1
|
Chen G, Hu X, Huang Y, Xiang X, Pan S, Chen R, Xu X. Role of the immune system in liver transplantation and its implications for therapeutic interventions. MedComm (Beijing) 2023; 4:e444. [PMID: 38098611 PMCID: PMC10719430 DOI: 10.1002/mco2.444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 11/23/2023] [Accepted: 11/24/2023] [Indexed: 12/17/2023] Open
Abstract
Liver transplantation (LT) stands as the gold standard for treating end-stage liver disease and hepatocellular carcinoma, yet postoperative complications continue to impact survival rates. The liver's unique immune system, governed by a microenvironment of diverse immune cells, is disrupted during processes like ischemia-reperfusion injury posttransplantation, leading to immune imbalance, inflammation, and subsequent complications. In the posttransplantation period, immune cells within the liver collaboratively foster a tolerant environment, crucial for immune tolerance and liver regeneration. While clinical trials exploring cell therapy for LT complications exist, a comprehensive summary is lacking. This review provides an insight into the intricacies of the liver's immune microenvironment, with a specific focus on macrophages and T cells as primary immune players. Delving into the immunological dynamics at different stages of LT, we explore the disruptions after LT and subsequent immune responses. Focusing on immune cell targeting for treating liver transplant complications, we provide a comprehensive summary of ongoing clinical trials in this domain, especially cell therapies. Furthermore, we offer innovative treatment strategies that leverage the opportunities and prospects identified in the therapeutic landscape. This review seeks to advance our understanding of LT immunology and steer the development of precise therapies for postoperative complications.
Collapse
Affiliation(s)
- Guanrong Chen
- The Fourth School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Xin Hu
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Yingchen Huang
- The Fourth School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Xiaonan Xiang
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Sheng Pan
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
| | - Ronggao Chen
- Department of Hepatobiliary and Pancreatic SurgeryThe First Affiliated HospitalZhejiang University School of MedicineHangzhouChina
| | - Xiao Xu
- Zhejiang University School of MedicineHangzhouChina
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang ProvinceHangzhouChina
- Zhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
2
|
Fu S, Liu M, Zhu C, Zhang H, Zhao C, Xie Y, Chen G, Sheng D, Pan J, He Z, Dai Y, Gao Y, Li X, Chen L, Qian Y, Jin T, Sun C, Tian Z, Wang H, Bai L. Regulatory mucosa-associated invariant T cells controlled by β1 adrenergic receptor signaling contribute to hepatocellular carcinoma progression. Hepatology 2023; 78:72-87. [PMID: 36626624 DOI: 10.1097/hep.0000000000000014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 09/30/2022] [Indexed: 01/12/2023]
Abstract
BACKGROUND AND AIMS The innate-like mucosa-associated invariant T (MAIT) cells are enriched in human liver and have been linked to human HCC. However, their contributions to the progression of HCC are controversial due to the heterogeneity of MAIT cells, and new MAIT cell subsets remain to be explored. APPROACH AND RESULTS Combining single cell RNA sequencing (scRNA-seq) and flow cytometry analysis, we performed phenotypic and functional studies and found that FOXP3 + CXCR3 + MAIT cells in HCC patients were regulatory MAIT cells (MAITregs) with high immunosuppressive potential. These MAITregs were induced under Treg-inducing condition and predominantly from FOXP3 - CXCR3 + MAIT cells, which displayed mild Treg-related features and represented a pre-MAITreg reservoir. In addition, the induction and function of MAITregs were promoted by β1 adrenergic receptor signaling in pre-MAITregs and MAITregs, respectively. In HCC patients, high proportion of the intratumoral MAITregs inhibited antitumor immune responses and was associated with poor clinical outcomes. CONCLUSIONS Together, we reveal an immunosuppressive subset of MAIT cells in HCC patients that contributes to HCC progression, and propose a control through neuroimmune crosstalk.
Collapse
Affiliation(s)
- Sicheng Fu
- Division of Life Sciences and Medicine, Department of Oncology of the First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China
| | - Muziying Liu
- School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China
- Anhui Institute of Pediatric Research, Anhui Provincial Children's Hospital, Hefei, China
| | - Chenwen Zhu
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Huimin Zhang
- Division of Life Sciences and Medicine, Department of Oncology of the First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China
- School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China
| | - Changfeng Zhao
- School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China
| | - Yaping Xie
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Guanghou Chen
- Department of General Surgery, Organ Transplantation Center, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Daping Sheng
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jun Pan
- School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China
| | - Ziqing He
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ying Dai
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yufeng Gao
- Department of Infectious Disease, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaomei Li
- Division of Life Sciences and Medicine, Department of Rheumatology and Immunology, the First Affiliated Hospital, University of Science and Technology of China, Hefei, China
| | - Lijian Chen
- Department of Anesthesiology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yeben Qian
- Department of General Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Tengchuan Jin
- School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China
| | - Cheng Sun
- School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China
| | - Zhigang Tian
- School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Medical University, Hefei, China
| | - Li Bai
- Division of Life Sciences and Medicine, Department of Oncology of the First Affiliated Hospital, the CAS Key Laboratory of Innate Immunity and Chronic Disease, University of Science and Technology of China, Hefei, China
- School of Basic Medical Sciences, University of Science and Technology of China, Hefei, China
- Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, China
| |
Collapse
|
3
|
Chen R, Tang R, Ma X, Gershwin ME. Immunologic Responses and the Pathophysiology of Primary Biliary Cholangitis. Clin Liver Dis 2022; 26:583-611. [PMID: 36270718 DOI: 10.1016/j.cld.2022.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Primary biliary cholangitis (PBC) is an autoimmune liver disease with a female predisposition and selective destruction of intrahepatic small bile ducts leading to nonsuppurative destructive cholangitis. It is characterized by seropositivity of antimitochondrial antibodies or PBC-specific antinuclear antibodies, progressive cholestasis, and typical liver histologic manifestations. Destruction of the protective bicarbonate-rich umbrella is attributed to the decreased expression of membrane transporters in biliary epithelial cells (BECs), leading to the accumulation of hydrophobic bile acids and sensitizing BECs to apoptosis. A recent X-wide association study reveals a novel risk locus on the X chromosome, which reiterates the importance of Treg cells.
Collapse
Affiliation(s)
- Ruiling Chen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Ruqi Tang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China
| | - Xiong Ma
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China.
| | - M Eric Gershwin
- Division of Rheumatology-Allergy and Clinical Immunology, University of California at Davis, 451 Health Sciences Drive, Suite 6510, Davis, CA 95616, USA.
| |
Collapse
|
4
|
Jones DEJ, Wetten A, Barron-Millar B, Ogle L, Mells G, Flack S, Sandford R, Kirby J, Palmer J, Brotherston S, Jopson L, Brain J, Smith GR, Rushton S, Jones R, Rushbrook S, Thorburn D, Ryder SD, Hirschfield G, Dyson JK. The relationship between disease activity and UDCA response criteria in primary biliary cholangitis: A cohort study. EBioMedicine 2022; 80:104068. [PMID: 35609437 PMCID: PMC9130524 DOI: 10.1016/j.ebiom.2022.104068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Uncertainty exists about how best to identify primary biliary cholangitis (PBC) patients who would benefit from second-line therapy. Existing, purely clinical, ursodeoxycholic acid (UDCA) response criteria accept degrees of liver biochemistry abnormality in responding patients, emerging data, however, suggest that any degree of ongoing abnormality may, in fact, be associated with an increased risk of adverse outcomes. This cohort study explores the link between response status, the biology of high-risk disease and its implications for clinical practice. METHODS Proteomics, exploring 19 markers previously identified as remaining elevated in PBC following UDCA therapy, were performed on 400 serum samples, from participants previously recruited to the UK-PBC Nested Cohort between 2014 and 2019. All participants had an established diagnosis of PBC and were taking therapeutic doses of UDCA for greater than 12 months. UDCA response status was assessed using Paris 1, Paris 2 and the POISE criteria, with additional analyses using normal liver blood tests stratified by bilirubin level. Statistical analysis using parametric t tests and 1-way ANOVA. FINDINGS Disease markers were statistically significantly higher in UDCA non-responders than in responders for all the UDCA response criteria, suggesting a meaningful link between biochemical disease status and disease mechanism. For each of the criteria, however, marker levels were also statistically significantly higher in responders with ongoing liver function test abnormality compared to those who had normalised their liver biochemistry. IL-4RA, IL-18-R1, CXCL11, 9 and 10, CD163 and ACE2 were consistently elevated across all responder groups with ongoing LFT abnormality. No statistically significant differences occurred between markers in normal LFT groups stratified by bilirubin level. INTERPRETATION This study provides evidence that any ongoing elevation in alkaline phosphatase levels in PBC after UDCA therapy is associated with some degree of ongoing disease activity. There was no difference in activity between patients with normal LFT when stratified by bilirubin. These findings suggest that if our goal is to completely control disease activity in PBC, then normalisation of alkaline phosphatase and bilirubin should be the treatment target. This would also simplify messaging around goals of therapy in PBC, benefiting both patients and clinicians. FUNDING Funding by the UK Medical Research Council (Stratified Medicine Programme) and an independent research grant by Pfizer. The study funders played no role in the study design, data collection, data analyses, data interpretation or manuscript writing.
Collapse
Affiliation(s)
- David E J Jones
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom.
| | - Aaron Wetten
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom; Freeman Hospital, Newcastle-upon-Tyne, United Kingdom
| | - Ben Barron-Millar
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Laura Ogle
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - George Mells
- Dept of Human Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Steven Flack
- Dept of Human Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Richard Sandford
- Dept of Human Genetics, University of Cambridge, Cambridge, United Kingdom
| | - John Kirby
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Jeremy Palmer
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Sophie Brotherston
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Laura Jopson
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - John Brain
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Graham R Smith
- Bioinformatics Support Unit (BSU), Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Steve Rushton
- School of Natural and Environmental Science, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Rebecca Jones
- Liver Unit, St James' Hospital, Leeds, United Kingdom
| | - Simon Rushbrook
- University Department of Hepatology, UEA Medical School, Norwich, United Kingdom
| | | | - Stephen D Ryder
- NIHR Nottingham Biomedical Research centre at Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Gideon Hirschfield
- Queen Elizabeth Hospital, Birmingham, United Kingdom; Toronto Centre for Liver Disease, University of Toronto, Toronto, Canada
| | - Jessica K Dyson
- Translational and Clinical Research Institute, Newcastle University, Newcastle-upon-Tyne, United Kingdom; Freeman Hospital, Newcastle-upon-Tyne, United Kingdom
| |
Collapse
|
5
|
Vacani-Martins N, Meuser-Batista M, dos Santos CDLP, Hasslocher-Moreno AM, Henriques-Pons A. The Liver and the Hepatic Immune Response in Trypanosoma cruzi Infection, a Historical and Updated View. Pathogens 2021; 10:pathogens10091074. [PMID: 34578107 PMCID: PMC8465576 DOI: 10.3390/pathogens10091074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/05/2021] [Accepted: 08/11/2021] [Indexed: 12/12/2022] Open
Abstract
Chagas disease was described more than a century ago and, despite great efforts to understand the underlying mechanisms that lead to cardiac and digestive manifestations in chronic patients, much remains to be clarified. The disease is found beyond Latin America, including Japan, the USA, France, Spain, and Australia, and is caused by the protozoan Trypanosoma cruzi. Dr. Carlos Chagas described Chagas disease in 1909 in Brazil, and hepatomegaly was among the clinical signs observed. Currently, hepatomegaly is cited in most papers published which either study acutely infected patients or experimental models, and we know that the parasite can infect multiple cell types in the liver, especially Kupffer cells and dendritic cells. Moreover, liver damage is more pronounced in cases of oral infection, which is mainly found in the Amazon region. However, the importance of liver involvement, including the hepatic immune response, in disease progression does not receive much attention. In this review, we present the very first paper published approaching the liver's participation in the infection, as well as subsequent papers published in the last century, up to and including our recently published results. We propose that, after infection, activated peripheral T lymphocytes reach the liver and induce a shift to a pro-inflammatory ambient environment. Thus, there is an immunological integration and cooperation between peripheral and hepatic immunity, contributing to disease control.
Collapse
Affiliation(s)
- Natalia Vacani-Martins
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-361, Brazil; (N.V.-M.); (C.d.L.P.d.S.)
| | - Marcelo Meuser-Batista
- Depto de Anatomia Patológica e Citopatologia, Instituto Fernandes Figueira, Fundação Oswaldo Cruz, Rio de Janeiro 22250-020, Brazil;
| | - Carina de Lima Pereira dos Santos
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-361, Brazil; (N.V.-M.); (C.d.L.P.d.S.)
| | | | - Andrea Henriques-Pons
- Laboratório de Inovações em Terapias, Ensino e Bioprodutos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro 21041-361, Brazil; (N.V.-M.); (C.d.L.P.d.S.)
- Correspondence:
| |
Collapse
|
6
|
Shi J, Zhou J, Zhang X, Hu W, Zhao JF, Wang S, Wang FS, Zhang JY. Single-Cell Transcriptomic Profiling of MAIT Cells in Patients With COVID-19. Front Immunol 2021; 12:700152. [PMID: 34394094 PMCID: PMC8363247 DOI: 10.3389/fimmu.2021.700152] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/19/2021] [Indexed: 12/19/2022] Open
Abstract
Background Mucosal-associated invariant T (MAIT) cells are considered to participate of the host immune response against acute severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection; however, single-cell transcriptomic profiling of MAIT cells in patients with COVID-19 remains unexplored. Methods We performed single-cell RNA sequencing analyses on peripheral MAIT cells from 13 patients with COVID-19 and 5 healthy donors. The transcriptional profiles of MAIT cells, together with assembled T-cell receptor sequences, were analyzed. Flow cytometry analysis was also performed to investigate the properties of MAIT cells. Results We identified that differentially expressed genes (DEGs) of MAIT cells were involved in myeloid leukocyte activation and lymphocyte activation in patients with COVID-19. In addition, in MAIT cells from severe cases, more DEGs were enriched in adaptive cellular and humoral immune responses compared with those in moderate cases. Further analysis indicated that the increase of cell cytotoxicity (killing), chemotaxis, and apoptosis levels in MAIT cells were consistent with disease severity and displayed the highest levels in patients with severe disease. Interestingly, flow cytometry analysis showed that the frequencies of pyroptotic MAIT cells, but not the frequencies of apoptotic MAIT cells, were increased significantly in patients with COVID-19, suggesting pyroptosis is one of leading causes of MAIT cell deaths during SARS-CoV-2 infection. Importantly, there were more clonal expansions of MAIT cells in severe cases than in moderate cases. Conclusions The results of the present study suggest that MAIT cells are likely to be involved in the host immune response against SARS-CoV-2 infection. Simultaneously, the transcriptomic data from MAIT cells provides a deeper understanding of the immune pathogenesis of the disease.
Collapse
Affiliation(s)
- Jijing Shi
- Key Medical Laboratory of Stem Cell Transformation and Application, The First People's Hospital of Zhengzhou, Zhengzhou, China.,Department of Infectious Diseases, Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Jianglin Zhou
- Beijing Institute of Radiation Medicine, Beijing, China
| | | | - Wei Hu
- Department of Infectious Diseases, Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China.,Medical School of Chinese People's Liberation Army (PLA), Beijing, China
| | - Jin-Fang Zhao
- Department of Infectious Diseases, Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| | - Shengqi Wang
- Beijing Institute of Radiation Medicine, Beijing, China
| | - Fu-Sheng Wang
- Department of Infectious Diseases, Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China.,Medical School of Chinese People's Liberation Army (PLA), Beijing, China
| | - Ji-Yuan Zhang
- Department of Infectious Diseases, Fifth Medical Center of Chinese People's Liberation Army (PLA) General Hospital, National Clinical Research Center for Infectious Diseases, Beijing, China
| |
Collapse
|
7
|
Gebru YA, Choi MR, Raja G, Gupta H, Sharma SP, Choi YR, Kim HS, Yoon SJ, Kim DJ, Suk KT. Pathophysiological Roles of Mucosal-Associated Invariant T Cells in the Context of Gut Microbiota-Liver Axis. Microorganisms 2021; 9:296. [PMID: 33535703 PMCID: PMC7912788 DOI: 10.3390/microorganisms9020296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
Mucosal-associated invariant T (MAIT) cells are a subset of T lymphocytes expressing a semi-invariant T-cell receptor (TCR) present as TCR Vα7.2-Jα33 in humans and TCR Vα19-Jα33 in mice. They are activated by ligands produced during microbial biosynthesis of riboflavin that is presented by major histocompatibility complex class I-related (MR1) molecules on antigen-presenting cells. MAIT cells also possess interleukin (IL)-12 and IL-18 receptors and can be activated by the respective cytokines released from microbially stimulated antigen-presenting cells. Therefore, MAIT cells can be involved in bacterial and viral defenses and are a significant part of the human immune system. They are particularly abundant in the liver, an organ serving as the second firewall of gut microbes next to the intestinal barrier. Therefore, the immune functions of MAIT cells are greatly impacted by changes in the gut-microbiota and play important roles in the gut-liver pathogenesis axis. In this review, we discuss the nature and mechanisms of MAIT cell activation and their dynamics during different types of liver pathogenesis conditions. We also share our perspectives on important aspects that should be explored further to reveal the exact roles that MAIT cells play in liver pathogenesis in the context of the gut microbiota.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ki Tae Suk
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon 24252, Korea; (Y.A.G.); (M.R.C.); (G.R.); (H.G.); (S.P.S.); (Y.R.C.); (H.S.K.); (S.J.Y.); (D.J.K.)
| |
Collapse
|
8
|
Terziroli Beretta-Piccoli B, Mieli-Vergani G, Vergani D, Vierling JM, Adams D, Alpini G, Banales JM, Beuers U, Björnsson E, Bowlus C, Carbone M, Chazouillères O, Dalekos G, De Gottardi A, Harada K, Hirschfield G, Invernizzi P, Jones D, Krawitt E, Lanzavecchia A, Lian ZX, Ma X, Manns M, Mavilio D, Quigley EM, Sallusto F, Shimoda S, Strazzabosco M, Swain M, Tanaka A, Trauner M, Tsuneyama K, Zigmond E, Gershwin ME. The challenges of primary biliary cholangitis: What is new and what needs to be done. J Autoimmun 2019; 105:102328. [PMID: 31548157 DOI: 10.1016/j.jaut.2019.102328] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 08/18/2019] [Accepted: 08/20/2019] [Indexed: 02/06/2023]
Abstract
Primary Biliary Cholangitis (PBC) is an uncommon, chronic, cholangiopathy of autoimmune origin and unknown etiology characterized by positive anti-mitochondrial autoantibodies (AMA), female preponderance and progression to cirrhosis if left untreated. The diagnosis is based on AMA- or PBC-specific anti-nuclear antibody (ANA)-positivity in the presence of a cholestatic biochemical profile, histologic confirmation being mandatory only in seronegative cases. First-line treatment is ursodeoxycholic acid (UDCA), which is effective in preventing disease progression in about two thirds of the patients. The only approved second-line treatment is obeticholic acid. This article summarizes the most relevant conclusions of a meeting held in Lugano, Switzerland, from September 23rd-25th 2018, gathering basic and clinical scientists with various background from around the world to discuss the latest advances in PBC research. The meeting was dedicated to Ian Mackay, pioneer in the field of autoimmune liver diseases. The role of liver histology needs to be reconsidered: liver pathology consistent with PBC in AMA-positive individuals without biochemical cholestasis is increasingly reported, raising the question as to whether biochemical cholestasis is a reliable disease marker for both clinical practice and trials. The urgent need for new biomarkers, including more accurate markers of cholestasis, was also widely discussed during the meeting. Moreover, new insights in interactions of bile acids with biliary epithelia in PBC provide solid evidence of a role for impaired epithelial protection against potentially toxic hydrophobic bile acids, raising the fundamental question as to whether this bile acid-induced epithelial damage is the cause or the consequence of the autoimmune attack to the biliary epithelium. Strategies are needed to identify difficult-to-treat patients at an early disease stage, when new therapeutic approaches targeting immunologic pathways, in addition to bile acid-based therapies, may be effective. In conclusion, using interdisciplinary approaches, groundbreaking advances can be expected before long in respect to our understanding of the etiopathogenesis of PBC, with the ultimate aim of improving its treatment.
Collapse
Affiliation(s)
- Benedetta Terziroli Beretta-Piccoli
- Epatocentro Ticino, Lugano, Switzerland; Institute of Liver Studies, MowatLabs, King's College Hospital, London, UK; European Reference Network ERN RARE-LIVER.
| | - Giorgina Mieli-Vergani
- Paediatric Liver, GI and Nutrition Centre, MowatLabs, King's College Hospital, London, UK
| | - Diego Vergani
- Institute of Liver Studies, MowatLabs, King's College Hospital, London, UK
| | - John M Vierling
- Division of Abdominal Transplantation and Section of Gastroenterology and Hepatology, Departments of Medicine and Surgery, Baylor College of Medicine, Houston, TX, USA
| | - David Adams
- Birmingham NIHR Biomedical Research Centre, Institute of Immunology and Immunotherapy, College of Medical and Dental SciencesMedical School, University of Birmingham, Birmingham, UK
| | - Gianfranco Alpini
- Indiana Center for Liver Research, Richard L. Roudebush VA Medical Center and Indiana University, Indianapolis, IN, USA
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), CIBERehd, Ikerbasque, San Sebastián, Spain
| | - Ulrich Beuers
- European Reference Network ERN RARE-LIVER; Department of Gastroenterology & Hepatology and Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Einar Björnsson
- Division of Gastroenterology and Hepatology, Landspitali the National University Hospital of Iceland, Reykjavík, Iceland
| | - Christopher Bowlus
- Division of Gastroenterology and Hepatology, University of California at Davis School of Medicine, Davis, CA, USA
| | - Marco Carbone
- Division Gastroenterology and Center for Autoimmune Liver Diseases, University of Milan-Bicocca School of Medicine, Monza, Italy
| | - Olivier Chazouillères
- European Reference Network ERN RARE-LIVER; Service d'Hépatologie, Hôpital Saint-Antoine, Paris, France
| | - George Dalekos
- Institute of Internal Medicine and Hepatology, Department of Medicine and Research, Laboratory of Internal Medicine, School of Medicine, University of Thessaly, Larissa, Greece
| | - Andrea De Gottardi
- European Reference Network ERN RARE-LIVER; Epatocentro Ticino & Division of Gastroenterology and Hepatology Ente Ospedaliero Cantonale and Università della Svizzera Italiana, Lugano, Switzerland
| | - Kenichi Harada
- Department of Human Pathology, Kanazawa University Graduate School of Medical Sciences, Kanazawa, Japan
| | - Gideon Hirschfield
- Toronto Centre for Liver Disease, University Health Network and University of Toronto, Toronto, Canada
| | - Pietro Invernizzi
- European Reference Network ERN RARE-LIVER; Division Gastroenterology and Center for Autoimmune Liver Diseases, University of Milan-Bicocca School of Medicine, Monza, Italy
| | - David Jones
- Institute of Cellular Medicine and NIHR Newcastle Biomedical Research Centre, Newcastle University, Newcastle upon Tyne, UK
| | - Edward Krawitt
- Department of Medicine, University of Vermont, Burlington, VT, USA
| | | | - Zhe-Xiong Lian
- Institutes for Life Sciences, South China University of Technology, Higher Education Mega Center, Guangzhou, China
| | - Xiong Ma
- Shanghai Institute of Digestive Disease, Renji Hospital, Jiao Tong University School of Medicine, Shanghai, China
| | - Michael Manns
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
| | - Domenico Mavilio
- Unit of Clinical and Experimental Immunology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy; Department of Medical Biotechnologies and Translational Medicine (BioMeTra), University of Milan, Italy
| | - Eamon Mm Quigley
- Lynda K. and David M. Underwood Center for Digestive Disorders, Houston Methodist Hospital and Weill Cornell Medical College, Houston, TX, USA
| | - Federica Sallusto
- Institute for Research in Biomedicine (IRB), Bellinzona, Switzerland
| | - Shinji Shimoda
- Medicine and Biosystemic Science, Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan
| | - Mario Strazzabosco
- Liver Center, Department of Medicine, Yale University, New Haven, CT, USA
| | - Mark Swain
- Department of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Atsushi Tanaka
- Department of Medicine, Teikyo University School of Medicine, Tokyo, Japan
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Koichi Tsuneyama
- Department of Pathology and Laboratory Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Ehud Zigmond
- Research Center for Digestive Tract and Liver Diseases, Tel-Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - M Eric Gershwin
- Division of Rheumatology, Allergy and Clinical Immunology, University of California at Davis School of Medicine, Davis, California, USA.
| |
Collapse
|
9
|
Obesity and gastrointestinal cancer: the interrelationship of adipose and tumour microenvironments. Nat Rev Gastroenterol Hepatol 2018; 15:699-714. [PMID: 30323319 DOI: 10.1038/s41575-018-0069-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Increasing recognition of an association between obesity and many cancer types exists, but how the myriad of local and systemic effects of obesity affect key cellular and non-cellular processes within the tumour microenvironment (TME) relevant to carcinogenesis, tumour progression and response to therapies remains poorly understood. The TME is a complex cellular environment in which the tumour exists along with blood vessels, immune cells, fibroblasts, bone marrow-derived inflammatory cells, signalling molecules and the extracellular matrix. Obesity, in particular visceral obesity, might fuel the dysregulation of key pathways relevant to both the adipose microenvironment and the TME, which interact to promote carcinogenesis in at-risk epithelium. The tumour-promoting effects of obesity can occur at the local level as well as systemically via circulating inflammatory, growth factor and metabolic mediators associated with adipose tissue inflammation, as well as paracrine and autocrine effects. This Review explores key pathways linking visceral obesity and gastrointestinal cancer, including inflammation, hypoxia, altered stromal and immune cell function, energy metabolism and angiogenesis.
Collapse
|
10
|
Atif M, Warner S, Oo YH. Linking the gut and liver: crosstalk between regulatory T cells and mucosa-associated invariant T cells. Hepatol Int 2018; 12:305-314. [PMID: 30027532 PMCID: PMC6097019 DOI: 10.1007/s12072-018-9882-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/12/2018] [Indexed: 12/11/2022]
Abstract
The gut–liver axis is increasingly considered to play a vital part in the progression of chronic inflammatory gut and liver diseases. Hence, a detailed understanding of the local and systemic regulatory mechanisms is crucial to develop novel therapeutic approaches. In this review, we discuss in-depth the roles of regulatory T cells (Tregs) and mucosal-associated invariant T cells (MAITs) within the context of inflammatory bowel disease, primary sclerosing cholangitis, and non-alcoholic steatohepatitis. Tregs are crucial in maintaining peripheral tolerance and preventing autoimmunity. MAIT cells have a unique ability to rapidly recognize microbial metabolites and mount a local immune response and act as a ‘biliary firewall’ at the gut and biliary epithelial barrier. We also outline how current knowledge can be exploited to develop novel therapies to control the propagation of chronic gut- and liver-related inflammatory and autoimmune conditions. We specifically focus on the nature of the Tregs’ cell therapy product and outline an adjunctive role for low-dose IL-2. All in all, it is clear that translational immunology is at crucial crossroads. The success of ongoing clinical trials in cellular therapies for inflammatory gut and liver conditions could revolutionize the treatment of these conditions and the lives of our patients in the coming years.
Collapse
Affiliation(s)
- Muhammad Atif
- Centre for Liver Research and National Institute of Health Research Liver Biomedical Research Centre Birmingham, Institute of Immunology and lmmunotherapy, University of Birmingham, Birmingham, UK.,Academic Department of Surgery, University of Birmingham, Birmingham, UK
| | - Suz Warner
- Centre for Liver Research and National Institute of Health Research Liver Biomedical Research Centre Birmingham, Institute of Immunology and lmmunotherapy, University of Birmingham, Birmingham, UK
| | - Ye H Oo
- Centre for Liver Research and National Institute of Health Research Liver Biomedical Research Centre Birmingham, Institute of Immunology and lmmunotherapy, University of Birmingham, Birmingham, UK. .,Liver Transplant and Hepatobiliary Unit, University Hospital of Birmingham NHS Foundation Trust, Birmingham, UK.
| |
Collapse
|
11
|
Gao B, Ma J, Xiang X. MAIT cells: a novel therapeutic target for alcoholic liver disease? Gut 2018; 67:784-786. [PMID: 29167178 DOI: 10.1136/gutjnl-2017-315284] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 11/08/2017] [Accepted: 11/11/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Jing Ma
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Xiaogang Xiang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
12
|
Rouxel O, Lehuen A. Mucosal-associated invariant T cells in autoimmune and immune-mediated diseases. Immunol Cell Biol 2018; 96:618-629. [DOI: 10.1111/imcb.12011] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Ophélie Rouxel
- INSERM U1016; Institut Cochin; Paris France
- Université Paris Descartes; Paris France
- CNRS; UMR8104; Paris France
- Laboratoire d'Excellence INFLAMEX; Sorbonne Paris Cité France
| | - Agnès Lehuen
- INSERM U1016; Institut Cochin; Paris France
- Université Paris Descartes; Paris France
- CNRS; UMR8104; Paris France
- Laboratoire d'Excellence INFLAMEX; Sorbonne Paris Cité France
| |
Collapse
|
13
|
Cytotoxic and regulatory roles of mucosal-associated invariant T cells in type 1 diabetes. Nat Immunol 2017; 18:1321-1331. [PMID: 28991267 DOI: 10.1038/ni.3854] [Citation(s) in RCA: 184] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 09/13/2017] [Indexed: 12/11/2022]
Abstract
Type 1 diabetes (T1D) is an autoimmune disease that results from the destruction of pancreatic β-cells by the immune system that involves innate and adaptive immune cells. Mucosal-associated invariant T cells (MAIT cells) are innate-like T-cells that recognize derivatives of precursors of bacterial riboflavin presented by the major histocompatibility complex (MHC) class I-related molecule MR1. Since T1D is associated with modification of the gut microbiota, we investigated MAIT cells in this pathology. In patients with T1D and mice of the non-obese diabetic (NOD) strain, we detected alterations in MAIT cells, including increased production of granzyme B, which occurred before the onset of diabetes. Analysis of NOD mice that were deficient in MR1, and therefore lacked MAIT cells, revealed a loss of gut integrity and increased anti-islet responses associated with exacerbated diabetes. Together our data highlight the role of MAIT cells in the maintenance of gut integrity and the control of anti-islet autoimmune responses. Monitoring of MAIT cells might represent a new biomarker of T1D, while manipulation of these cells might open new therapeutic strategies.
Collapse
|