1
|
Vacca P, Bilotta MT, Moretta L, Tumino N. Myeloid-derived suppressor cells: Identification and function. Methods Cell Biol 2024; 190:151-169. [PMID: 39515878 DOI: 10.1016/bs.mcb.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Myeloid-derived suppressor cells (MDSCs) are cells that play a regulatory role in immune responses and inflammation. They can have both positive and negative effects on various diseases, including cancer, infections, sepsis, and trauma. MDSCs inhibit immune cells by releasing immunosuppressive factors and can be categorized as monocytic (M) or polymorphonuclear (PMN) cell lineages. Most MDSCs are PMN-MDSC and are found in the peripheral blood (PB) and in the tissue microenvironment of tumor and inflamed patients, where they can directly inhibit immune cell activity and promote tumor progression. Various markers have been suggested for their identification, but in order to be defined as MDSC, their inhibitory capacity has to be certified. In this article, we summarize the identification and functional protocol for characterizing MDSCs, focusing on PMN-MDSC.
Collapse
Affiliation(s)
- Paola Vacca
- Innate lymphoid cells Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | | | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy.
| | - Nicola Tumino
- Innate lymphoid cells Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy.
| |
Collapse
|
2
|
Abunawas D, Abbasy A, Afifi M, Moaaz M, Kamal A, Awaad A, Elsherbini B. MYELOID-DERIVED SUPPRESSOR CELLS TWO YEARS AFTER HEPATITIS C VIRUS ERADICATION USING DIRECTLY ACTING ANTIVIRALS. ARQUIVOS DE GASTROENTEROLOGIA 2024; 61:e24004. [PMID: 39046003 DOI: 10.1590/s0004-2803.24612024-004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 05/06/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND Myeloid-derived suppressor cells (MDSCs) have immature morphology, relatively weak phagocytic activity, as well as some immunosuppressive functions. The capacity of MDSCs to inhibit T-cell-mediated immunological responses is their most notable functional characteristic. Down-regulating antitumor immune surveillance is one way that the expansion and activation of MDSCs contribute significantly to the occurrence and progression of tumors. Increased levels of MDSCs in patients with chronic hepatitis C virus (HCV) infection could suppress T-cell responses, promoting viral escape and hepatitis progression. This may make HCV-infected individuals more vulnerable to severe infections, hepatic and extra-hepatic tumors, and a diminished capacity to react to immunization. It is still unknown if effective HCV eradication with directly acting antivirals (DAAs) can restore immune functions and immune surveillance capacity. OBJECTIVE The purpose of this study was to observe the frequency of M-MDSCs (CD33+, CD11b+, and HLA-DR) in patients with a previous history of HCV, 2-3 years after virus eradication using DAA therapy. METHODS This study was conducted on 110 subjects: fifty-five subjects without liver cirrhosis who were treated with HCV using DAAs and attained SVR for a period of 2-3 years and 55 age- and gender-matched healthy controls. The study was conducted during the period from January to July 2022. Patients were recruited from the National Viral Hepatitis Treatment Unit, Alexandria University Hepatology outpatient clinic, and the Alexandria University Tropical Medicine outpatient clinic. The frequencies of MDSCs (CD33+CD11b + HLA-DR-) by flow cytometry were assessed. RESULTS Even after the virus had been eradicated for longer than two years, MDSC levels in HCV-treated individuals were found to be considerably higher. In the HCV-treated group, the median number of MDSCs was 5, with an interquartile range (IQR) of 3.79-7.69. In contrast, the median for the control group was 3.1, with an IQR of 1.4-3.2 (P˂0.001). CONCLUSION Successful DAA therapy leads to slow and partial immunological reconstitution, as demonstrated by the failure to attain normal levels of MDSC's 2 years after successful HCV eradication despite the normalization of laboratory parameters as well as the absence of liver fibrosis. The clinical implications of these findings should be thoroughly studied.
Collapse
Affiliation(s)
- Dania Abunawas
- Academic fellow, Immunology and Allergy department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Amany Abbasy
- Lecturer of Tropical Medicine, Tropical Medicine department, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mohamed Afifi
- Professor of Microbiology and Immunology, Allergy and Immunology department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Mai Moaaz
- Professor of Immunology and Allergy, Immunology and Allergy department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Ahmed Kamal
- Lecturer of Internal Medicine and Hepatology, Internal Medicine department, Hepatology Unit, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ashraf Awaad
- Center of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Basem Elsherbini
- Lecturer of Immunology and Allergy, Immunology and Allergy department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Abdulsamad B, Afifi M, Awaad AK, Elbendary W, Mustafa H, Elsherbini B. Effect of Direct Acting Antivirals (DAAs) on Myeloid-Derived Suppressor Cells Population in Egyptian Chronic Hepatitis C Virus Patients: A Potential Immunomodulatory Role of DAAs. Viral Immunol 2023; 36:259-267. [PMID: 36802279 DOI: 10.1089/vim.2022.0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
Chronic hepatitis C is a major health concern with high morbidity and mortality rates. The introduction of direct acting antivirals (DAAs) as a first-line treatment for hepatitis C virus (HCV) has significantly enhanced HCV eradication. However, DAA therapy is facing rising concerns regarding long-term safety, viral resistance, and reinfection. HCV is associated with different immune alteration mechanisms that can evade immunity and establish persistent infection. One of these suggested mechanisms is the accumulation of myeloid-derived suppressor cells (MDSCs), which is known to accumulate in chronic inflammatory conditions. Moreover, the role of DAA in restoring immunity after successful viral eradication is still unclear and needs further investigations. Thus, we aimed to investigate the role of MDSCs in chronic HCV Egyptian patients and its response to DAA in treated compared with untreated patients. Fifty untreated chronic hepatitis C (CHC) patients, 50 DAA-treated CHC patients, and 30 healthy individuals were recruited. We used flow cytometer analysis to measure MDSCs frequency and enzyme-linked immunosorbent assay analysis to evaluate the serum level of interferon (IFN)-γ. We found a significant elevation in MDSC% among the untreated group (34.5 ± 12.4%) compared with the DAA-treated group (18.3 ± 6.7%), while the control group had a mean of (3.8 ± 1.6%). IFN-γ concentration was higher in treated patients compared with untreated. We also found a significant negative correlation (rs -0.662) (p < 0.001) between MDSC% and IFN-γ concentration among treated HCV patients. Our results revealed important evidence of MDSCs accumulation in CHC patients and partial retrieval of the immune system regulatory function after DAA therapy.
Collapse
Affiliation(s)
- Basma Abdulsamad
- Immunology and Allergy Department, Medical Research Institute, Alexandria University, Alexandria, Egypt.,Clinical Pharmacist, Ministry of Health, Alexandria, Egypt
| | - Mohamed Afifi
- Immunology and Allergy Department, Medical Research Institute, Alexandria University, Alexandria, Egypt
| | - Ashraf K Awaad
- Centre of Excellence for Research in Regenerative Medicine and Applications, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Waleed Elbendary
- Clinical Pathology Department, Medical Military Academy, Cairo, Egypt
| | - Hanan Mustafa
- Internal Medicine Department, Medical Research Institute, Alexandria, Egypt
| | - Bassem Elsherbini
- Immunology and Allergy Department, Medical Research Institute, Alexandria University, Alexandria, Egypt.,Immunology Unit, Medical Laboratory Department, Mubarak Al-Kabeer Hospital, Ministry of Health, Jabriya, Kuwait
| |
Collapse
|
4
|
Tumino N, Fiore PF, Pelosi A, Moretta L, Vacca P. Myeloid derived suppressor cells in tumor microenvironment: Interaction with innate lymphoid cells. Semin Immunol 2022; 61-64:101668. [PMID: 36370673 DOI: 10.1016/j.smim.2022.101668] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/10/2022]
Abstract
Human myeloid-derived suppressor cells (MDSC) represent a stage of immature myeloid cells and two main subsets can be identified: monocytic and polymorphonuclear. MDSC contribute to the establishment of an immunosuppressive tumor microenvironment (TME). The presence and the activity of MDSC in patients with different tumors correlate with poor prognosis. As previously reported, MDSC promote tumor growth and use different mechanisms to suppress the immune cell-mediated anti-tumor activity. Immunosuppression mechanisms used by MDSC are broad and depend on their differentiation stage and on the pathological context. It is known that some effector cells of the immune system can play an important role in the control of tumor progression and metastatic spread. In particular, innate lymphoid cells (ILC) contribute to control tumor growth representing a potential, versatile and, immunotherapeutic tool. Despite promising results obtained by using new cellular immunotherapeutic approaches, a relevant proportion of patients do not benefit from these therapies. Novel strategies have been investigated to overcome the detrimental effect exerted by the immunosuppressive component of TME (i.e. MDSC). In this review, we summarized the characteristics and the interactions occurring between MDSC and ILC in different tumors discussing how a deeper knowledge on MDSC biology could represent an important target for tumor immunotherapy capable of decreasing immunosuppression and enhancing anti-tumor activity exerted by immune cells.
Collapse
Affiliation(s)
- Nicola Tumino
- Innate lymphoid cells Unit, Immunology Research Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy.
| | | | - Andrea Pelosi
- Tumor Immunology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Paola Vacca
- Innate lymphoid cells Unit, Immunology Research Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| |
Collapse
|
5
|
Gobran ST, Ancuta P, Shoukry NH. A Tale of Two Viruses: Immunological Insights Into HCV/HIV Coinfection. Front Immunol 2021; 12:726419. [PMID: 34456931 PMCID: PMC8387722 DOI: 10.3389/fimmu.2021.726419] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 07/26/2021] [Indexed: 12/13/2022] Open
Abstract
Nearly 2.3 million individuals worldwide are coinfected with human immunodeficiency virus (HIV) and hepatitis C virus (HCV). Odds of HCV infection are six times higher in people living with HIV (PLWH) compared to their HIV-negative counterparts, with the highest prevalence among people who inject drugs (PWID) and men who have sex with men (MSM). HIV coinfection has a detrimental impact on the natural history of HCV, including higher rates of HCV persistence following acute infection, higher viral loads, and accelerated progression of liver fibrosis and development of end-stage liver disease compared to HCV monoinfection. Similarly, it has been reported that HCV coinfection impacts HIV disease progression in PLWH receiving anti-retroviral therapies (ART) where HCV coinfection negatively affects the homeostasis of CD4+ T cell counts and facilitates HIV replication and viral reservoir persistence. While ART does not cure HIV, direct acting antivirals (DAA) can now achieve HCV cure in nearly 95% of coinfected individuals. However, little is known about how HCV cure and the subsequent resolution of liver inflammation influence systemic immune activation, immune reconstitution and the latent HIV reservoir. In this review, we will summarize the current knowledge regarding the pathogenesis of HIV/HCV coinfection, the effects of HCV coinfection on HIV disease progression in the context of ART, the impact of HIV on HCV-associated liver morbidity, and the consequences of DAA-mediated HCV cure on immune reconstitution and HIV reservoir persistence in coinfected patients.
Collapse
Affiliation(s)
- Samaa T Gobran
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada.,Department of Medical Microbiology and Immunology, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | - Petronela Ancuta
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de microbiologie, infectiologie et immunologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Naglaa H Shoukry
- Centre de Recherche du Centre hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Département de médecine, Faculté de médecine, Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
6
|
Hu S, Lian PP, Hu Y, Zhu XY, Jiang SW, Ma Q, Li LY, Yang JF, Yang L, Guo HY, Zhou H, Yang CC, Meng XM, Li J, Li HW, Xu T, Zhou H. The Role of IL-35 in the Pathophysiological Processes of Liver Disease. Front Pharmacol 2021; 11:569575. [PMID: 33584256 PMCID: PMC7873894 DOI: 10.3389/fphar.2020.569575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 12/10/2020] [Indexed: 12/23/2022] Open
Abstract
It is known that liver diseases have several characteristics of massive lipid accumulation and lipid metabolic disorder, and are divided into liver inflammation, liver fibrosis, liver cirrhosis (LC), and hepatocellular carcinoma (HCC) in patients. Interleukin (IL)-35, a new-discovered cytokine, can protect the liver from the environmental attack by increasing the ratio of Tregs (T regulatory cells) which can increase the anti-inflammatory cytokines and inhibit the proliferation of immune cellular. Interestingly, two opposite mechanisms (pro-inflammatory and anti-inflammatory) have connection with the ultimate formation of liver diseases, which suggest that IL-35 may play crucial function in the process of liver diseases through immunosuppressive regulation. Besides, some obvious advantages also imply that IL-35 can be considered as a new therapeutic target to control the progression of liver diseases, while its mechanism of function still needs further research.
Collapse
Affiliation(s)
- Shuang Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Pan-Pan Lian
- School of Pharmacy, NanJing University, NanJing, China
| | - Ying Hu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xing-Yu Zhu
- National Drug Clinical Trial Institution, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| | - Shao-Wei Jiang
- The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Qiang Ma
- Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Liang-Yun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Jun-Fa Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Li Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Hai-Yue Guo
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Hong Zhou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Chen-Chen Yang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Jun Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Hai-Wen Li
- The Third Affiliated Hospital of Anhui Medical University, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tao Xu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China.,Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Huan Zhou
- National Drug Clinical Trial Institution, The First Affiliated Hospital of Bengbu Medical College, Bengbu, China
| |
Collapse
|
7
|
Cimini E, Sacchi A, Grassi G, Casetti R, Notari S, Bordoni V, Forini O, Grilli E, Vergori A, Capobianchi MR, Antinori A, Agrati C. Persistent gamma delta T-cell dysfunction in HCV/HIV co-infection despite direct-acting antiviral therapy-induced cure. J Viral Hepat 2020; 27:754-756. [PMID: 32049390 DOI: 10.1111/jvh.13277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 01/23/2020] [Indexed: 12/09/2022]
Affiliation(s)
- Eleonora Cimini
- Cellular Immunology and Pharmacology Laboratory, National Institute for Infectious Diseases 'Lazzaro Spallanzani'-IRCCS, Rome, Italy
| | - Alessandra Sacchi
- Cellular Immunology and Pharmacology Laboratory, National Institute for Infectious Diseases 'Lazzaro Spallanzani'-IRCCS, Rome, Italy
| | - Germana Grassi
- Cellular Immunology and Pharmacology Laboratory, National Institute for Infectious Diseases 'Lazzaro Spallanzani'-IRCCS, Rome, Italy
| | - Rita Casetti
- Cellular Immunology and Pharmacology Laboratory, National Institute for Infectious Diseases 'Lazzaro Spallanzani'-IRCCS, Rome, Italy
| | - Stefania Notari
- Cellular Immunology and Pharmacology Laboratory, National Institute for Infectious Diseases 'Lazzaro Spallanzani'-IRCCS, Rome, Italy
| | - Veronica Bordoni
- Cellular Immunology and Pharmacology Laboratory, National Institute for Infectious Diseases 'Lazzaro Spallanzani'-IRCCS, Rome, Italy
| | - Olindo Forini
- Cellular Immunology and Pharmacology Laboratory, National Institute for Infectious Diseases 'Lazzaro Spallanzani'-IRCCS, Rome, Italy
| | - Elisabetta Grilli
- Clinical Department, National Institute for Infectious Diseases 'Lazzaro Spallanzani'-IRCCS, Rome, Italy
| | - Alessandra Vergori
- Clinical Department, National Institute for Infectious Diseases 'Lazzaro Spallanzani'-IRCCS, Rome, Italy
| | - Maria Rosaria Capobianchi
- Virology Laboratory, National Institute for Infectious Diseases 'Lazzaro Spallanzani'-IRCCS, Rome, Italy
| | - Andrea Antinori
- Clinical Department, National Institute for Infectious Diseases 'Lazzaro Spallanzani'-IRCCS, Rome, Italy
| | - Chiara Agrati
- Cellular Immunology and Pharmacology Laboratory, National Institute for Infectious Diseases 'Lazzaro Spallanzani'-IRCCS, Rome, Italy
| |
Collapse
|
8
|
Telatin V, Nicoli F, Frasson C, Menegotto N, Barbaro F, Castelli E, Erne E, Palù G, Caputo A. In Chronic Hepatitis C Infection, Myeloid-Derived Suppressor Cell Accumulation and T Cell Dysfunctions Revert Partially and Late After Successful Direct-Acting Antiviral Treatment. Front Cell Infect Microbiol 2019; 9:190. [PMID: 31259160 PMCID: PMC6588015 DOI: 10.3389/fcimb.2019.00190] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 05/17/2019] [Indexed: 12/16/2022] Open
Abstract
Chronic HCV infection is characterized by several immunological alterations, such as the accumulation of suppressor cells and of hyperactivated T lymphocytes. However, it is unclear whether direct-acting antiviral (DAA)-mediated HCV clearance restores immune dysfunctions. We performed a phenotypic characterization by flow cytometry of different immune cell subsets, including monocytic myeloid-derived suppressor cells (M-MDSCs) and T lymphocytes in 168 patients with persistent HCV infection not treated, under DAA therapies and sustained virological responders. Chronic HCV infection prompted the accumulation of M-MDSCs independently of patient and clinical characteristics, and altered their metabolic properties. HCV RNA was undetectable in the majority of patients just after few weeks of DAA therapy, whereas M-MDSC levels normalized only 6 months after therapy. In addition, HCV infection deeply perturbed the T cell compartment since a re-distribution of memory CD4+ and CD8+ T cells was observed at the expenses of naïve cells, and memory T lymphocytes displayed increased activation. Notably, these features were only partially restored by DAA therapies in the CD4, but not in the CD8, compartment as high immune activation levels persisted in the terminally differentiated memory CD8+ T cells even more than 1 year after sustained virological response. Together, these results suggest that successful DAA therapies do not lead to full immunological reconstitution as fast as viral clearance.
Collapse
Affiliation(s)
- Valentina Telatin
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Francesco Nicoli
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Chiara Frasson
- Istituto di Ricerca Pediatrica (IRP) Città della Speranza, Padova, Italy
| | - Nicola Menegotto
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Francesco Barbaro
- Infectious and Tropical Diseases Unit, Azienda Ospedaliera di Padova, Padova, Italy
| | - Eleonora Castelli
- Infectious and Tropical Diseases Unit, Azienda Ospedaliera di Padova, Padova, Italy
| | - Elke Erne
- Infectious and Tropical Diseases Unit, Azienda Ospedaliera di Padova, Padova, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Antonella Caputo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| |
Collapse
|
9
|
Pal S, Nandi M, Dey D, Chakraborty BC, Shil A, Ghosh S, Banerjee S, Santra A, Ahammed SKM, Chowdhury A, Datta S. Myeloid-derived suppressor cells induce regulatory T cells in chronically HBV infected patients with high levels of hepatitis B surface antigen and persist after antiviral therapy. Aliment Pharmacol Ther 2019; 49:1346-1359. [PMID: 30982998 DOI: 10.1111/apt.15226] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 11/05/2018] [Accepted: 02/21/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND CD4+ regulatory T-cells (Tregs) expand during chronic hepatitis B virus (HBV) infection and inhibit antiviral immunity, although the underlying mechanism remains largely elusive. Myeloid-derived suppressor cells (MDSC) have been linked with T-cell dysfunction but questions remain regarding their persistence/profile/function in chronically HBV infected patients. AIM To characterise MDSC in different phases of chronic HBV infection namely, immune-tolerant (IT), hepatitis B e-antigen-positive chronic hepatitis B (EP-CHB), inactive carriers (IC) and hepatitis B e-antigen-negative chronic hepatitis B (EN-CHB), to investigate their role in Treg induction and evaluate the effect of anti-viral therapy on these cells. METHODS Multiparametric flow cytometry, cell-sorting and co-culture assays were performed along with longitudinal immune monitoring of CHB patients receiving tenofovir. RESULTS HLA-DR- CD11b+ CD33hi -Monocytic-MDSC (M-MDSC) were enhanced in IT, EP-CHB and EN-CHB compared with IC, and this was related to increasing hepatitis B surface antigen (HBsAg) concentration. IT and EP-/EN-CHB displayed elevated frequency of CD4+ CD25+ FOXP3+ Treg that positively correlated with that of M-MDSC. However, both M-MDSC and HLA-DR- CD11b+ CD33low -granulocytic-MDSC from IT and EP-/EN-CHB expressed high transforming growth factor beta (TGF-β) and interleukin-10 (IL-10). Co-culture of sorted HLA-DR- CD33+ -MDSC with autologous MDSC depleted-PBMC from IT and CHB but not from IC, increased CD4+ CD25+ FOXP3+ -iTreg and CD4+ FOXP3- IL-10+ -Tr1-cells through a cell-contact independent mechanism. While MDSC-derived TGF-β and IL-10 promoted development of iTreg, only IL-10 appeared to be crucial for Tr1 induction. One year of tenofovir treatment failed to normalise MDSC frequency/function or reduce Treg percentage and serum HBsAg levels, despite reduction in viral load. CONCLUSIONS We established a previously unrecognised role of MDSC in Treg development in IT and EP-/EN-CHB via TGF-β/IL-10-dependent pathways and both cell-types persisted after anti-viral therapy. Hence, therapeutic targeting of MDSC or reducing circulating HBsAg level together with tenofovir-therapy might be more effective in restricting HBV persistence and disease progression.
Collapse
Affiliation(s)
- Sourina Pal
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Madhuparna Nandi
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Debangana Dey
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Bidhan Chandra Chakraborty
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Achintya Shil
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Saurabh Ghosh
- Human Genetics Unit, Indian Statistical Institute, Kolkata, India
| | - Soma Banerjee
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Amal Santra
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - S K Mahiuddin Ahammed
- Department of Hepatology, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Abhijit Chowdhury
- Department of Hepatology, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| | - Simanti Datta
- Centre for Liver Research, School of Digestive and Liver Diseases, Institute of Post Graduate Medical Education and Research, Kolkata, India
| |
Collapse
|
10
|
Santangelo L, Bordoni V, Montaldo C, Cimini E, Zingoni A, Battistelli C, D'Offizi G, Capobianchi MR, Santoni A, Tripodi M, Agrati C. Hepatitis C virus direct-acting antivirals therapy impacts on extracellular vesicles microRNAs content and on their immunomodulating properties. Liver Int 2018; 38:1741-1750. [PMID: 29359389 DOI: 10.1111/liv.13700] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/12/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Hepatitis C virus (HCV) infection is known to cause major alterations in the cross-talk between hepatic and immune cells thus contributing to the liver disease pathogenesis. Extracellular vesicles have been proved to act as major players in cell-cell communication, and their cargo changes in relation to pathophysiological states. The aim of this study was to evaluate the effects of chronic HCV infection and direct-acting antivirals (DAA) on exosome-delivered microRNAs and on their ability to modulate the innate immune response. METHODS Exosomes isolated from the plasma of healthy donors and naïve, viremic HCV patients before and after DAA treatment have been compared for their microRNAs cargo by quantitative polymerase chain reaction. Functional assays with peripheral blood cells from healthy donors were performed to assess exosome-mediated immune responses. RESULTS MicroRNAs associated with HCV-related immunopathogenesis which were found to be enriched in exosomes of HCV viremic patients (in particular, miR-122-5p, miR-222-3p, miR-146a, miR-150-5p, miR-30c, miR-378a-3p and miR-20a-5p) were markedly reduced by DAA therapy. This exosome-microRNA cargo modulation parallels changes in their immunomodulatory properties in ex vivo experiments. Exosomes from HCV patients inhibit NK degranulation activity and this effect correlates with miR-122-5p or miR-222-3p levels. CONCLUSIONS Enrichment of immunomodulatory microRNAs in exosomes of HCV patients was correlated with their inhibitory activity on innate immune cells function. Direct-acting antivirals (DAA) treatment was observed to revert both microRNA content and functional profiles of systemic exosomes towards those of healthy donors. Exosome-associated microRNAs may provide valuable biomarkers to monitor immune response recovery.
Collapse
Affiliation(s)
- Laura Santangelo
- Gene Expression Laboratory, National Institute for Infectious Diseases "Lazzaro Spallanzani" I.R.C.C.S., Rome, Italy
| | - Veronica Bordoni
- Laboratory of Cellular Immunology and Pharmacology, National Institute for Infectious Diseases "Lazzaro Spallanzani" I.R.C.C.S., Rome, Italy
| | - Claudia Montaldo
- Gene Expression Laboratory, National Institute for Infectious Diseases "Lazzaro Spallanzani" I.R.C.C.S., Rome, Italy
| | - Eleonora Cimini
- Laboratory of Cellular Immunology and Pharmacology, National Institute for Infectious Diseases "Lazzaro Spallanzani" I.R.C.C.S., Rome, Italy
| | - Alessandra Zingoni
- Department of Molecular Medicine, Pasteur Italia Laboratory - Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | - Cecilia Battistelli
- Department of Cellular Biotechnologies and Haematology - Pasteur Italia Laboratory, Sapienza University of Rome, Rome, Italy
| | - Gianpiero D'Offizi
- Hepatology and Infectious Diseases Unit, National Institute for Infectious Diseases "Lazzaro Spallanzani" I.R.C.C.S., Rome, Italy
| | - Maria R Capobianchi
- Laboratory of Virology, National Institute for Infectious Diseases "Lazzaro Spallanzani" I.R.C.C.S., Rome, Italy
| | - Angela Santoni
- Department of Molecular Medicine - Pasteur Italia Laboratory, Sapienza University of Rome, Rome, Italy.,Neuromed I.R.C.C.S.- Istituto Neurologico Mediterraneo, Pozzilli, Italy
| | - Marco Tripodi
- Gene Expression Laboratory, National Institute for Infectious Diseases "Lazzaro Spallanzani" I.R.C.C.S., Rome, Italy.,Department of Cellular Biotechnologies and Haematology - Pasteur Italia Laboratory, Sapienza University of Rome, Rome, Italy
| | - Chiara Agrati
- Laboratory of Cellular Immunology and Pharmacology, National Institute for Infectious Diseases "Lazzaro Spallanzani" I.R.C.C.S., Rome, Italy
| |
Collapse
|
11
|
Wilson E, Kottilil S, Poonia B. Can directly acting antiviral regimens against hepatitis C induce host immune responses? Future Virol 2018. [DOI: 10.2217/fvl-2017-0149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Affiliation(s)
- Eleanor Wilson
- Division of Clinical Care & Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Shyam Kottilil
- Division of Clinical Care & Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Bhawna Poonia
- Division of Clinical Care & Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
12
|
Lampejo T, Agarwal K, Carey I. Interferon-free direct-acting antiviral therapy for acute hepatitis C virus infection in HIV-infected individuals: A literature review. Dig Liver Dis 2018; 50:113-123. [PMID: 29233687 DOI: 10.1016/j.dld.2017.11.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 10/29/2017] [Accepted: 11/15/2017] [Indexed: 02/07/2023]
Abstract
Dramatic rises in hepatitis C virus (HCV) coinfection rates in human immunodeficiency virus (HIV)-infected individuals have been observed recently, largely attributable to increasing recreational drug use combined with increased testing for HCV. In the era of direct-acting antiviral (DAA) therapy, treatment of acute HCV infection in HIV-infected individuals with short durations of these drugs may potentially reduce the disease and economic burden associated with HCV infection as well as reducing the likelihood of onward HCV transmission. We performed an extensive literature search of PubMed, Embase and Google Scholar up to 05 September 2017 for clinical trials of acute HCV infection in HIV-infected individuals. In the studies identified, rates of sustained virologic response at 12 weeks post-treatment (SVR12) ranged from 21% with 6 weeks of therapy up to 92% with 12 weeks of therapy with sofosbuvir and ribavirin. Ledipasvir/sofosbuvir for 6 weeks achieved an SVR of 77%. No HIV-related events occurred regardless of whether patients were receiving antiretroviral therapy (ART) and DAAs were well tolerated. Data is currently limited with regards to optimal regimens and durations of therapy, which need to be tailored based on potential interactions with concurrent ART and consideration for the fact that patients with higher baseline HCV RNA levels may require an extended duration of treatment.
Collapse
Affiliation(s)
- Temi Lampejo
- Institute of Liver Studies, King's College Hospital, London, United Kingdom.
| | - Kosh Agarwal
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| | - Ivana Carey
- Institute of Liver Studies, King's College Hospital, London, United Kingdom
| |
Collapse
|
13
|
Dorhoi A, Du Plessis N. Monocytic Myeloid-Derived Suppressor Cells in Chronic Infections. Front Immunol 2018; 8:1895. [PMID: 29354120 PMCID: PMC5758551 DOI: 10.3389/fimmu.2017.01895] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/11/2017] [Indexed: 01/04/2023] Open
Abstract
Heterogeneous populations of myeloid regulatory cells (MRC), including monocytes, macrophages, dendritic cells, and neutrophils, are found in cancer and infectious diseases. The inflammatory environment in solid tumors as well as infectious foci with persistent pathogens promotes the development and recruitment of MRC. These cells help to resolve inflammation and establish host immune homeostasis by restricting T lymphocyte function, inducing regulatory T cells and releasing immune suppressive cytokines and enzyme products. Monocytic MRC, also termed monocytic myeloid-derived suppressor cells (M-MDSC), are bona fide phagocytes, capable of pathogen internalization and persistence, while exerting localized suppressive activity. Here, we summarize molecular pathways controlling M-MDSC genesis and functions in microbial-induced non-resolved inflammation and immunopathology. We focus on the roles of M-MDSC in infections, including opportunistic extracellular bacteria and fungi as well as persistent intracellular pathogens, such as mycobacteria and certain viruses. Better understanding of M-MDSC biology in chronic infections and their role in antimicrobial immunity, will advance development of novel, more effective and broad-range anti-infective therapies.
Collapse
Affiliation(s)
- Anca Dorhoi
- Institute of Immunology, Bundesforschungsinstitut für Tiergesundheit, Friedrich-Loeffler-Institut (FLI), Insel Riems, Germany.,Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany.,Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Nelita Du Plessis
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, SAMRC Centre for Tuberculosis Research, DST and NRF Centre of Excellence for Biomedical TB Research, Stellenbosch University, Tygerberg, South Africa
| |
Collapse
|
14
|
Intrahepatic Vγ9Vδ2 T-cells from HCV-infected patients show an exhausted phenotype but can inhibit HCV replication. Virus Res 2017; 243:31-35. [PMID: 29029951 DOI: 10.1016/j.virusres.2017.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 10/05/2017] [Accepted: 10/09/2017] [Indexed: 12/27/2022]
Abstract
Hepatitis C virus (HCV) persistence results from inefficiencies of both innate and adaptive immune responses to eradicate the infection. A functional impairment of circulating Vγ9Vδ2 T-cells was described but few data are available on Vγ9Vδ2 T-cells in the liver that, however, represents the battlefield in the HCV/host interaction. Aim of this work was to compare circulating and intrahepatic Vγ9Vδ2 T-cells in chronic HCV-infected patients (HCVpos) and in HCV-negative (HCVneg) subjects. Phenotypic and functional analysis was performed by flow cytometry. Anti-HCV activity was analyzed by using an in vitro autologous liver culture system. Independently from HCV infection, the liver was enriched of Vγ9Vδ2 T-cells expressing an effector/activated phenotype. In contrast, an enrichment of PD-1 expressing Vγ9Vδ2 T-cells was observed both in the peripheral blood and in the liver of HCVpos patients, probably due to a persistent antigenic stimulation. Moreover, a lower frequency of IFN-γ producing Vγ9Vδ2 T-cells was observed in the liver of HCVpos patients, suggesting a functional impairment in the cytokine production in HCVpos liver. Despite this hypo-responsiveness, intrahepatic Vγ9Vδ2 T-cells are able to exert an anti-HCV activity after specific stimulation. Altogether, our data show that HCV infection induced a dysregulation of intrahepatic Vγ9Vδ2 T cells that maintain their anti-HCV activity after specific stimulation. A study aimed to evaluate the mechanisms of the antiviral activity may be useful to identify new pathways able to improve Vγ9Vδ2 T-cells intrahepatic function during HCV infection.
Collapse
|
15
|
Langhans B, Spengler U. Reply to: "In HIV/HCV co-infected patients T regulatory and myeloid derived suppressor cells persist after successful treatment with directly acting antivirals". J Hepatol 2017; 67:424-425. [PMID: 28404219 DOI: 10.1016/j.jhep.2017.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 03/30/2017] [Indexed: 12/04/2022]
Affiliation(s)
- Bettina Langhans
- Department of Internal Medicine I, University of Bonn, Bonn, Germany.
| | - Ulrich Spengler
- Department of Internal Medicine I, University of Bonn, Bonn, Germany
| |
Collapse
|