1
|
Tsoulia T, Sundaram AY, Amundsen MM, Rimstad E, Wessel Ø, Jørgensen JB, Dahle MK. Comparison of transcriptome responses in blood cells of Atlantic salmon infected by three genotypes of Piscine orthoreovirus. FISH & SHELLFISH IMMUNOLOGY 2025; 157:110088. [PMID: 39662648 DOI: 10.1016/j.fsi.2024.110088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
Piscine orthoreovirus (PRV) infection is common in aquaculture of salmonids. The three known PRV genotypes (PRV-1-3) have host species specificity and cause different diseases, but all infect and replicate in red blood cells (RBCs) in early infection phase. PRV-1 is the causative agent of heart and skeletal muscle inflammation (HSMI) in farmed Atlantic salmon (Salmo salar), PRV-2 causes erythrocytic inclusion body syndrome (EIBS) in coho salmon (Oncorhynchus kisutch), while PRV-3 induces HSMI-like disease in farmed rainbow trout (Oncorhynchus mykiss). PRV-3 can also infect A. salmon without causing clinical disease and has been shown to cross-protect against PRV-1 infection and HSMI, while PRV-2 or inactivated adjuvanted PRV-1 vaccine only partially reduced HSMI pathologic changes. In the present work, we studied the transcriptional responses in blood cells of A. salmon two- and five-weeks post infection with PRV-1, PRV-2, PRV-3, or post injection with inactivated PRV-1 vaccine. PRV-1 and PRV-3 replicated well in A. salmon blood cells, and both induced the typical innate antiviral responses triggered by dsRNA viruses. Two weeks post infection, PRV-3 triggered stronger antiviral responses than PRV-1, despite their similar viral RNA replication levels, but after five weeks the induced responses were close to equal. PRV-2 and the InPRV-1 vaccine did not trigger the same typical antiviral responses as the replicating PRV-1 and PRV-3 genotypes, but induced genes involved in membrane trafficking and signaling pathways that may regulate physiological functions. These findings propose that the protection mediated by PRV-3 against a secondary infection by PRV-1 occur due to a potent and early activation of the same type of innate immune responses. The difference in the timing of antiviral responses may give PRV-1 an evolutionary edge, facilitating its dissemination to A. salmon heart, a critical step for HSMI development.
Collapse
Affiliation(s)
- Thomais Tsoulia
- Departments of Aquatic Animal Health and Analysis and Diagnostics, Norwegian Veterinary Institute, Ås, Norway; Department of Biotechnology, Fisheries and Economy, UiT Arctic University of Norway, Tromsø, Norway.
| | - Arvind Ym Sundaram
- Departments of Aquatic Animal Health and Analysis and Diagnostics, Norwegian Veterinary Institute, Ås, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Marit M Amundsen
- Departments of Aquatic Animal Health and Analysis and Diagnostics, Norwegian Veterinary Institute, Ås, Norway
| | - Espen Rimstad
- Department of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Øystein Wessel
- Department of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Jorunn B Jørgensen
- Department of Biotechnology, Fisheries and Economy, UiT Arctic University of Norway, Tromsø, Norway
| | - Maria K Dahle
- Departments of Aquatic Animal Health and Analysis and Diagnostics, Norwegian Veterinary Institute, Ås, Norway; Department of Biotechnology, Fisheries and Economy, UiT Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
2
|
Ortega MF, Bonamy M, Cutullé C, Giovambattista G. Exploring the biological responses involved in the genetic resistance to Rhipicephalus microplus in Argentine Creole cattle. Trop Anim Health Prod 2024; 56:289. [PMID: 39331163 DOI: 10.1007/s11250-024-04110-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
The common cattle tick Rhipicephalus microplus causes severe limitations to livestock production. Bovine genetics could be a decisive component for the success or failure of control programs for ticks and diseases transmitted. The objective of this work was to detect chromosomal regions associated with host resistance to R. microplus through an associative mapping study using medium and high density microarrays in a population of Argentine Creole cattle. The phenotypic record of the number of ticks that completed their development on the host, after artificial infestations, was obtained during 2015 to 2020. Genomic DNA was extracted for genotyping from 192 animals using Affymetrix high (Axiom™ Bos 1) and medium density (ArBos1) microarrays. In an exploratory study, chromosomal regions containing putative quantitative trait loci (QTLs) were recognized on chromosomes 27, 11, 10, 9, 16, 13, 3, 19, 8 and 18, associated with the variation of R. microplus load. Gene ontology based on genes located on these regions revealed an enrichment of terms and pathways for the immune system, blood coagulation, tissue regeneration, endopeptidase activity and protein phosphorylation. The information obtained in this work constitutes a first report of QTLs for tick count in the Argentine Creole cattle, and contributes with the knowledge about the underlying process involved in tick resistance.
Collapse
Affiliation(s)
- María Florencia Ortega
- Estación Experimental Agropecuaria Famaillá (EEA Famaillá), Agencia de Extensión Rural Lules (AER Lules), Instituto Nacional de Tecnología Agropecuaria (INTA), Lules, Tucumán, 4129, Argentina.
| | - Martín Bonamy
- Facultad de Ciencias Veterinarias, Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout" (IGEVET, UNLP-CONICET LA PLATA), Universidad Nacional de La Plata, La Plata (B1904), Buenos Aires, Argentina
- Cátedra de Producción de Bovinos, Departamento de Producción Animal, Facultad de Ciencias Veterinarias, Universidad Nacional de La Plata, La Plata (B1904), Buenos Aires, Argentina
| | - Christian Cutullé
- Centro de Investigación en Ciencias Veterinarias y Agronómicas (CICVyA), Instituto de Patobiología Veterinaria (IP-IPVet), Unidad Ejecutora Doble Dependencia (INTA-CONICET), Instituto Nacional de Tecnología Agropecuaria (INTA Castelar), Hurlingham (B1686LQF), Buenos Aires, Argentina
| | - Guillermo Giovambattista
- Facultad de Ciencias Veterinarias, Instituto de Genética Veterinaria "Ing. Fernando Noel Dulout" (IGEVET, UNLP-CONICET LA PLATA), Universidad Nacional de La Plata, La Plata (B1904), Buenos Aires, Argentina
| |
Collapse
|
3
|
Samuel BER, Diaz FE, Maina TW, Corbett RJ, Tuggle CK, McGill JL. Evidence of innate training in bovine γδ T cells following subcutaneous BCG administration. Front Immunol 2024; 15:1423843. [PMID: 39100669 PMCID: PMC11295143 DOI: 10.3389/fimmu.2024.1423843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 06/20/2024] [Indexed: 08/06/2024] Open
Abstract
The Bacillus Calmette Guerin (BCG) vaccine has been shown to induce non-specific protection against diseases other than tuberculosis in vaccinated individuals, attributed to the induction of trained immunity. We have previously demonstrated that BCG administration induces innate immune training in mixed peripheral blood mononuclear cells and monocytes in calves. Gamma Delta (γδ) T cells are non-conventional T cells that exhibit innate and adaptive immune system features. They are in higher proportion in the peripheral blood of cattle than humans or rodents and play an essential role in bovine immune response to pathogens. In the current study, we determined if BCG administration induced innate immune training in bovine γδ T cells. A group of 16 pre-weaned Holstein calves (2-4 d age) were enrolled in the study and randomly assigned to vaccine and control groups (n=8/group). The vaccine group received two doses of 106 colony forming units (CFU) BCG Danish strain subcutaneously, separated by 2 weeks. The control group remained unvaccinated. Gamma delta T cells were purified from peripheral blood using magnetic cell sorting three weeks after receiving the 1st BCG dose. We observed functional changes in the γδ T cells from BCG-treated calves shown by increased IL-6 and TNF-α cytokine production in response to in vitro stimulation with Escherichia coli LPS and PAM3CSK4. ATAC-Seq analysis of 78,278 regions of open chromatin (peaks) revealed that γδ T cells from BCG-treated calves had an altered epigenetic status compared to cells from the control calves. Differentially accessible peaks (DAP) found near the promoters of innate immunity-related genes like Siglec14, Irf4, Ifna2, Lrrfip1, and Tnfrsf10d were 1 to 4-fold more accessible in cells from BCG-treated calves. MOTIF enrichment analysis of the sequences within DAPs, which explores transcription factor binding motifs (TFBM) upstream of regulatory elements, revealed TFBM for Eomes and IRF-5 were among the most enriched transcription factors. GO enrichment analysis of genes proximal to the DAPs showed enrichment of pathways such as regulation of IL-2 production, T-cell receptor signaling pathway, and other immune regulatory pathways. In conclusion, our study shows that subcutaneous BCG administration in pre-weaned calves can induce innate immune memory in the form of trained immunity in γδ T cells. This memory is associated with increased chromatin accessibility of innate immune response-related genes, thereby inducing a functional trained immune response evidenced by increased IL-6 and TNF-α cytokine production.
Collapse
Affiliation(s)
- Beulah Esther Rani Samuel
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Fabian E. Diaz
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| | - Teresia W. Maina
- Immunology, Cargill Animal Nutrition & Health, Elk River, MN, United States
| | - Ryan J. Corbett
- Center for Data Driven Discovery, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | | | - Jodi L. McGill
- Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA, United States
| |
Collapse
|
4
|
Ali SI, Najaf-Panah MJ, Pyper KB, Lujan FE, Sena J, Ashley AK. Comparative analysis of basal and etoposide-induced alterations in gene expression by DNA-PKcs kinase activity. Front Genet 2024; 15:1276365. [PMID: 38577247 PMCID: PMC10991847 DOI: 10.3389/fgene.2024.1276365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/29/2024] [Indexed: 04/06/2024] Open
Abstract
Background: Maintenance of the genome is essential for cell survival, and impairment of the DNA damage response is associated with multiple pathologies including cancer and neurological abnormalities. DNA-PKcs is a DNA repair protein and a core component of the classical nonhomologous end-joining pathway, but it also has roles in modulating gene expression and thus, the overall cellular response to DNA damage. Methods: Using cells producing either wild-type (WT) or kinase-inactive (KR) DNA-PKcs, we assessed global alterations in gene expression in the absence or presence of DNA damage. We evaluated differential gene expression in untreated cells and observed differences in genes associated with cellular adhesion, cell cycle regulation, and inflammation-related pathways. Following exposure to etoposide, we compared how KR versus WT cells responded transcriptionally to DNA damage. Results: Downregulated genes were mostly involved in protein, sugar, and nucleic acid biosynthesis pathways in both genotypes, but enriched biological pathways were divergent, again with KR cells manifesting a more robust inflammatory response compared to WT cells. To determine what major transcriptional regulators are controlling the differences in gene expression noted, we used pathway analysis and found that many master regulators of histone modifications, proinflammatory pathways, cell cycle regulation, Wnt/β-catenin signaling, and cellular development and differentiation were impacted by DNA-PKcs status. Finally, we have used qPCR to validate selected genes among the differentially regulated pathways to validate RNA sequence data. Conclusion: Overall, our results indicate that DNA-PKcs, in a kinase-dependent fashion, decreases proinflammatory signaling following genotoxic insult. As multiple DNA-PK kinase inhibitors are in clinical trials as cancer therapeutics utilized in combination with DNA damaging agents, understanding the transcriptional response when DNA-PKcs cannot phosphorylate downstream targets will inform the overall patient response to combined treatment.
Collapse
Affiliation(s)
- Sk Imran Ali
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, United States
| | - Mohammad J. Najaf-Panah
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, United States
| | - Kennedi B. Pyper
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, United States
| | - F. Ester Lujan
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, United States
| | - Johnny Sena
- National Center for Genome Resources, Santa Fe, NM, United States
| | - Amanda K. Ashley
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, United States
| |
Collapse
|
5
|
Lin KM, Weng LF, Chen SYJ, Lin SJ, Tsai CH. Upregulation of IQGAP2 by EBV transactivator Rta and its influence on EBV life cycle. J Virol 2023; 97:e0054023. [PMID: 37504571 PMCID: PMC10506479 DOI: 10.1128/jvi.00540-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/09/2023] [Indexed: 07/29/2023] Open
Abstract
Epstein-Barr virus (EBV) is a human oncogenic γ-herpesvirus that establishes persistent infection in more than 90% of the world's population. EBV has two life cycles, latency and lytic replication. Reactivation of EBV from latency to the lytic cycle is initiated and controlled by two viral immediate-early transcription factors, Zta and Rta, encoded by BZLF1 and BRLF1, respectively. In this study, we found that IQGAP2 expression was elevated in EBV-infected B cells and identified Rta as a viral gene responsible for the IQGAP2 upregulation in both B cells and nasopharyngeal carcinoma cell lines. Mechanistically, we showed that Rta increases IQGAP2 expression through direct binding to the Rta-responsive element in the IQGAP2 promoter. We also demonstrated the direct interaction between Rta and IQGAP2 as well as their colocalization in the nucleus. Functionally, we showed that the induced IQGAP2 is required for the Rta-mediated Rta promoter activation in the EBV lytic cycle progression and may influence lymphoblastoid cell line clumping morphology through regulating E-cadherin expression. IMPORTANCE Elevated levels of antibodies against EBV lytic proteins and increased EBV DNA copy numbers in the sera have been reported in patients suffering from Burkitt's lymphoma, Hodgkin's lymphoma, and nasopharyngeal carcinoma, indicating that EBV lytic cycle progression may play an important role in the pathogenesis of EBV-associated diseases and highlighting the need for a more complete mechanistic understanding of the EBV lytic cycle. Rta acts as an essential transcriptional activator to induce lytic gene expression and thus trigger EBV reactivation. In this study, scaffolding protein IQGAP2 was found to be upregulated prominently following EBV infection via the direct binding of Rta to the RRE in the IQGAP2 promoter but not in response to other biological stimuli. Importantly, IQGAP2 was demonstrated to interact with Rta and promote the EBV lytic cycle progression. Suppression of IQGAP2 was also found to decrease E-cadherin expression and affect the clumping morphology of lymphoblastoid cell lines.
Collapse
Affiliation(s)
- Kai-Min Lin
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Li-Fang Weng
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Shi-Yo Jill Chen
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Sue-Jane Lin
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Hwa Tsai
- Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
6
|
Wu J, Li Y, Huang Y, Liu L, Zhang H, Nagy C, Tan X, Cheng K, Liu Y, Pu J, Wang H, Wu Q, Perry SW, Turecki G, Wong ML, Licinio J, Zheng P, Xie P. Integrating spatial and single-nucleus transcriptomic data elucidates microglial-specific responses in female cynomolgus macaques with depressive-like behaviors. Nat Neurosci 2023; 26:1352-1364. [PMID: 37443281 DOI: 10.1038/s41593-023-01379-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/12/2023] [Indexed: 07/15/2023]
Abstract
Major depressive disorder represents a serious public health challenge worldwide; however, the underlying cellular and molecular mechanisms are mostly unknown. Here, we profile the dorsolateral prefrontal cortex of female cynomolgus macaques with social stress-associated depressive-like behaviors using single-nucleus RNA-sequencing and spatial transcriptomics. We find gene expression changes associated with depressive-like behaviors mostly in microglia, and we report a pro-inflammatory microglia subpopulation enriched in the depressive-like condition. Single-nucleus RNA-sequencing data result in the identification of six enriched gene modules associated with depressive-like behaviors, and these modules are further resolved by spatial transcriptomics. Gene modules associated with huddle and sit alone behaviors are expressed in neurons and oligodendrocytes of the superficial cortical layer, while gene modules associated with locomotion and amicable behaviors are enriched in microglia and astrocytes in mid-to-deep cortical layers. The depressive-like behavior associated microglia subpopulation is enriched in deep cortical layers. In summary, our findings show cell-type and cortical layer-specific gene expression changes and identify one microglia subpopulation associated with depressive-like behaviors in female non-human primates.
Collapse
Affiliation(s)
- Jing Wu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
| | - Yifan Li
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
| | - Yu Huang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
| | - Lanxiang Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
- Department of Neurology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| | - Hanping Zhang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
| | - Corina Nagy
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Xunmin Tan
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
| | - Ke Cheng
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yiyun Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
| | - Juncai Pu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haiyang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Jinfeng Laboratory, Chongqing, China
| | - Qingyuan Wu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Neurology, Chongqing University Three Gorges Hospital, Chongqing, China
| | - Seth W Perry
- Department of Psychiatry, College of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Ma-Li Wong
- Department of Psychiatry, College of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Julio Licinio
- Department of Psychiatry, College of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Peng Zheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Jinfeng Laboratory, Chongqing, China.
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
- Jinfeng Laboratory, Chongqing, China.
| |
Collapse
|
7
|
Rai SK, Singh D, Sarangi PP. Role of RhoG as a regulator of cellular functions: integrating insights on immune cell activation, migration, and functions. Inflamm Res 2023:10.1007/s00011-023-01761-9. [PMID: 37378671 DOI: 10.1007/s00011-023-01761-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/10/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
BACKGROUND RhoG is a multifaceted member of the Rho family of small GTPases, sharing the highest sequence identity with the Rac subfamily members. It acts as a molecular switch, when activated, plays a central role in regulating the fundamental processes in immune cells, such as actin-cytoskeleton dynamics, transendothelial migration, survival, and proliferation, including immunological functions (e.g., phagocytosis and trogocytosis) during inflammatory responses. METHOD We have performed a literature review based on published original and review articles encompassing the significant effect of RhoG on immune cell functions from central databases, including PubMed and Google Scholar. RESULTS AND CONCLUSIONS Recently published data shows that the dynamic expression of different transcription factors, non-coding RNAs, and the spatiotemporal coordination of different GEFs with their downstream effector molecules regulates the cascade of Rho signaling in immune cells. Additionally, alterations in RhoG-specific signaling can lead to physiological, pathological, and developmental adversities. Several mutations and RhoG-modulating factors are also known to pre-dispose the downstream signaling with abnormal gene expression linked to multiple diseases. This review focuses on the cellular functions of RhoG, interconnecting different signaling pathways, and speculates the importance of this small GTPase as a prospective target against several pathological conditions.
Collapse
Affiliation(s)
- Shubham Kumar Rai
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Divya Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Pranita P Sarangi
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
8
|
Song F, Dai Q, Grimm MO, Steinbach D. The Antithetic Roles of IQGAP2 and IQGAP3 in Cancers. Cancers (Basel) 2023; 15:cancers15041115. [PMID: 36831467 PMCID: PMC9953781 DOI: 10.3390/cancers15041115] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/02/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
The scaffold protein family of IQ motif-containing GTPase-activating proteins (IQGAP1, 2, and 3) share a high degree of homology and comprise six functional domains. IQGAPs bind and regulate the cytoskeleton, interact with MAP kinases and calmodulin, and have GTPase-related activity, as well as a RasGAP domain. Thus, IQGAPs regulate multiple cellular processes and pathways, affecting cell division, growth, cell-cell interactions, migration, and invasion. In the past decade, significant evidence on the function of IQGAPs in signal transduction during carcinogenesis has emerged. Compared with IQGAP1, IQGAP2 and IQGAP3 were less analyzed. In this review, we summarize the different signaling pathways affected by IQGAP2 and IQGAP3, and the antithetic roles of IQGAP2 and IQGAP3 in different types of cancer. IQGAP2 expression is reduced and plays a tumor suppressor role in most solid cancer types, while IQGAP3 is overexpressed and acts as an oncogene. In lymphoma, for example, IQGAPs have partially opposite functions. There is considerable evidence that IQGAPs regulate a multitude of pathways to modulate cancer processes and chemoresistance, but some questions, such as how they trigger this signaling, through which domains, and why they play opposite roles on the same pathways, are still unanswered.
Collapse
Affiliation(s)
- Fei Song
- Department of Urology, Jena University Hospital, 07740 Jena, Germany
| | - Qingqing Dai
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, 07740 Jena, Germany
| | - Marc-Oliver Grimm
- Department of Urology, Jena University Hospital, 07740 Jena, Germany
| | - Daniel Steinbach
- Department of Urology, Jena University Hospital, 07740 Jena, Germany
- Correspondence:
| |
Collapse
|
9
|
Dai Q, Ain Q, Rooney M, Song F, Zipprich A. Role of IQ Motif-Containing GTPase-Activating Proteins in Hepatocellular Carcinoma. Front Oncol 2022; 12:920652. [PMID: 35785216 PMCID: PMC9243542 DOI: 10.3389/fonc.2022.920652] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/10/2022] [Indexed: 11/21/2022] Open
Abstract
IQ motif-containing GTPase-activating proteins (IQGAPs) are a class of scaffolding proteins, including IQGAP1, IQGAP2, and IQGAP3, which govern multiple cellular activities by facilitating cytoskeletal remodeling and cellular signal transduction. The role of IQGAPs in cancer initiation and progression has received increasing attention in recent years, especially in hepatocellular carcinoma (HCC), where the aberrant expression of IQGAPs is closely related to patient prognosis. IQGAP1 and 3 are upregulated and are considered oncogenes in HCC, while IQGAP2 is downregulated and functions as a tumor suppressor. This review details the three IQGAP isoforms and their respective structures. The expression and role of each protein in different liver diseases and mainly in HCC, as well as the underlying mechanisms, are also presented. This review also provides a reference for further studies on IQGAPs in HCC.
Collapse
Affiliation(s)
- Qingqing Dai
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
- Else Kröner Graduate School for Medical Students “Jena School for Ageing Medicine (JSAM)”, Jena University Hospital, Jena, Germany
| | - Quratul Ain
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Michael Rooney
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
| | - Fei Song
- Department of Urology, Jena University Hospital, Jena, Germany
| | - Alexander Zipprich
- Department of Internal Medicine IV (Gastroenterology, Hepatology, and Infectious Diseases), Jena University Hospital, Jena, Germany
- *Correspondence: Alexander Zipprich,
| |
Collapse
|
10
|
Wen S, Wei H, Liao Q, Li M, Zhong S, Cheng Y, Huang W, Wang D, Shu Y. Identification of Two Novel Candidate Genetic Variants Associated With the Responsiveness to Influenza Vaccination. Front Immunol 2021; 12:664024. [PMID: 34276655 PMCID: PMC8281270 DOI: 10.3389/fimmu.2021.664024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
Background Annual vaccination is the most effective prevention of influenza infection. Up to now, a series of studies have demonstrated the role of genetic variants in regulating the antibody response to influenza vaccine. However, among the Chinese population, the relationship between genetic factors and the responsiveness to influenza vaccination has not been clarified through genome-wide association study (GWAS). Method A total of 1,968 healthy volunteers of Chinese descent were recruited and 1,582 of them were available for the subsequent two-stage analysis. In the discovery stage, according to our inclusion criteria, 123 of 1,582 subjects were selected as group 1 and received whole-genome sequencing to identify potential variants and genes. In the verification stage, 29 candidate variants identified by GWAS were selected for further validation in 481 subjects in group 2. Besides, we also analyzed nine variants from previously published reports in our study. Results Multivariate logistic regression analysis showed that compared with the TT genotype of ZBTB46 rs2281929, the TC + CC genotype was associated with a lower risk of low responsiveness to influenza vaccination adjusted for gender and age (Group 2: P = 7.75E-05, OR = 0.466, 95%CI = 0.319–0.680; Combined group: P = 1.18E-06, OR = 0.423, 95%CI = 0.299–0.599). In the combined group, IQGAP2 rs2455230 GC + CC genotype was correlated with a lower risk of low responsiveness to influenza vaccination compared with the GG genotype (P = 8.90E-04, OR = 0.535, 95%CI = 0.370–0.774), but the difference was not statistically significant in group 2 (P = 0.008). The antibody fold rises of subjects with ZBTB46 rs2281929 TT genotype against H1N1, H3N2,and B were all significantly lower than that of subjects with TC + CC genotype (P < 0.001). Compared with IQGAP2 rs2455230 GC + CC carriers, GG carriers had lower antibody fold rises to H1N1 (P = 0.001) and B (P = 0.032). The GG genotype of rs2455230 tended to be correlated with lower antibody fold rises (P = 0.096) against H3N2, but the difference was not statistically significant. No correlation was found between nine SNPs from previously published reports and the serological response to influenza vaccine in our study. Conclusion Our study identified two novel candidate missense variants, ZBTB46 rs2281929 and IQGAP2 rs2455230, were associated with the immune response to influenza vaccination among the Chinese population. Identifying these variants will provide more evidence for future research and improve the individualized influenza vaccination program.
Collapse
Affiliation(s)
- Simin Wen
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Hejiang Wei
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Prevention and Control, Beijing, China
| | - Qijun Liao
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Mao Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Shuyi Zhong
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| | - Yanhui Cheng
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Prevention and Control, Beijing, China
| | - Weijuan Huang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Prevention and Control, Beijing, China
| | - Dayan Wang
- National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Prevention and Control, Beijing, China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
11
|
Tang T, Wang J, Zhang L, Cheng Y, Saleh L, Gu Y, Zhang H. IQGAP2 acts as an independent prognostic factor and is related to immunosuppression in DLBCL. BMC Cancer 2021; 21:603. [PMID: 34034707 PMCID: PMC8152057 DOI: 10.1186/s12885-021-08086-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 03/23/2021] [Indexed: 11/10/2022] Open
Abstract
Background Almost one-third of patients with diffuse large B-cell lymphoma (DLBCL) cannot be cured with initial therapy and will eventually succumb to the disease. Further elaboration of prognostic markers of DLBCL will provide therapeutic targets. IQ motif-containing GTPase activating protein 2 (IQGAP2) acts as a tumour suppressor in hepatocellular, prostate, and gastric cancers. However, the role of IQGAP2 in DLBCL remains unclear. Methods We collected mRNA expression data from 614 samples and the corresponding clinical information. The survival time of patients was compared between groups according to the mRNA expression level of IQGAP2. Survival analyses were performed in different subgroups when considering the effect of age, tumour stage, serum lactate dehydrogenase (LDH) concentration, performance status, and the number of extra nodal disease sites. The biological processes associated with IQGAP2-associated mRNAs were analysed to predict the function of IQGAP2. The correlation of IQGAP2 mRNA with immunosuppressive genes and leukocyte infiltration were analysed. Results The overall survival of patients with increased IQGAP2 mRNA levels was reduced even after aggressive treatment independent of age, tumour stage, serum LDH concentration, performance status, and the number of extra nodal disease sites. Furthermore, the biological processes of IQGAP2-associated mRNAs were mainly immune processes. IQGAP2 mRNA expression was correlated with the expression of immunosuppressive genes and leukocyte infiltration. Conclusion IQGAP2 mRNA is an independent prognostic factor and is related to immunosuppression in DLBCL. This discovery may provide a promising target for further development of therapy. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08086-y.
Collapse
Affiliation(s)
- Tianjiao Tang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, No 1, Youyi Road, Yuzhong District, Chongqing, 400016, China.,Department of General Practice, University of Chinese Academy of Sciences Chongqing Hospital, Chongqing, China
| | - Jing Wang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, No 1, Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Lidan Zhang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, No 1, Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Ying Cheng
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, No 1, Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Laura Saleh
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yanni Gu
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Hongbin Zhang
- Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, No 1, Youyi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
12
|
Sun N, Li C, Li XF, Deng YQ, Jiang T, Zhang NN, Zu S, Zhang RR, Li L, Chen X, Liu P, Gold S, Lu N, Du P, Wang J, Qin CF, Cheng G. Type-IInterferon-Inducible SERTAD3 Inhibits Influenza A Virus Replication by Blocking the Assembly of Viral RNA Polymerase Complex. Cell Rep 2021; 33:108342. [PMID: 33147462 DOI: 10.1016/j.celrep.2020.108342] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 08/03/2020] [Accepted: 10/12/2020] [Indexed: 01/08/2023] Open
Abstract
Influenza A virus (IAV) infection stimulates a type I interferon (IFN-I) response in host cells that exerts antiviral effects by inducing the expression of hundreds of IFN-stimulated genes (ISGs). However, most ISGs are poorly studied for their roles in the infection of IAV. Herein, we demonstrate that SERTA domain containing 3 (SERTAD3) has a significant inhibitory effect on IAV replication in vitro. More importantly, Sertad3-/- mice develop more severe symptoms upon IAV infection. Mechanistically, we find SERTAD3 reduces IAV replication through interacting with viral polymerase basic protein 2 (PB2), polymerase basic protein 1 (PB1), and polymerase acidic protein (PA) to disrupt the formation of the RNA-dependent RNA polymerase (RdRp) complex. We further identify an 8-amino-acid peptide of SERTAD3 as a minimum interacting motif that can disrupt RdRp complex formation and inhibit IAV replication. Thus, our studies not only identify SERTAD3 as an antiviral ISG, but also provide the mechanism of potential application of SERTAD3-derived peptide in suppressing influenza replication.
Collapse
Affiliation(s)
- Nina Sun
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China; Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Suzhou Institute of System Medicine, Suzhou, Jiangsu 215123, China
| | - Chunfeng Li
- Institute for Immunity, Transplantation and Infection, Department of Pathology, Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Xiao-Feng Li
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Yong-Qiang Deng
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Tao Jiang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Na-Na Zhang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Shulong Zu
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China; Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China; Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Suzhou Institute of System Medicine, Suzhou, Jiangsu 215123, China
| | - Rong-Rong Zhang
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Lili Li
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Suzhou Institute of System Medicine, Suzhou, Jiangsu 215123, China
| | - Xiang Chen
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China
| | - Ping Liu
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Sarah Gold
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ning Lu
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Peishuang Du
- CAS Key Laboratory of Infection and Immunity, Institute of Biophysics, Chinese Academy of Sciences, Chaoyang District, Beijing 100101, China
| | - Jingfeng Wang
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China; Suzhou Institute of System Medicine, Suzhou, Jiangsu 215123, China; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Cheng-Feng Qin
- Department of Virology, State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing 100071, China.
| | - Genhong Cheng
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
13
|
Brunes LC, Baldi F, Lopes FB, Lôbo RB, Espigolan R, Costa MFO, Stafuzza NB, Magnabosco CU. Weighted single-step genome-wide association study and pathway analyses for feed efficiency traits in Nellore cattle. J Anim Breed Genet 2020; 138:23-44. [PMID: 32654373 DOI: 10.1111/jbg.12496] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/11/2020] [Accepted: 06/13/2020] [Indexed: 02/06/2023]
Abstract
The aim was to conduct a weighted single-step genome-wide association study to detect genomic regions and putative candidate genes related to residual feed intake, dry matter intake, feed efficiency (FE), feed conversion ratio, residual body weight gain, residual intake and weight gain in Nellore cattle. Several protein-coding genes were identified within the genomic regions that explain more than 0.5% of the additive genetic variance for these traits. These genes were associated with insulin, leptin, glucose, protein and lipid metabolisms; energy balance; heat and oxidative stress; bile secretion; satiety; feed behaviour; salivation; digestion; and nutrient absorption. Enrichment analysis revealed functional pathways (p-value < .05) such as neuropeptide signalling (GO:0007218), negative regulation of canonical Wingless/Int-1 (Wnt) signalling (GO:0090090), bitter taste receptor activity (GO:0033038), neuropeptide hormone activity (GO:0005184), bile secretion (bta04976), taste transduction (bta0742) and glucagon signalling pathway (bta04922). The identification of these genes, pathways and their respective functions should contribute to a better understanding of the genetic and physiological mechanisms regulating Nellore FE-related traits.
Collapse
Affiliation(s)
- Ludmilla C Brunes
- Department of Animal Science, Federal University of Goiás (UFG), Goiânia, Brazil.,Embrapa Rice and Beans, Santo Antônio de Goiás, Brazil
| | - Fernando Baldi
- Department of Animal Science, São Paulo State University (UNESP), Jaboticabal, Brazil
| | | | - Raysildo B Lôbo
- National Association of Breeders and Researchers (ANCP), Ribeirão Preto, Brazil
| | - Rafael Espigolan
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, Pirassununga, Brazil
| | | | - Nedenia B Stafuzza
- Beef Cattle Research Center, Animal Science Institute, Sertãozinho, Brazil
| | | |
Collapse
|
14
|
Li WT, Zou AE, Honda CO, Zheng H, Wang XQ, Kisseleva T, Chang EY, Ongkeko WM. Etiology-Specific Analysis of Hepatocellular Carcinoma Transcriptome Reveals Genetic Dysregulation in Pathways Implicated in Immunotherapy Efficacy. Cancers (Basel) 2019; 11:E1273. [PMID: 31480259 PMCID: PMC6769980 DOI: 10.3390/cancers11091273] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/06/2019] [Accepted: 08/08/2019] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy has emerged in recent years as arguably the most effective treatment for advanced hepatocellular carcinoma (HCC), but the failure of a large percentage of patients to respond to immunotherapy remains as the ultimate obstacle to successful treatment. Etiology-associated dysregulation of immune-associated (IA) genes may be central to the development of this differential clinical response. We identified immune-associated genes potentially dysregulated by alcohol or viral hepatitis B in HCC and validated alcohol-induced dysregulations in vitro while using large-scale RNA-sequencing data from The Cancer Genome Atlas (TCGA). Thirty-four clinically relevant dysregulated IA genes were identified. We profiled the correlation of all genomic alterations in HCC patients to IA gene expression while using the information theory-based algorithm REVEALER to investigate the molecular mechanism for their dysregulation and explore the possibility of genome-based patient stratification. We also studied gene expression regulators and identified multiple microRNAs that were implicated in HCC pathogenesis that can potentially regulate these IA genes' expression. Our study identified potential key pathways, including the IL-7 signaling pathway and TNFRSF4 (OX40)- NF-κB pathway, to target in immunotherapy treatments and presents microRNAs as promising therapeutic targets for dysregulated IA genes because of their extensive regulatory roles in the cancer immune landscape.
Collapse
Affiliation(s)
- Wei Tse Li
- Department of Surgery, University of California, San Diego, CA 92093, USA
| | - Angela E Zou
- Department of Surgery, University of California, San Diego, CA 92093, USA
| | - Christine O Honda
- Department of Surgery, University of California, San Diego, CA 92093, USA
| | - Hao Zheng
- Department of Surgery, University of California, San Diego, CA 92093, USA
| | - Xiao Qi Wang
- Department of Surgery, The University of Hong Kong, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Tatiana Kisseleva
- Department of Surgery, University of California, San Diego, CA 92093, USA
| | - Eric Y Chang
- Department of Radiology, California and Radiology Service, VA San Diego Healthcare System, University of California, San Diego, CA 92093, USA
| | - Weg M Ongkeko
- Department of Surgery, University of California, San Diego, CA 92093, USA.
| |
Collapse
|
15
|
Xi R, Kadur Lakshminarasimha Murthy P, Tung KL, Guy CD, Wan J, Li F, Wang Z, Li X, Varanko A, Rakhilin N, Xin Y, Liu B, Qian SB, Su L, Han Y, Shen X. SENP3-mediated host defense response contains HBV replication and restores protein synthesis. PLoS One 2019; 14:e0209179. [PMID: 30640896 PMCID: PMC6331149 DOI: 10.1371/journal.pone.0209179] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 11/30/2018] [Indexed: 12/22/2022] Open
Abstract
Certain organs are capable of containing the replication of various types of viruses. In the liver, infection of Hepatitis B virus (HBV), the etiological factor of Hepatitis B and hepatocellular carcinoma (HCC), often remains asymptomatic and leads to a chronic carrier state. Here we investigated how hepatocytes contain HBV replication and promote their own survival by orchestrating a translational defense mechanism via the stress-sensitive SUMO-2/3-specific peptidase SENP3. We found that SENP3 expression level decreased in HBV-infected hepatocytes in various models including HepG2-NTCP cell lines and a humanized mouse model. Downregulation of SENP3 reduced HBV replication and boosted host protein translation. We also discovered that IQGAP2, a Ras GTPase-activating-like protein, is a key substrate for SENP3-mediated de-SUMOylation. Downregulation of SENP3 in HBV infected cells facilitated IQGAP2 SUMOylation and degradation, which leads to suppression of HBV gene expression and restoration of global translation of host genes via modulation of AKT phosphorylation. Thus, The SENP3-IQGAP2 de-SUMOylation axis is a host defense mechanism of hepatocytes that restores host protein translation and suppresses HBV gene expression.
Collapse
Affiliation(s)
- Rui Xi
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, United States of America
- Duke Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America
- Duke Cancer Institute, Duke University, Durham, North Carolina, United States of America
| | - Preetish Kadur Lakshminarasimha Murthy
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, United States of America
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York, United States of America
| | - Kuei-Ling Tung
- Duke Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America
- Duke Cancer Institute, Duke University, Durham, North Carolina, United States of America
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, United States of America
| | - Cynthia D. Guy
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - Ji Wan
- Division of Nutritional Science, College of Human Ecology, Cornell University, Ithaca, New York, United States of America
| | - Feng Li
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- Institute of Infectious Diseases, Guangzhou Eighth People’s Hospital, Guangzhou, China
| | - Zhuo Wang
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Xiaodong Li
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Anastasia Varanko
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York, United States of America
| | - Nikolai Rakhilin
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, United States of America
- School of Electrical and Computer Engineering, College of Engineering, Cornell University, Ithaca, New York, United States of America
| | - Yongning Xin
- Department of Gastroenterology, Qingdao Municipal Hospital, Qingdao, China
- Digestive Disease Key Laboratory of Qingdao, Qingdao, China
- Medical College of Qingdao University, Qingdao, China
| | - Botao Liu
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Shu-Bing Qian
- Division of Nutritional Science, College of Human Ecology, Cornell University, Ithaca, New York, United States of America
| | - Lishan Su
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Yan Han
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, United States of America
- Duke Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America
- Duke Cancer Institute, Duke University, Durham, North Carolina, United States of America
- * E-mail: (XS); (YH)
| | - Xiling Shen
- Department of Biomedical Engineering, Pratt School of Engineering, Duke University, Durham, North Carolina, United States of America
- Duke Center for Genomic and Computational Biology, Duke University, Durham, North Carolina, United States of America
- Duke Cancer Institute, Duke University, Durham, North Carolina, United States of America
- * E-mail: (XS); (YH)
| |
Collapse
|
16
|
miR-130a upregulates mTOR pathway by targeting TSC1 and is transactivated by NF-κB in high-grade serous ovarian carcinoma. Cell Death Differ 2017; 24:2089-2100. [PMID: 28800130 DOI: 10.1038/cdd.2017.129] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 06/23/2017] [Accepted: 07/05/2017] [Indexed: 11/08/2022] Open
Abstract
Activation of mammalian target of rapamycin (mTOR) signaling pathway is associated with poor prognosis of epithelial ovarian cancer. The TSC1-TSC2 complex is a critical negative regulator of mTOR signaling. Here, we demonstrated that TSC1 was frequently downregulated in high-grade serous ovarian carcinoma (HGSOC) and low TSC1 expression level is associated with advanced tumor stage. We next identified miR-130a to be a negative regulator of TSC1 by targeting its 3'UTR. miR-130a was overexpressed in HGSOC and could drive proliferation and invasion/metastasis of ovarian cancer cells. miR-130a could also attenuate rapamycin/starvation-induced autophagy. Ectopic TSC1 expression could block the effects of miR-130a on cell proliferation, migration and autophagy. Finally, we found that miR-130a expression could be upregulated by inflammatory factors and was transactivated by NF-κB. Therefore, our findings establish a crosstalk between inflammation and mTOR signaling that is mediated by miR-130a, which might have a pivotal role in the initiation and progression of HGSOC.
Collapse
|
17
|
Anders F, Teister J, Funke S, Pfeiffer N, Grus F, Solon T, Prokosch V. Proteomic profiling reveals crucial retinal protein alterations in the early phase of an experimental glaucoma model. Graefes Arch Clin Exp Ophthalmol 2017; 255:1395-1407. [PMID: 28536832 DOI: 10.1007/s00417-017-3678-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/12/2017] [Accepted: 04/18/2017] [Indexed: 12/23/2022] Open
Abstract
PURPOSE Clinical glaucoma is difficult to assess in terms of molecular pathophysiology, prompting studies in experimental models of glaucoma. The purpose of this study was to investigate quantitative changes in retinal protein expression at the onset of experimental glaucoma in rats. Analyzing the proteome provides a suitable tool to decipher the pathophysiological processes in glaucomatous degeneration. METHODS Thermic cauterization of episcleral veins was utilized to elevate the intraocular pressure in Sprague Dawley rats. Morphological changes were surveyed on a cellular level with a staining of Brn3a-positive cells. The retinal nerve fiber layer was investigated using optical coherence tomography (OCT, Heidelberg Engineering) and the optic nerve was analyzed by an axonal grading system. Mass spectrometry-featured quantitative proteomics and immunohistochemical staining was used to identify specifically altered proteins in the course of intraocular pressure elevation and initial neurodegeneration. Proteomic data were further analyzed with Ingenuity Pathway Analysis and Cytoscape to analyze further molecular associations. RESULTS The intraocular pressure rose significantly (p < 0.001) for the follow-up period of 3 weeks after which animals were sacrificed. Eyes exposed to an elevated intraocular pressure showed an initial decrease of retinal ganglion cells, retinal nerve fiber layer (p < 0.05) and an impairment of the optic nerve (p < 0.01). Mass spectrometry led to the identification and quantification of 931 retinal proteins, whereas 32 were considerably altered. Bioinformatics-assisted clustering revealed that a majority of these proteins are functionally associated with cell differentiation, apoptosis and stress response. The creation of an interactive protein network showed that numerous altered proteins are connected regarding their cellular function. Protein kinase b, mitogen-activated protein kinase 1 and the NF-κB complex seem to be essential molecules in this context. CONCLUSIONS In conclusion, these results provide further lines of evidence that substantial molecular changes occur at the onset of the disease, identifying potential key players, which might be useful as biomarkers for diagnostics and development of medical treatment in the future.
Collapse
Affiliation(s)
- Fabian Anders
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Julia Teister
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Sebstian Funke
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Norbert Pfeiffer
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Langenbeckstrasse 1, 55131, Mainz, Germany.,University Eye Hospital Mainz, School of Medicine, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Franz Grus
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Langenbeckstrasse 1, 55131, Mainz, Germany
| | - Thanos Solon
- Department of Experimental Ophthalmology, University Medical Center, Domagkstraße 15, 48149, Münster, Germany
| | - Verena Prokosch
- Experimental Ophthalmology, Department of Ophthalmology, University Medical Center, Langenbeckstrasse 1, 55131, Mainz, Germany. .,University Eye Hospital Mainz, School of Medicine, Langenbeckstrasse 1, 55131, Mainz, Germany.
| |
Collapse
|
18
|
Huang SH, Lien JC, Chen CJ, Liu YC, Wang CY, Ping CF, Lin YF, Huang AC, Lin CW. Antiviral Activity of a Novel Compound CW-33 against Japanese Encephalitis Virus through Inhibiting Intracellular Calcium Overload. Int J Mol Sci 2016; 17:ijms17091386. [PMID: 27563890 PMCID: PMC5037666 DOI: 10.3390/ijms17091386] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 07/26/2016] [Accepted: 08/18/2016] [Indexed: 01/31/2023] Open
Abstract
Japanese encephalitis virus (JEV), a mosquito-borne flavivirus, has five genotypes (I, II, III, IV, and V). JEV genotype I circulates widely in some Asian countries. However, current JEV vaccines based on genotype III strains show low neutralizing capacities against genotype I variants. In addition, JE has no specific treatment, except a few supportive treatments. Compound CW-33, an intermediate synthesized derivative of furoquinolines, was investigated for its antiviral activities against JEV in this study. CW-33 exhibited the less cytotoxicity to Syrian baby hamster kidney (BHK-21) and human medulloblastoma (TE761) cells. CW-33 dose-dependently reduced the cytopathic effect and apoptosis of JEV-infected cells. Supernatant virus yield assay pinpointed CW-33 as having potential anti-JEV activity with IC50 values ranging from 12.7 to 38.5 μM. Time-of-addition assay with CW-33 indicated that simultaneous and post-treatment had no plaque reduction activity, but continuous and simultaneous treatments proved to have highly effective antiviral activity, with IC50 values of 32.7 and 48.5 μM, respectively. CW-33 significantly moderated JEV-triggered Ca2+ overload, which correlated with the recovery of mitochondria membrane potential as well as the activation of Akt/mTOR and Jak/STAT1 signals in treated infected cells. Phosphopeptide profiling by LC-MS/MS revealed that CW-33 upregulated proteins from the enzyme modulator category, such as protein phosphatase inhibitor 2 (I-2), Rho GTPase-activating protein 35, ARF GTPase-activating protein GIT2, and putative 3-phosphoinositide-dependent protein kinase 2. These enzyme modulators identified were associated with the activation of Akt/mTOR and Jak/STAT1 signals. Meanwhile, I-2 treatment substantially inhibited the apoptosis of JEV-infected cells. The results demonstrated that CW-33 exhibited a significant potential in the development of anti-JEV agents.
Collapse
Affiliation(s)
- Su-Hua Huang
- Department of Biotechnology, Asia University, Wufeng, Taichung 413, Taiwan.
| | - Jin-Cherng Lien
- School of Pharmacy, China Medical University, Taichung 404, Taiwan.
| | - Chao-Jung Chen
- Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan.
| | - Yu-Ching Liu
- Proteomics Core Laboratory, Department of Medical Research, China Medical University Hospital, Taichung 404, Taiwan.
| | - Ching-Ying Wang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan.
| | - Chia-Fong Ping
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan.
| | - Yu-Fong Lin
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan.
| | - An-Cheng Huang
- Department of Nursing, St. Mary's Junior College of Medicine, Nursing and Management, Yilan County 266, Taiwan.
| | - Cheng-Wen Lin
- Department of Biotechnology, Asia University, Wufeng, Taichung 413, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung 404, Taiwan.
| |
Collapse
|