation in HAMP in ten patients. In silico analyses supported the pathogenic role of the mutations. CONCLUSIONS Our results support the use of an NGS-based panel in selected patients with hyperferritinemia in a tertiary center for iron metabolism disorders. However, 26 out of 36 patients did not show genetic variants that can individually explain hyperferritinemia and/or iron overload suggesting the existence of other genetic defects or gene-gene and gene-environment interactions needing further studies.
Collapse
Affiliation(s)
- Giulia Ravasi
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.R.); (S.P.); (M.M.C.)
| | - Sara Pelucchi
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.R.); (S.P.); (M.M.C.)
| | - Francesca Bertola
- Medical Genetics, S. Gerardo Hospital, ASST-Monza, 20900 Monza, Italy;
| | - Martina Maria Capelletti
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.R.); (S.P.); (M.M.C.)
| | - Raffaella Mariani
- Disorders of Iron Metabolism, Centre for Rare Diseases, San Gerardo Hospital, ASST-Monza, 20900 Monza, Italy;
| | - Alberto Piperno
- Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (G.R.); (S.P.); (M.M.C.)
- Medical Genetics, S. Gerardo Hospital, ASST-Monza, 20900 Monza, Italy;
- Disorders of Iron Metabolism, Centre for Rare Diseases, San Gerardo Hospital, ASST-Monza, 20900 Monza, Italy;
- Correspondence: ; Tel.: +39-03-9233-3461
| |
Collapse
|
4
|
Viveiros A, Schaefer B, Panzer M, Henninger B, Plaikner M, Kremser C, Franke A, Franzenburg S, Hoeppner MP, Stauder R, Janecke A, Tilg H, Zoller H. MRI-Based Iron Phenotyping and Patient Selection for Next-Generation Sequencing of Non-Homeostatic Iron Regulator Hemochromatosis Genes. Hepatology 2021; 74:2424-2435. [PMID: 34048062 PMCID: PMC8596846 DOI: 10.1002/hep.31982] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/13/2021] [Accepted: 05/13/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS High serum ferritin is frequent among patients with chronic liver disease and commonly associated with hepatic iron overload. Genetic causes of high liver iron include homozygosity for the p.Cys282Tyr variant in homeostatic iron regulator (HFE) and rare variants in non-HFE genes. The aims of the present study were to describe the landscape and frequency of mutations in hemochromatosis genes and determine whether patient selection by noninvasive hepatic iron quantification using MRI improves the diagnostic yield of next-generation sequencing (NGS) in patients with hyperferritinemia. APPROACH AND RESULTS A cohort of 410 unselected liver clinic patients with high serum ferritin (defined as ≥200 μg/L for women and ≥300 μg/L for men) was investigated by HFE genotyping and abdominal MRI R2*. Forty-one (10%) patients were homozygous for the p.Cys282Tyr variant in HFE. Of the remaining 369 patients, 256 (69%) had high transferrin saturation (TSAT; ≥45%) and 199 (53%) had confirmed hepatic iron overload (liver R2* ≥70 s-1 ). NGS of hemochromatosis genes was carried out in 180 patients with hepatic iron overload, and likely pathogenic variants were identified in 68 of 180 (38%) patients, mainly in HFE (79%), ceruloplasmin (25%), and transferrin receptor 2 (19%). Low spleen iron (R2* <50 s-1 ), but not TSAT, was significantly associated with the presence of mutations. In 167 patients (93%), no monogenic cause of hepatic iron overload could be identified. CONCLUSIONS In patients without homozygosity for p.Cys282Tyr, coincident pathogenic variants in HFE and non-HFE genes could explain hyperferritinemia with hepatic iron overload in a subset of patients. Unlike HFE hemochromatosis, this type of polygenic hepatic iron overload presents with variable TSAT. High ferritin in blood is an indicator of the iron storage disease, hemochromatosis. A simple genetic test establishes this diagnosis in the majority of patients affected. MRI of the abdomen can guide further genetic testing.
Collapse
Affiliation(s)
- André Viveiros
- Department of Medicine I and Christian Doppler Laboratory on Iron and Phosphate BiologyMedical University of InnsbruckInnsbruckAustria
| | - Benedikt Schaefer
- Department of Medicine I and Christian Doppler Laboratory on Iron and Phosphate BiologyMedical University of InnsbruckInnsbruckAustria
| | - Marlene Panzer
- Department of Medicine I and Christian Doppler Laboratory on Iron and Phosphate BiologyMedical University of InnsbruckInnsbruckAustria
| | | | - Michaela Plaikner
- Department of RadiologyMedical University of InnsbruckInnsbruckAustria
| | - Christian Kremser
- Department of RadiologyMedical University of InnsbruckInnsbruckAustria
| | - André Franke
- Institute of Clinical Molecular Biology (IKMB)Kiel UniversityKielGermany
| | - Sören Franzenburg
- Institute of Clinical Molecular Biology (IKMB)Kiel UniversityKielGermany
| | - Marc P. Hoeppner
- Institute of Clinical Molecular Biology (IKMB)Kiel UniversityKielGermany
| | - Reinhard Stauder
- Department of Medicine VMedical University of InnsbruckInnsbruckAustria
| | - Andreas Janecke
- Department of PediatricsMedical University of InnsbruckInnsbruckAustria
- Department of GeneticsMedical University of InnsbruckInnsbruckAustria
| | - Herbert Tilg
- Department of Medicine I and Christian Doppler Laboratory on Iron and Phosphate BiologyMedical University of InnsbruckInnsbruckAustria
| | - Heinz Zoller
- Department of Medicine I and Christian Doppler Laboratory on Iron and Phosphate BiologyMedical University of InnsbruckInnsbruckAustria
| |
Collapse
|
5
|
Baas FS, Rishi G, Swinkels DW, Subramaniam VN. Genetic Diagnosis in Hereditary Hemochromatosis: Discovering and Understanding the Biological Relevance of Variants. Clin Chem 2021; 67:1324-1341. [PMID: 34402502 DOI: 10.1093/clinchem/hvab130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/23/2021] [Indexed: 11/13/2022]
Abstract
BACKGROUND Hereditary hemochromatosis (HH) is a genetic disease, leading to iron accumulation and possible organ damage. Patients are usually homozygous for p. Cys282Tyr in the homeostatic iron regulator gene but may have mutations in other genes involved in the regulation of iron. Next-generation sequencing is increasingly being utilized for the diagnosis of patients, leading to the discovery of novel genetic variants. The clinical significance of these variants is often unknown. CONTENT Determining the pathogenicity of such variants of unknown significance is important for diagnostics and genetic counseling. Predictions can be made using in silico computational tools and population data, but additional evidence is required for a conclusive pathogenicity classification. Genetic disease models, such as in vitro models using cellular overexpression, induced pluripotent stem cells or organoids, and in vivo models using mice or zebrafish all have their own challenges and opportunities when used to model HH and other iron disorders. Recent developments in gene-editing technologies are transforming the field of genetic disease modeling. SUMMARY In summary, this review addresses methods and developments regarding the discovery and classification of genetic variants, from in silico tools to in vitro and in vivo models, and presents them in the context of HH. It also explores recent gene-editing developments and how they can be applied to the discussed models of genetic disease.
Collapse
Affiliation(s)
- Floor S Baas
- Translational Metabolic Laboratory (TML 831), Radboudumc, Nijmegen, the Netherlands.,Hepatogenomics Research Group, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Gautam Rishi
- Hepatogenomics Research Group, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Dorine W Swinkels
- Translational Metabolic Laboratory (TML 831), Radboudumc, Nijmegen, the Netherlands
| | - V Nathan Subramaniam
- Hepatogenomics Research Group, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| |
Collapse
|
6
|
Anderson GJ, Bardou-Jacquet E. Revisiting hemochromatosis: genetic vs. phenotypic manifestations. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:731. [PMID: 33987429 PMCID: PMC8106074 DOI: 10.21037/atm-20-5512] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Iron overload disorders represent an important class of human diseases. Of the primary iron overload conditions, by far the most common and best studied is HFE-related hemochromatosis, which results from homozygosity for a mutation leading to the C282Y substitution in the HFE protein. This disease is characterized by reduced expression of the iron-regulatory hormone hepcidin, leading to increased dietary iron absorption and iron deposition in multiple tissues including the liver, pancreas, joints, heart and pituitary. The phenotype of HFE-related hemochromatosis is quite variable, with some individuals showing little or no evidence of increased body iron, yet others showing severe iron loading, tissue damage and clinical sequelae. The majority of genetically predisposed individuals show at least some evidence of iron loading (increased transferrin saturation and serum ferritin), but a minority show clinical symptoms and severe consequences are rare. Thus, the disorder has a high biochemical penetrance, but a low clinical prevalence. Nevertheless, it is such a common condition in Caucasian populations (1:100–200) that it remains an important clinical entity. The phenotypic variability can largely be explained by a range of environmental, genetic and physiological factors. Men are far more likely to manifest significant disease than women, with the latter losing iron through menstrual blood loss and childbirth. Other forms of blood loss, immune system influences, the amount of bioavailable iron in the diet and lifestyle factors such as high alcohol intake can also contribute to iron loading and disease expression. Polymorphisms in a range of genes have been linked to variations in body iron levels, both in the general population and in hemochromatosis. Some of the genes identified play well known roles in iron homeostasis, yet others are novel. Other factors, including both co-morbidities and genetic polymorphisms, do not affect iron levels per se, but determine the propensity for tissue pathology.
Collapse
Affiliation(s)
- Gregory J Anderson
- Iron Metabolism Laboratory, QIMR Berghofer Medical Research Institute and School of Chemistry and Molecular Bioscience, University of Queensland, Brisbane, Queensland, Australia
| | - Edouard Bardou-Jacquet
- Liver Disease Department, University of Rennes and French Reference Center for Hemochromatosis and Iron Metabolism Disease, Rennes, France
| |
Collapse
|
7
|
Piperno A, Pelucchi S, Mariani R. Inherited iron overload disorders. Transl Gastroenterol Hepatol 2020; 5:25. [PMID: 32258529 DOI: 10.21037/tgh.2019.11.15] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022] Open
Abstract
Hereditary iron overload includes several disorders characterized by iron accumulation in tissues, organs, or even single cells or subcellular compartments. They are determined by mutations in genes directly involved in hepcidin regulation, cellular iron uptake, management and export, iron transport and storage. Systemic forms are characterized by increased serum ferritin with or without high transferrin saturation, and with or without functional iron deficient anemia. Hemochromatosis includes five different genetic forms all characterized by high transferrin saturation and serum ferritin, but with different penetrance and expression. Mutations in HFE, HFE2, HAMP and TFR2 lead to inadequate or severely reduced hepcidin synthesis that, in turn, induces increased intestinal iron absorption and macrophage iron release leading to tissue iron overload. The severity of hepcidin down-regulation defines the severity of iron overload and clinical complications. Hemochromatosis type 4 is caused by dominant gain-of-function mutations of ferroportin preventing hepcidin-ferroportin binding and leading to hepcidin resistance. Ferroportin disease is due to loss-of-function mutation of SLC40A1 that impairs the iron export efficiency of ferroportin, causes iron retention in reticuloendothelial cell and hyperferritinemia with normal transferrin saturation. Aceruloplasminemia is caused by defective iron release from storage and lead to mild microcytic anemia, low serum iron, and iron retention in several organs including the brain, causing severe neurological manifestations. Atransferrinemia and DMT1 deficiency are characterized by iron deficient erythropoiesis, severe microcytic anemia with high transferrin saturation and parenchymal iron overload due to secondary hepcidin suppression. Diagnosis of the different forms of hereditary iron overload disorders involves a sequential strategy that combines clinical, imaging, biochemical, and genetic data. Management of iron overload relies on two main therapies: blood removal and iron chelators. Specific therapeutic options are indicated in patients with atransferrinemia, DMT1 deficiency and aceruloplasminemia.
Collapse
Affiliation(s)
- Alberto Piperno
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Centre for Rare Diseases, Disorder of Iron Metabolism, ASST-Monza, S. Gerardo Hospital, Monza, Italy
| | - Sara Pelucchi
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Raffaella Mariani
- Centre for Rare Diseases, Disorder of Iron Metabolism, ASST-Monza, S. Gerardo Hospital, Monza, Italy
| |
Collapse
|
8
|
Lv T, Zhang W, Xu A, Li Y, Zhou D, Zhang B, Li X, Zhao X, Wang Y, Wang X, Duan W, Wang Q, Xu H, Zheng J, Zhao R, Zhu L, Dong Y, Lu L, Chen Y, Long J, Zheng S, Wang W, You H, Jia J, Ou X, Huang J. Non- HFE mutations in haemochromatosis in China: combination of heterozygous mutations involving HJV signal peptide variants. J Med Genet 2018; 55:650-660. [PMID: 30166352 DOI: 10.1136/jmedgenet-2018-105348] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 06/22/2018] [Accepted: 07/08/2018] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Hereditary haemochromatosis (HH) caused by a homozygous p.C282Y mutation in haemochromatosis (HFE) gene has been well documented. However, less is known about the causative non-HFE mutation. We aimed to assess mutation patterns of haemochromatosis-related genes in Chinese patients with primary iron overload. METHODS Patients were preanalysed for mutations in the classic HH-related genes: HFE, HJV, HAMP, TFR2 and SLC40A1. Whole exome sequencing was conducted for cases with variants in HJV signal peptide region. Representative variants were analysed for biological function. RESULTS None of the cases analysed harboured the HFE p.C282Y; however, 21 of 22 primary iron-overload cases harboured at least one non-synonymous variant in the non-HFE genes. Specifically, p.E3D or p.Q6H variants in the HJV signal peptide region were identified in nine cases (40.9%). In two of three probands with the HJV p.E3D, exome sequencing identified accompanying variants in BMP/SMAD pathway genes, including TMPRSS6 p.T331M and BMP4 p.R269Q, and interestingly, SUGP2 p.R639Q was identified in all the three cases. Pedigree analysis showed a similar pattern of combination of heterozygous mutations in cases with HJV p.E3D or p.Q6H, with SUGP2 p.R639Q or HJV p.C321X being common mutation. In vitro siRNA interference of SUGP2 showed a novel role of downregulating the BMP/SMAD pathway. Site-directed mutagenesis of HJV p.Q6H/p.C321X in cell lines resulted in loss of membrane localisation of mutant HJV, and downregulation of p-SMAD1/5 and HAMP. CONCLUSION Compound heterozygous mutations of HJV or combined heterozygous mutations of BMP/SMAD pathway genes, marked by HJV variants in the signal peptide region, may represent a novel aetiological factor for HH.
Collapse
Affiliation(s)
- Tingxia Lv
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Rare Liver Disease, Capital Medical University, Beijing, China
- Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Wei Zhang
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Rare Liver Disease, Capital Medical University, Beijing, China
- Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Anjian Xu
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Rare Liver Disease, Capital Medical University, Beijing, China
- Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Yanmeng Li
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Rare Liver Disease, Capital Medical University, Beijing, China
- Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Donghu Zhou
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Rare Liver Disease, Capital Medical University, Beijing, China
- Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Bei Zhang
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Rare Liver Disease, Capital Medical University, Beijing, China
- Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Xiaojin Li
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Rare Liver Disease, Capital Medical University, Beijing, China
- Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Xinyan Zhao
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Rare Liver Disease, Capital Medical University, Beijing, China
- Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Yu Wang
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Rare Liver Disease, Capital Medical University, Beijing, China
- Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Xiaoming Wang
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Rare Liver Disease, Capital Medical University, Beijing, China
- Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Weijia Duan
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Rare Liver Disease, Capital Medical University, Beijing, China
- Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Qianyi Wang
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Rare Liver Disease, Capital Medical University, Beijing, China
- Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Hexiang Xu
- Department of Infectious Diseases, The Third Affiliated Hospital of Anhui Medical University, The First People's Hospital of Hefei, Hefei, China
| | - JiShun Zheng
- Department of Infectious Diseases, The Third Affiliated Hospital of Anhui Medical University, The First People's Hospital of Hefei, Hefei, China
| | - Rongrong Zhao
- Department of Infectious Diseases, The First Hospital of Lanzhou University, Lanzhou, China
| | - Longdong Zhu
- Department of Infectious Diseases, The First Hospital of Lanzhou University, Lanzhou, China
| | - Yuwei Dong
- Department of Gastroenterology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Lungen Lu
- Department of Gastroenterology, School of Medicine, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yongpeng Chen
- Department of Infectious Diseases, Institute of Hepatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiang Long
- Department of Oncology Minimally Invasive Interventional Radiology, Beijing You-An Hospital, Capital Medical University, Shanghai, China
| | - Sujun Zheng
- Artificial Liver Center, Beijing You-An Hospital, Capital Medical University, Beijing, China
| | - Wei Wang
- Department of Clinical Laboratory, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Hong You
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Rare Liver Disease, Capital Medical University, Beijing, China
- Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jidong Jia
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Rare Liver Disease, Capital Medical University, Beijing, China
- Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Xiaojuan Ou
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Rare Liver Disease, Capital Medical University, Beijing, China
- Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| | - Jian Huang
- Beijing Key Laboratory of Translational Medicine on Liver Cirrhosis, Liver Research Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Experimental Center, Beijing Friendship Hospital, Capital Medical University, Beijing, China
- Clinical Research Center for Rare Liver Disease, Capital Medical University, Beijing, China
- Liver Research Center, National Clinical Research Center for Digestive Diseases, Beijing, China
| |
Collapse
|
9
|
|
10
|
McDonald CJ, Rishi G, Secondes ES, Ostini L, Wallace DF, Crawford DHG, Sia H, Clark P, Subramaniam VN. Evaluation of a bone morphogenetic protein 6 variant as a cause of iron loading. Hum Genomics 2018; 12:23. [PMID: 29695288 PMCID: PMC5918843 DOI: 10.1186/s40246-018-0155-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/18/2018] [Indexed: 12/13/2022] Open
Abstract
Background Atypical iron overload without variation in the five clinically associated hereditary hemochromatosis genes is now recognized; however, their etiology remains unknown. Since the identification of iron overload in the bone morphogenetic protein 6 (Bmp6) knockout mouse, the search has been on for clinically pathogenic variants in the BMP6 gene. A recent report proposes that variants in the pro-peptide region of BMP6 are the underlying cause of several cases of iron overload. We performed targeted next-generation sequencing on three cases of atypical iron overload with Asian ethnicity and identified a p.Q118dup (aka p.E112indelEQ, p.Q115dup, p.Q118_L119insQ) variant in BMP6. The purpose of this study was to characterize the molecular function of the identified BMP6 variant. Molecular characterization by immunofluorescence microscopy and Western blotting of transfected cells, bioinformatics, and population analyses was performed. Results In contrast to reports for other BMP6 pro-peptide variants in this region, our data indicates that this variant does not affect the function of the mature BMP6 protein. Conclusions Our data suggest that assignment of disease causation in clinical cases of iron overload to pro-peptide variants in BMP6 should thus be treated with caution and requires biological characterization.
Collapse
Affiliation(s)
| | - Gautam Rishi
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, Brisbane, Queensland, 4059, Australia
| | - Eriza S Secondes
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, Brisbane, Queensland, 4059, Australia
| | - Lesa Ostini
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Daniel F Wallace
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, Brisbane, Queensland, 4059, Australia
| | - Darrell H G Crawford
- Faculty of Medicine and Biomedical Sciences, The University of Queensland, Brisbane, Australia
| | | | - Paul Clark
- Princess Alexandra and Mater Hospitals, Brisbane, Australia
| | - V Nathan Subramaniam
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences, Queensland University of Technology (QUT), 60 Musk Avenue, Kelvin Grove, Brisbane, Queensland, 4059, Australia.
| |
Collapse
|
11
|
Cooray SD, Heerasing NM, Selkrig LA, Subramaniam VN, Hamblin PS, McDonald CJ, McLean CA, McNamara E, Leet AS, Roberts SK. Reversal of end-stage heart failure in juvenile hemochromatosis with iron chelation therapy: a case report. J Med Case Rep 2018; 12:18. [PMID: 29373985 PMCID: PMC5787235 DOI: 10.1186/s13256-017-1526-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 11/23/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Juvenile hemochromatosis is the most severe form of iron overloading phenotype. Although rare, it should be suspected in patients who present with hypogonadotropic hypogonadism, diabetes mellitus, or cardiomyopathy without a clear cause. CASE PRESENTATION A young Serbian male presenting with end-stage heart failure was referred for extracorporeal membrane oxygenation. An endomyocardial biopsy revealed cytoplasmic iron deposits in myocytes. His condition was stabilized with biventricular assist devices and he was listed for heart transplantation. Iron chelation therapy was commenced and resulted in rapid removal of iron burden. Serial outpatient echocardiograms demonstrated myocardial recovery such that a successful biventricular assist device explant occurred 131 days after initial implant. Targeted gene sequencing revealed a loss-of-function mutation within the HJV gene, which is consistent with juvenile hemochromatosis. CONCLUSIONS This rare case of a patient with juvenile hemochromatosis associated with a HJV mutation provides histologic evidence documenting the reversal of associated end-stage heart failure, requiring emergent mechanical circulatory support, with iron chelation therapy.
Collapse
Affiliation(s)
- Shamil D. Cooray
- Department of Endocrinology & Diabetes, The Alfred Hospital, Melbourne, VIC 3004 Australia
| | - Neel M. Heerasing
- Department of Gastroenterology & Hepatology, The Alfred Hospital, Melbourne, VIC 3004 Australia
| | - Laura A. Selkrig
- Department of Advanced Heart Failure/ Transplantation, The Alfred Hospital, Melbourne, VIC 3004 Australia
| | - V. Nathan Subramaniam
- Membrane Transport Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006 Australia
| | - P. Shane Hamblin
- Department of Endocrinology & Diabetes, The Alfred Hospital, Melbourne, VIC 3004 Australia
- Endocrinology & Diabetes Unit, Western Health, St Albans, VIC 3021 Australia
- Department of Medicine, Monash University, Melbourne, VIC Australia
- Department of Medicine, Melbourne Medical School – Western Precinct, The University of Melbourne, Melbourne, VIC 3021 Australia
| | - Cameron J. McDonald
- Membrane Transport Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006 Australia
| | - Catriona A. McLean
- Department of Medicine, Monash University, Melbourne, VIC Australia
- Department of Anatomical Pathology, The Alfred Hospital, Melbourne, VIC 3004 Australia
| | - Elissa McNamara
- Endocrinology & Diabetes Unit, Western Health, St Albans, VIC 3021 Australia
| | - Angeline S. Leet
- Department of Advanced Heart Failure/ Transplantation, The Alfred Hospital, Melbourne, VIC 3004 Australia
- Baker Research Institute, Melbourne, VIC 3004 Australia
| | - Stuart K. Roberts
- Department of Gastroenterology & Hepatology, The Alfred Hospital, Melbourne, VIC 3004 Australia
- Department of Medicine, Monash University, Melbourne, VIC Australia
| |
Collapse
|
12
|
Laursen AH, Bjerrum OW, Friis-Hansen L, Hansen TO, Marott JL, Magnussen K. Causes of iron overload in blood donors - a clinical study. Vox Sang 2017; 113:110-119. [PMID: 29230833 DOI: 10.1111/vox.12619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 10/31/2017] [Accepted: 11/04/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND OBJECTIVES Despite the obligate iron loss from blood donation, some donors present with hyperferritinaemia that can result from a wide range of acute and chronic conditions including hereditary haemochromatosis (HH). The objective of our study was to investigate the causes of hyperferritinaemia in the blood donor population and explore the value of extensive HH mutational analyses. MATERIALS AND METHODS Forty-nine consecutive donors (f = 6, m = 43) were included prospectively from the Capital Regional Blood Center. Inclusion criteria were a single ferritin value >1000 μg/l or repeated hyperferritinaemia with at least one value >500 μg/l. All donors were questioned about their medical history and underwent a physical examination, biochemical investigations and next-generation sequencing of HH-related genes, including the HFE gene, the haemojuvelin gene (HFE2/HJV), the hepcidin gene (HAMP), the ferroportin 1 gene (SLC40A1) and the transferrin receptor 2 gene (TFR2). RESULTS Forty of 49 donors were mutation positive with a combined 69 mutations, 54 of which were located in the HFE gene. There were 11 mutations in the TFR2 gene, two mutations in the HFE2 gene and two mutations in the HAMP gene. Only four donors had apparent alternative causes of hyperferritinaemia. CONCLUSION HH-related mutations were the most frequent cause of hyperferritinaemia in a Danish blood donor population, and it appears that several different HH-genotypes can contribute to hyperferritinaemia. HH screening in blood donors with high ferritin levels could be warranted. HH-related iron overload should not in itself result in donor ineligibility.
Collapse
Affiliation(s)
- A H Laursen
- Department of Haematology, Rigshospitalet, Copenhagen, Denmark
| | - O W Bjerrum
- Department of Haematology, Rigshospitalet, Copenhagen, Denmark
| | - L Friis-Hansen
- Center for Genomic Medicine, Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Biochemistry, Nordsjaellands Hospital, Hillerod, Denmark
| | - T O Hansen
- Center for Genomic Medicine, Rigshospitalet, Copenhagen, Denmark
| | - J L Marott
- The Copenhagen City Heart Study, Frederiksberg Hospital, Copenhagen, Denmark
| | - K Magnussen
- Blood Centre Lab, Hvidovre Hospital, Hvidovre, Denmark.,Department of Immunology and Transfusion Medicine, Sorlandet hospital Kristiansand, Kristiansand, Norway
| |
Collapse
|
13
|
Wallace DF, McDonald CJ, Ostini L, Iser D, Tuckfield A, Subramaniam VN. The dynamics of hepcidin-ferroportin internalization and consequences of a novel ferroportin disease mutation. Am J Hematol 2017; 92:1052-1061. [PMID: 28681497 DOI: 10.1002/ajh.24844] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 12/31/2022]
Abstract
The hepcidin-ferroportin axis underlies the pathophysiology of many iron-associated disorders and is a key target for the development of therapeutics for treating iron-associated disorders. The aims of this study were to investigate the dynamics of hepcidin-mediated ferroportin internalization and the consequences of a novel disease-causing mutation on ferroportin function. Specific reagents for ferroportin are limited; we developed and characterized antibodies against the largest extracellular loop of ferroportin and developed a novel cell-based assay for studying hepcidin-ferroportin function. We show that hepcidin-mediated ferroportin internalization is a rapid process and could be induced using low concentrations of hepcidin. Targeted next-generation sequencing utilizing an iron metabolism gene panel developed in our group identified a novel ferroportin p.D84E variant in a patient with iron overload. Wild-type and mutant ferroportin constructs were generated, transfected into HEK293 cells and analysed using an all-in-one flow-cytometry-based assay to study the effects on hepcidin-mediated internalization and iron transport. Consistent with the classical phenotype of ferroportin disease, the p.D84E mutation results in an inability to transport iron and hepcidin insensitivity. These results validate a recently proposed 3D-structural model of ferroportin and highlight the significance of this variant in the structure and function of ferroportin. Our novel ferroportin antibody and assay will be valuable tools for investigating the regulation of hepcidin/ferroportin function and the development of novel approaches for the therapeutic modulation of iron homeostasis.
Collapse
Affiliation(s)
- Daniel F. Wallace
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences. Queensland University of Technology (QUT); Brisbane Queensland Australia
- Membrane Transport Laboratory; QIMR Berghofer Medical Research Institute; Brisbane Queensland Australia
| | - Cameron J. McDonald
- Membrane Transport Laboratory; QIMR Berghofer Medical Research Institute; Brisbane Queensland Australia
| | - Lesa Ostini
- Membrane Transport Laboratory; QIMR Berghofer Medical Research Institute; Brisbane Queensland Australia
| | - David Iser
- Department of Gastroenterology; St Vincent's Hospital; Fitzroy Victoria Australia
| | | | - V. Nathan Subramaniam
- Institute of Health and Biomedical Innovation and School of Biomedical Sciences. Queensland University of Technology (QUT); Brisbane Queensland Australia
- Membrane Transport Laboratory; QIMR Berghofer Medical Research Institute; Brisbane Queensland Australia
| |
Collapse
|
14
|
Piubelli C, Castagna A, Marchi G, Rizzi M, Busti F, Badar S, Marchetti M, De Gobbi M, Roetto A, Xumerle L, Suku E, Giorgetti A, Delledonne M, Olivieri O, Girelli D. Identification of new BMP6 pro-peptide mutations in patients with iron overload. Am J Hematol 2017; 92:562-568. [PMID: 28335084 DOI: 10.1002/ajh.24730] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 02/09/2017] [Accepted: 03/18/2017] [Indexed: 12/16/2022]
Abstract
Hereditary Hemochromatosis (HH) is a genetically heterogeneous disorder caused by mutations in at least five different genes (HFE, HJV, TFR2, SLC40A1, HAMP) involved in the production or activity of the liver hormone hepcidin, a key regulator of systemic iron homeostasis. Nevertheless, patients with an HH-like phenotype that remains completely/partially unexplained despite extensive sequencing of known genes are not infrequently seen at referral centers, suggesting a role of still unknown genetic factors. A compelling candidate is Bone Morphogenetic Protein 6 (BMP6), which acts as a major activator of the BMP-SMAD signaling pathway, ultimately leading to the upregulation of hepcidin gene transcription. A recent seminal study by French authors has described three heterozygous missense mutations in BMP6 associated with mild to moderate late-onset iron overload (IO). Using an updated next-generation sequencing (NGS)-based genetic test in IO patients negative for the classical HFE p.Cys282Tyr mutation, we found three BMP6 heterozygous missense mutations in four patients from three different families. One mutation (p.Leu96Pro) has already been described and proven to be functional. The other two (p.Glu112Gln, p.Arg257His) were novel, and both were located in the pro-peptide domain known to be crucial for appropriate BMP6 processing and secretion. In silico modeling also showed results consistent with their pathogenetic role. The patients' clinical phenotypes were similar to that of other patients with BMP6-related IO recently described. Our results independently add further evidence to the role of BMP6 mutations as likely contributing factors to late-onset moderate IO unrelated to mutations in the established five HH genes.
Collapse
Affiliation(s)
- Chiara Piubelli
- Department of Medicine; Section of Internal Medicine, University of Verona, Verona, Italy; Veneto Region Referral Center for Iron Disorders, Azienda Ospedaliera Universitaria Integrata di Verona; Verona Italy
| | - Annalisa Castagna
- Department of Medicine; Section of Internal Medicine, University of Verona, Verona, Italy; Veneto Region Referral Center for Iron Disorders, Azienda Ospedaliera Universitaria Integrata di Verona; Verona Italy
| | - Giacomo Marchi
- Department of Medicine; Section of Internal Medicine, University of Verona, Verona, Italy; Veneto Region Referral Center for Iron Disorders, Azienda Ospedaliera Universitaria Integrata di Verona; Verona Italy
| | - Monica Rizzi
- Department of Medicine; Section of Internal Medicine, University of Verona, Verona, Italy; Veneto Region Referral Center for Iron Disorders, Azienda Ospedaliera Universitaria Integrata di Verona; Verona Italy
| | - Fabiana Busti
- Department of Medicine; Section of Internal Medicine, University of Verona, Verona, Italy; Veneto Region Referral Center for Iron Disorders, Azienda Ospedaliera Universitaria Integrata di Verona; Verona Italy
| | - Sadaf Badar
- Department of Medicine; Section of Internal Medicine, University of Verona, Verona, Italy; Veneto Region Referral Center for Iron Disorders, Azienda Ospedaliera Universitaria Integrata di Verona; Verona Italy
| | - Monia Marchetti
- Hematology section, Oncology Unit; Azienda Sanitaria Locale, Ospedale “Cardinal Massaia”; Asti Italy
| | - Marco De Gobbi
- Department of Clinical and Biological Sciences; University of Turin, Azienda Ospedaliera Universitaria San Luigi Gonzaga; Orbassano Turin Italy
| | - Antonella Roetto
- Department of Clinical and Biological Sciences; University of Turin, Azienda Ospedaliera Universitaria San Luigi Gonzaga; Orbassano Turin Italy
| | - Luciano Xumerle
- Department of Biotechnology; University of Verona; Verona Italy
| | - Eda Suku
- Department of Biotechnology; University of Verona; Verona Italy
| | | | | | - Oliviero Olivieri
- Department of Medicine; Section of Internal Medicine, University of Verona, Verona, Italy; Veneto Region Referral Center for Iron Disorders, Azienda Ospedaliera Universitaria Integrata di Verona; Verona Italy
| | - Domenico Girelli
- Department of Medicine; Section of Internal Medicine, University of Verona, Verona, Italy; Veneto Region Referral Center for Iron Disorders, Azienda Ospedaliera Universitaria Integrata di Verona; Verona Italy
| |
Collapse
|
15
|
Abstract
A number of human disorders are related to chronic iron overload, either of genetic or acquired origin. The multi-organ damage produced by iron excess leads, in adults and in children, to severe clinical consequences, affecting both quality of life and life expectancy. The diagnosis is increasingly based on a non-invasive strategy, resorting to clinical, biological and imaging data. The treatment rests on either venesection or chelation therapy, depending on the etiology. Major advances in the fields of molecular biology, pharmacology, and biotechnology pave the road for key improvements in the diagnostic and therapeutic management of the patients.
Collapse
Affiliation(s)
- Pierre Brissot
- a Hepatology-Faculty of Medicine, Inserm-UMR 991, National Center of Reference for Rare Iron Overload Diseases , University Hospital Pontchaillou , Rennes , France
| |
Collapse
|
16
|
Lanktree MB, Sadikovic B, Waye JS, Levstik A, Lanktree BB, Yudin J, Crowther MA, Pare G, Adams PC. Clinical evaluation of a hemochromatosis next-generation sequencing gene panel. Eur J Haematol 2016; 98:228-234. [DOI: 10.1111/ejh.12820] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2016] [Indexed: 12/12/2022]
Affiliation(s)
| | - Bekim Sadikovic
- Department of Pathology and Laboratory Medicine; Western University; London ON Canada
| | - John S. Waye
- Department of Pathology and Molecular Medicine; McMaster University; Hamilton ON Canada
| | - Alexander Levstik
- Department of Pathology and Laboratory Medicine; Western University; London ON Canada
| | | | - Jovana Yudin
- Department of Medicine; McMaster University; Hamilton ON Canada
| | - Mark A. Crowther
- Department of Medicine; McMaster University; Hamilton ON Canada
- Department of Pathology and Molecular Medicine; McMaster University; Hamilton ON Canada
| | - Guillaume Pare
- Department of Medicine; McMaster University; Hamilton ON Canada
- Department of Pathology and Molecular Medicine; McMaster University; Hamilton ON Canada
| | - Paul C. Adams
- Department of Medicine; Western University; London ON Canada
| |
Collapse
|
17
|
Lv T, Li X, Zhang W, Zhao X, Ou X, Huang J. Recent advance in the molecular genetics of Wilson disease and hereditary hemochromatosis. Eur J Med Genet 2016; 59:532-539. [PMID: 27592149 DOI: 10.1016/j.ejmg.2016.08.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 07/12/2016] [Accepted: 08/31/2016] [Indexed: 02/07/2023]
Abstract
Metabolic liver diseases such as Wilson disease (WD) and hereditary hemochromatosis (HH) possess complicated pathogenesis and typical hereditary characteristics with the hallmarks of a deficiency in metal metabolism. Mutations in genes encoding ATPase, Cu + transporting, beta polypeptide (ATP7B) and hemochromatosis (HFE) or several non-HFE genes are considered to be causative for WD and HH, respectively. Although the identification of novel mutations in ATP7B for WD and HFE or the non-HFE genes for HH has increased, especially with the application of whole genome sequencing technology in recent years, the biological function of the identified mutations, as well as genotype-phenotype correlations remain to be explored. Further analysis of the causative gene mutation would be critical to clarify the mechanisms underlying specific disease phenotypes. In this review, we therefore summarize the recent advances in the molecular genetics of WD and HH including the updated mutation spectrums and the correlation between genotype and phenotype, with an emphasis on biological functional studies of the individual mutations identified in WD and HH. The weakness of the current functional studies and analysis for the clinical association of the individual mutation was also discussed. These works are essential for the understanding of the association between genotypes and phenotypes of these inherited metabolic liver diseases.
Collapse
Affiliation(s)
- Tingxia Lv
- Liver Research Center, Experimental Center, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xuan-wu District, Beijing, 100050, China.
| | - Xiaojin Li
- Liver Research Center, Experimental Center, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xuan-wu District, Beijing, 100050, China.
| | - Wei Zhang
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xuan-wu District, Beijing, 100050, China.
| | - Xinyan Zhao
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xuan-wu District, Beijing, 100050, China.
| | - Xiaojuan Ou
- Liver Research Center, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xuan-wu District, Beijing, 100050, China.
| | - Jian Huang
- Liver Research Center, Experimental Center, Beijing Friendship Hospital, Capital Medical University, 95 Yong-an Road, Xuan-wu District, Beijing, 100050, China.
| |
Collapse
|
18
|
Next-generation sequencing of hereditary hemochromatosis-related genes: Novel likely pathogenic variants found in the Portuguese population. Blood Cells Mol Dis 2016; 61:10-5. [PMID: 27667161 DOI: 10.1016/j.bcmd.2016.07.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 02/07/2023]
Abstract
Hereditary hemochromatosis (HH) is an autosomal recessive disorder characterized by excessive iron absorption resulting in pathologically increased body iron stores. It is typically associated with common HFE gene mutation (p.Cys282Tyr and p.His63Asp). However, in Southern European populations up to one third of HH patients do not carry the risk genotypes. This study aimed to explore the use of next-generation sequencing (NGS) technology to analyse a panel of iron metabolism-related genes (HFE, TFR2, HJV, HAMP, SLC40A1, and FTL) in 87 non-classic HH Portuguese patients. A total of 1241 genetic alterations were detected corresponding to 53 different variants, 13 of which were not described in the available public databases. Among them, five were predicted to be potentially pathogenic: three novel mutations in TFR2 [two missense (p.Leu750Pro and p.Ala777Val) and one intronic splicing mutation (c.967-1G>C)], one missense mutation in HFE (p.Tyr230Cys), and one mutation in the 5'-UTR of HAMP gene (c.-25G>A). The results reported here illustrate the usefulness of NGS for targeted iron metabolism-related gene panels, as a likely cost-effective approach for molecular genetics diagnosis of non-classic HH patients. Simultaneously, it has contributed to the knowledge of the pathophysiology of those rare iron metabolism-related disorders.
Collapse
|
19
|
Del Orbe Barreto R, Arrizabalaga B, De la Hoz AB, García-Orad Á, Tejada MI, Garcia-Ruiz JC, Fidalgo T, Bento C, Manco L, Ribeiro ML. Detection of new pathogenic mutations in patients with congenital haemolytic anaemia using next-generation sequencing. Int J Lab Hematol 2016; 38:629-638. [PMID: 27427187 DOI: 10.1111/ijlh.12551] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 06/07/2016] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Congenital haemolytic anaemia (CHA) refers to a group of genetically heterogeneous disorders, mainly caused by changes in genes encoding globin chains, cytoskeletal proteins and red cell enzymes, in which accurate diagnosis can be challenging with conventional techniques. METHODS To set-up a comprehensive assay for detecting mutations that could improve aetiological diagnosis, we designed a custom panel for sequencing coding regions from 40 genes known to be involved in the pathogenesis of CHA, using the Ion Torrent™ (Thermo Fisher Scientific, S.L. Waltham, MA, USA) Personal Genome Machine (PGM) Sequencer. A control group of 16 samples with previously known mutations and a test group of 10 patients with unknown mutations were included for assay validation and application, respectively. RESULTS In the test group, we identified pathogenic mutations in all cases: four patients had novel mutations in genes related to membrane defects (SPTB, ANK1, SLC4A1 and EPB41), four were homozygous or compound heterozygous for mutations in genes related to enzyme deficiencies (GPI, TPI1 and GSS), one had a mutation in the HBB gene and another presented a homozygous mutation in the ADAMTS13 gene. CONCLUSIONS Ion PGM sequencing with our custom panel is a highly efficient way to detect mutations causing haemolytic anaemia, including new variations. It is a high-throughput detection method that is ready for application in clinical laboratories.
Collapse
Affiliation(s)
| | - B Arrizabalaga
- BioCruces Health Research Institute, Barakaldo, Spain.,Department of Haematology, Cruces University Hospital, Barakaldo, Spain
| | - A B De la Hoz
- BioCruces Health Research Institute, Barakaldo, Spain
| | - Á García-Orad
- BioCruces Health Research Institute, Barakaldo, Spain.,Department of Genetics, Physical Anthropology and Animal Physiology, Faculty of Medicine and Odontology, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - M I Tejada
- BioCruces Health Research Institute, Barakaldo, Spain.,Molecular Genetics Laboratory, Genetics Service, Cruces University Hospital, Barakaldo, Spain
| | - J C Garcia-Ruiz
- BioCruces Health Research Institute, Barakaldo, Spain.,Department of Haematology, Cruces University Hospital, Barakaldo, Spain
| | - T Fidalgo
- Serviço de Hematologia Clínica, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - C Bento
- Serviço de Hematologia Clínica, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| | - L Manco
- Research Centre for Anthropology and Health (CIAS), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - M L Ribeiro
- Serviço de Hematologia Clínica, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
| |
Collapse
|
20
|
Badar S, Busti F, Ferrarini A, Xumerle L, Bozzini P, Capelli P, Pozzi-Mucelli R, Campostrini N, De Matteis G, Marin Vargas S, Giorgetti A, Delledonne M, Olivieri O, Girelli D. Identification of novel mutations in hemochromatosis genes by targeted next generation sequencing in Italian patients with unexplained iron overload. Am J Hematol 2016; 91:420-5. [PMID: 26799139 DOI: 10.1002/ajh.24304] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/08/2016] [Accepted: 01/13/2016] [Indexed: 12/14/2022]
Abstract
Hereditary hemochromatosis, one of the commonest genetic disorder in Caucasians, is mainly associated to homozygosity for the C282Y mutation in the HFE gene, which is highly prevalent (allele frequency up to near 10% in Northern Europe) and easily detectable through a widely available "first level" molecular test. However, in certain geographical regions like the Mediterranean area, up to 30% of patients with a HH phenotype has a negative or non-diagnostic (i.e. simple heterozygosity) test, because of a known heterogeneity involving at least four other genes (HAMP, HJV, TFR2, and SLC40A1). Mutations in such genes are generally rare/private, making the diagnosis of atypical HH essentially a matter of exclusion in clinical practice (from here the term of "non-HFE" HH), unless cumbersome traditional sequencing is applied. We developed a Next Generation Sequencing (NGS)-based test targeting the five HH genes, and applied it to patients with clinically relevant iron overload (IO) and a non-diagnostic first level genetic test. We identified several mutations, some of which were novel (i.e. HFE W163X, HAMP R59X, and TFR2 D555N) and allowed molecular reclassification of "non-HFE" HH clinical diagnosis, particularly in some highly selected IO patients without concurring acquired risk factors. This NGS-based "second level" genetic test may represent a useful tool for molecular diagnosis of HH in patients in whom HH phenotype remains unexplained after the search of common HFE mutations.
Collapse
Affiliation(s)
- Sadaf Badar
- Department of Medicine; Section of Internal Medicine, University of Verona; Verona Italy
| | - Fabiana Busti
- Department of Medicine; Section of Internal Medicine, University of Verona; Verona Italy
| | | | - Luciano Xumerle
- Department of Biotechnology; University of Verona; Verona Italy
| | - Paolo Bozzini
- Department of Medicine; Section of Internal Medicine, University of Verona; Verona Italy
| | - Paola Capelli
- Unit of Pathology, Azienda Ospedaliera Universitaria Integrata Verona; Verona Italy
| | - Roberto Pozzi-Mucelli
- Department of Diagnostics and Public Health; Section of Radiology, University of Verona; Verona Italy
| | - Natascia Campostrini
- Department of Medicine; Section of Internal Medicine, University of Verona; Verona Italy
| | - Giovanna De Matteis
- Unit of Clinical Chemistry, Azienda Ospedaliera Universitaria Integrata Verona; Verona Italy
| | | | | | | | - Oliviero Olivieri
- Department of Medicine; Section of Internal Medicine, University of Verona; Verona Italy
| | - Domenico Girelli
- Department of Medicine; Section of Internal Medicine, University of Verona; Verona Italy
- Veneto Regional Referral Center for Iron Metabolism Disorders, GIMFer (Gruppo Interdisciplinare Sulle Malattie Del Ferro); Azienda Ospedaliera Uiversitaria Integrata Verona; Verona Italy
| |
Collapse
|