1
|
Li Z, Guan Y, Gao J, Zhu L, Zeng Z, Jing Q, Wan Q, Fan Q, Ren X, Pei H, Zhang D, Rong Y, Rong Z, He J, Zhang Y, Li N, Chen P, Sun L, Xu B, Nie Y, Deng Y. PPDPF-mediated regulation of BCAA metabolism enhances mTORC1 activity and drives cholangiocarcinoma progression. Oncogene 2025; 44:1415-1433. [PMID: 40025229 DOI: 10.1038/s41388-025-03320-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/30/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
Tumor cells display profound changes in the metabolism of branched-chain amino acids (BCAA). However, how these changes are regulated to facilitate tumorigenesis is not yet completely understood. Here, we identified pancreatic progenitor cell differentiation and proliferation factor (PPDPF) as a BCAA-responsive protein through extensive screening using stable isotope labeling with amino acids in cell culture (SILAC). PPDPF is upregulated in cholangiocarcinoma to enhance the malignant phenotype of cholangiocarcinoma cells by activating the mTORC1 signaling pathway. Metabolic flux analysis and mechanistic studies revealed that PPDPF prevented the interaction between MCCA and MCCB, thus inhibiting leucine catabolism and activating mTORC1 signaling. Moreover, upon amino acid starvation, ariadne RBR E3 ubiquitin protein ligase 2 (ARIH2) and OTU deubiquitinase 4 (OTUD4) cooperatively regulated the stability of the PPDPF protein by modulating its ubiquitination. Additionally, monocytes/macrophage-derived IL-10 increased the BCAA content in cholangiocarcinoma cells and stabilized the PPDPF protein, even under amino acid starvation conditions. Knockout of PPDPF or restriction of leucine intake significantly inhibits the progression of cholangiocarcinoma in a mouse model. Collectively, we discovered a novel role for PPDPF in promoting the progression of cholangiocarcinoma by activating mTORC1 signaling through the inhibition of leucine catabolism. The present study suggests that targeting PPDPF or decreasing dietary leucine intake may provide a new strategy to improve the treatment efficacy of cholangiocarcinoma.
Collapse
Affiliation(s)
- Zhi Li
- Key Laboratory of Molecular Radiation Oncology (Xiangya Hospital, Central South University), Changsha, China
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha, China
- Institute of Cancer Research, National Clinical Research Center for Geriatric Disorders (Xiangya), Xiangya Hospital, Central South University, Changsha, China
| | - Yidi Guan
- Key Laboratory of Molecular Radiation Oncology (Xiangya Hospital, Central South University), Changsha, China
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Gao
- Key Laboratory of Molecular Radiation Oncology (Xiangya Hospital, Central South University), Changsha, China
- Shanghai Key Laboratory of Thoracic Tumor Biotherapy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lan Zhu
- NHC Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| | - Zimei Zeng
- Shanghai Key Laboratory of Thoracic Tumor Biotherapy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianyu Jing
- NHC Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| | - Quan Wan
- NHC Key Laboratory of Pulmonary Immune-related Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| | - Qi Fan
- Shanghai Key Laboratory of Thoracic Tumor Biotherapy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinxin Ren
- Cancer Center, Department of Pathology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Haiping Pei
- Key Laboratory of Molecular Radiation Oncology (Xiangya Hospital, Central South University), Changsha, China
| | - Dexiang Zhang
- Department of General Surgery, Zhongshan Xuhui Hospital Affiliated to Fudan University, Shanghai, China
| | - Yefei Rong
- The Department of Emergency Surgery, the Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zhuoxian Rong
- Key Laboratory of Molecular Radiation Oncology (Xiangya Hospital, Central South University), Changsha, China
| | - Junju He
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China
| | - Yuefang Zhang
- Songjiang Research Institute, Songjiang Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Nan Li
- Department of Hepatic Surgery I (Ward I), Shanghai Eastern Hepatobiliary Surgery Hospital, Shanghai, China
| | - Pan Chen
- Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China
| | - Lunquan Sun
- Key Laboratory of Molecular Radiation Oncology (Xiangya Hospital, Central South University), Changsha, China.
- Hunan International Science and Technology Collaboration Base of Precision Medicine for Cancer, Changsha, China.
- Institute of Cancer Research, National Clinical Research Center for Geriatric Disorders (Xiangya), Xiangya Hospital, Central South University, Changsha, China.
| | - Bin Xu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.
| | - Yingjie Nie
- Department of Research, the University of HongKong-Shenzhen Hospital, Shenzhen, China.
| | - Yuezhen Deng
- Shanghai Key Laboratory of Thoracic Tumor Biotherapy, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Yangjiang Key Laboratory of Respiratory Disease, People's Hospital of Yangjiang, 529500, Yangjiang, Guangdong, China.
| |
Collapse
|
2
|
Tang J, Yang Y, He Z, Wang C, Gao Z, Meng Y, Chen X, Wang Q, Zheng G, Hu J, Chang C. Construction of dual-targeted liposomes loaded with celastrol and their application in treating intrahepatic cholangiocarcinoma. Mater Today Bio 2025; 31:101581. [PMID: 40124341 PMCID: PMC11929942 DOI: 10.1016/j.mtbio.2025.101581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/29/2025] [Accepted: 02/14/2025] [Indexed: 03/25/2025] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a rare malignant tumor with limited treatment options. Celastrol (Cela) shows potential treatment for ICC, but its clinical use is hindered by poor water solubility and toxic side effects. To address these challenges and enhance its anti-tumor efficacy, we developed hyaluronic acid (HA)-coated triphenylphosphine complex-modified liposomes (HCTL) for accurate delivery of Cela to tumor cell mitochondria.HCTL enhances Cela's water solubility and demonstrates a high rate of encapsulation, stability, and sustained drug release behavior. Moreover, HCTL exhibits outstanding anti-ICC efficacy by efficiently inducing apoptosis in ICC cells via the mitochondrial pathway due to its precise targeting capabilities. In an in-situ ICC mouse model activated by hydrodynamic transfection of AKT and Yap, HCTL downregulates tumor-associated proliferative indices, attenuates the severity of liver injury and modulates the tumor microenvironment. Importantly, HCTL overcomes systemic toxicity associated with Cela. To sum up, HCTL is a potentially effective drug delivery system for ICC treatment.
Collapse
Affiliation(s)
- Jun Tang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, 430061, China
- Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yimeng Yang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, 430061, China
- Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zihan He
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, 430061, China
- Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Chuting Wang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, 430061, China
- Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Ziwei Gao
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, 430061, China
- Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Yan Meng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, 430061, China
- Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Xinyan Chen
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Qi Wang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Guohua Zheng
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, 430061, China
| | - Junjie Hu
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, 430061, China
- Center of Traditional Chinese Medicine Modernization for Liver Diseases, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Cong Chang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China
- Hubei Shizhen Laboratory, Wuhan, Hubei, 430061, China
| |
Collapse
|
3
|
Lao Z, Chen X, Pan B, Fang B, Yang W, Qian Y. Pharmacological regulators of Hippo pathway: Advances and challenges of drug development. FASEB J 2025; 39:e70438. [PMID: 40100056 DOI: 10.1096/fj.202401895rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 02/14/2025] [Accepted: 02/23/2025] [Indexed: 03/20/2025]
Abstract
The Hippo signaling pathway is crucial in regulating organ size, tumor progression, tissue regeneration, and bone homeostasis. Inactivation of the Hippo pathway results in the nuclear translocation and activation of YAP/TAZ. This activation not only promotes tumor progression but also enhances tissue regeneration, wound healing, and maintenance of bone stability Although its discovery occurred over two decades ago, developing effective inhibitors or activators for the Hippo pathway remains challenging. Recently, however, the pace of advancements in developing Hippo signaling-related agonists and antagonists has accelerated, with some drugs that target TEAD advancing to clinical trials and showing promise for treating related diseases. This review summarizes the progress in research on Hippo signaling-related agonists and inhibitors, offering an in-depth analysis of their regulatory mechanisms, pharmacological properties, and potential in vivo applications.
Collapse
Affiliation(s)
- Zhaobai Lao
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Xin Chen
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Bin Pan
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Bin Fang
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Wanlei Yang
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Yu Qian
- Department of Orthopedics Surgery, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| |
Collapse
|
4
|
Xue S, Chen X, Qiu G, Liao H, Qiang Z, Zhang Z, Feng X, Xu L, Xie R, Zhou H, Huang J, Zeng Y, Wang H. CLK1 Activates YAP to Promote Intrahepatic Cholangiocarcinogenesis. Cancer Res 2025; 85:1035-1048. [PMID: 39693605 DOI: 10.1158/0008-5472.can-24-0147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 08/08/2024] [Accepted: 12/13/2024] [Indexed: 12/20/2024]
Abstract
Cdc2-like kinase 1 (CLK1) has dual-specificity kinase ability to phosphorylate tyrosine and serine/threonine protein residues. CLK1 regulates many physiologic processes and has been shown to contribute to multiple types of cancer. In this study, we investigated the functional role of CLK1 during intrahepatic cholangiocarcinoma (ICC) development. The expression of CLK1 was elevated in ICC tumors, and patients with high expression of CLK1 demonstrated poor prognosis. In hydrodynamically transfected mouse models, CLK1 alone was insufficient to induce ICC, whereas CLK1 cooperated with AKT (AKT/CLK1) to trigger ICC initiation. In addition, overexpression of CLK1 in ICC cells facilitated proliferation in vitro and tumor growth in vivo, whereas loss of CLK1 elicited the opposite effects. Moreover, RNA sequencing analysis indicated that high levels of CLK1 corresponded with activation of the Hippo-Yes-associated protein (YAP) signaling pathway. Consistently, AKT/CLK1 murine tumors displayed upregulation of YAP as well as its downstream targets. Furthermore, loss or pharmacologic inhibition of YAP in ICC cells inhibited CLK1-induced growth, and deletion of Yap completely retarded the induction of AKT/CLK1 tumors. Mechanistically, 4D label-free mass spectrometry and coimmunoprecipitation assays revealed WWC2 as a potential mediator of the CLK1-YAP cascade. Collectively, the current findings identify a critical role for CLK1 in promoting ICC development and indicate that inhibiting YAP might be an effective approach for perturbing CLK1-mediated tumorigenesis. Significance: CLK1 drives intrahepatic cholangiocarcinoma initiation and progression by increasing YAP activity, suggesting that targeting YAP could be a potential strategy for treating and preventing CLK1-driven intrahepatic cholangiocarcinoma.
Collapse
Affiliation(s)
- Shuai Xue
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Hepatopancreatobiliary Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiangzheng Chen
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Guoteng Qiu
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Haotian Liao
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zeyuan Qiang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zheng Zhang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xuping Feng
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Lin Xu
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Xie
- Clinical Trial Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hongyu Zhou
- Department of Pharmacy, West China Hospital, Sichuan University, Chengdu, China
| | - Jiwei Huang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yong Zeng
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Haichuan Wang
- Division of Liver Surgery, Department of General Surgery and Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Nie J, Zhang S, Guo Y, Liu C, Shi J, Wu H, Na R, Liang Y, Yu S, Quan F, Liu K, Li M, Zhou M, Zhao Y, Li X, Luo S, Zhang Q, Wang G, Zhang Y, Yao Y, Xiao Y, Tai S, Zheng T. Mapping of the T-cell Landscape of Biliary Tract Cancer Unravels Anatomic Subtype-Specific Heterogeneity. Cancer Res 2025; 85:704-722. [PMID: 39570809 DOI: 10.1158/0008-5472.can-24-1173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/24/2024] [Accepted: 11/13/2024] [Indexed: 02/18/2025]
Abstract
Biliary tract cancer (BTC), encompassing diseases such as intrahepatic (ICC), extrahepatic cholangiocarcinoma (ECC), and gallbladder cancer, is not only increasing but also poses a significant and urgent health threat due to its high malignancy. Genomic differences point to the possibility that these subtypes represent distinct diseases. Elucidation of the specific distribution of T-cell subsets, critical to cancer immunity, across these diseases could provide better insights into the unique biology of BTC subtypes and help identify potential precision medicine strategies. To address this, we conducted single-cell RNA sequencing and T-cell receptor sequencing on CD3+ T cells from 36 samples from 16 patients with BTC across all subtypes and analyzed 355 pathologic slides to examine the spatial distribution of T cells and tertiary lymphoid structures. Compared with ICC and gallbladder cancer, ECC possessed a unique immune profile characterized by T-cell exhaustion, elevated CXCL13 expression in CD4+ T helper-like and CD8+CXCL13+ exhausted T cells, more mature tertiary lymphoid structures, and fewer desert immunophenotypes. Conversely, ICC displayed an inflamed immunophenotype with an enrichment of IFN-related pathways and high expression of LGALS1 in activated regulatory T cells, associated with immunosuppression. Inhibition of LGALS1 reduced tumor growth and regulatory T-cell prevalence in ICC mouse models. Overall, this study unveils T-cell diversity across BTC subtypes at the single-cell and spatial level that could open paths for tailored immunotherapies. Significance: Single-cell and spatial analyses detailed the T-cell characteristics specific to anatomic subtypes of biliary tract cancer, identifying unique immunologic features that could potentially be harnessed to improve patient outcomes.
Collapse
Affiliation(s)
- Jianhua Nie
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Molecular Oncology in Heilongjiang, Harbin, China
| | - Shuyuan Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Molecular Oncology in Heilongjiang, Harbin, China
| | - Ying Guo
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Molecular Oncology in Heilongjiang, Harbin, China
| | - Caiqi Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Molecular Oncology in Heilongjiang, Harbin, China
| | - Jiaqi Shi
- Key Laboratory of Molecular Oncology in Heilongjiang, Harbin, China
- Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, Harbin, China
| | - Haotian Wu
- Department of Hepatic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ruisi Na
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Molecular Oncology in Heilongjiang, Harbin, China
| | - Yingjian Liang
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shan Yu
- Department of Pathology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Fei Quan
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Kun Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Mingwei Li
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Molecular Oncology in Heilongjiang, Harbin, China
| | - Meng Zhou
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Molecular Oncology in Heilongjiang, Harbin, China
| | - Ying Zhao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Molecular Oncology in Heilongjiang, Harbin, China
| | - Xuehan Li
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Molecular Oncology in Heilongjiang, Harbin, China
| | - Shengnan Luo
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Molecular Oncology in Heilongjiang, Harbin, China
| | - Qian Zhang
- Department of Abdominal Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, China
| | - Guangyu Wang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yanqiao Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medical Sciences, Harbin, China
| | - Yuanfei Yao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Molecular Oncology in Heilongjiang, Harbin, China
- Key Laboratory of Tumor Immunology in Heilongjiang, Harbin, China
| | - Yun Xiao
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Sheng Tai
- Department of Hepatic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tongsen Zheng
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
- Key Laboratory of Molecular Oncology in Heilongjiang, Harbin, China
- Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
6
|
Chen B, Li L, Huang Y, Ma J, Ji F, Chen Y, Wu L, Peng H. N 6-methyladenosine in 28S rRNA promotes oncogenic mRNA translation and tyrosine catabolism. Cell Rep 2025; 44:115139. [PMID: 39739529 DOI: 10.1016/j.celrep.2024.115139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 08/28/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025] Open
Abstract
Aberrant N6-methyladenosine (m6A) modification on mRNA results in dysregulated mRNA translation and cancer progression; however, the role of m6A modification on rRNA remains unclear in cancers. Here, we show that ZCCHC4 and its mediated m6A modification on 28S rRNA are upregulated in various cancers and correlated with poor survival. Functionally, ZCCHC4 promotes intrahepatic cholangiocarcinoma (ICC) progression via its catalytic activity. Mechanistically, tether of the N6-adenineMIase domain of ZCCHC4 to the m6A site on 28S rRNA facilitates the binding of the zf-GRF-containing domain to eIF3G in the translation initiation complex and the binding of zf-DHHC-containing domain to the 3' UTR of mRNA, therefore facilitating mRNA circularization and translation. Further analysis reveals that HPD mediates ZCCHC4's functions on tyrosine catabolism and ICC progression, and targeting HPD inhibits ICC progression in vivo. Overall, our findings uncover insights underlying mRNA translation control and provide a molecular basis for targeting the ZCCHC4-HPD axis in ICC.
Collapse
Affiliation(s)
- Binbin Chen
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Clinical Nutrition, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Li Li
- Department of Breast Center, Wuzhou Red Cross Hospital, 3-1 Xinxing First Road, Wuzhou 543001, P.R. China
| | - Ying Huang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China; Department of Radiation Oncology, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Jieyi Ma
- Laboratory of General Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Center for Translational Medicine, Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Fei Ji
- Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 106 Zhongshan Er Road, Yuexiu District, Guangzhou 510080, P.R. China
| | - Yilin Chen
- Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 106 Zhongshan Er Road, Yuexiu District, Guangzhou 510080, P.R. China
| | - Lirong Wu
- Department of Radiation Oncology, Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing 210009, China.
| | - Hao Peng
- Department of Breast Cancer, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, 106 Zhongshan Er Road, Yuexiu District, Guangzhou 510080, P.R. China.
| |
Collapse
|
7
|
Chen S, Huang C, Li K, Cheng M, Zhang C, Xiong J, Tian G, Zhou R, Ling R, Wang X, Xiong G, Zhang Z, Ma J, Zhu Y, Zhou B, Peng L, Peng Z, Li H, Chen D. Tumor-initiating cells escape tumor immunity via CCL8 from tumor-associated macrophages in mice. J Clin Invest 2025; 135:e180893. [PMID: 39774471 PMCID: PMC11870738 DOI: 10.1172/jci180893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025] Open
Abstract
Tumor-initiating cells (TICs) play a key role in cancer progression and immune escape. However, how TICs evade immune elimination remains poorly characterized. Combining single-cell RNA-Seq (scRNA-Seq), dual-recombinase-based lineage tracing, and other approaches, we identified a WNT-activated subpopulation of malignant cells that act as TICs in vivo. We found intensive reciprocal interactions between TICs and immune-regulatory tumor-associated macrophages (Reg-TAMs) via growth arrest-specific 6/AXL receptor tyrosine kinase/MER proto-oncogene, tyrosine kinase (GAS6/AXL/MERTK) signaling pathways, which facilitated the immune escape of TICs. In this study, we used chemical inhibitors and Axl/Mertk conditional double-KO (cDKO) mice to demonstrate that inhibiting the interaction between TIC-derived GAS6 and AXL/MERTK in Reg-TAMs reactivated antitumor immune responses. We identified CCL8 as a critical mediator of the GAS6/AXL/MERTK pathway, primarily by inhibiting Treg infiltration into the tumor. Furthermore, the AXL/MERTK signaling blockade sensitized tumor cells to anti-programmed cell death 1 (anti-PD-1) treatment. Thus, we elucidated a detailed mechanism by which TICs evade tumor immunity, providing insights into strategies to eradicate TICs that escape conventional immunotherapy.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Otorhinolaryngology, Department of Medical Oncology, Department of Pancreato-Biliary Surgery, Department of Radiation Oncology, Cancer Center, Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University (FAHSYSU), Guangzhou, China
| | - Chensong Huang
- Department of Otorhinolaryngology, Department of Medical Oncology, Department of Pancreato-Biliary Surgery, Department of Radiation Oncology, Cancer Center, Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University (FAHSYSU), Guangzhou, China
| | - Kang Li
- Department of Otorhinolaryngology, Department of Medical Oncology, Department of Pancreato-Biliary Surgery, Department of Radiation Oncology, Cancer Center, Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University (FAHSYSU), Guangzhou, China
| | - Maosheng Cheng
- Department of Otorhinolaryngology, Department of Medical Oncology, Department of Pancreato-Biliary Surgery, Department of Radiation Oncology, Cancer Center, Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University (FAHSYSU), Guangzhou, China
| | - Caihua Zhang
- Department of Otorhinolaryngology, Department of Medical Oncology, Department of Pancreato-Biliary Surgery, Department of Radiation Oncology, Cancer Center, Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University (FAHSYSU), Guangzhou, China
| | - Jianqi Xiong
- Department of Otorhinolaryngology, Department of Medical Oncology, Department of Pancreato-Biliary Surgery, Department of Radiation Oncology, Cancer Center, Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University (FAHSYSU), Guangzhou, China
| | - Guoli Tian
- Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Ruoxing Zhou
- Department of Otorhinolaryngology, Department of Medical Oncology, Department of Pancreato-Biliary Surgery, Department of Radiation Oncology, Cancer Center, Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University (FAHSYSU), Guangzhou, China
| | - Rongsong Ling
- Department of Otorhinolaryngology, Department of Medical Oncology, Department of Pancreato-Biliary Surgery, Department of Radiation Oncology, Cancer Center, Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University (FAHSYSU), Guangzhou, China
| | - Xiaochen Wang
- Department of Otorhinolaryngology, Department of Medical Oncology, Department of Pancreato-Biliary Surgery, Department of Radiation Oncology, Cancer Center, Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University (FAHSYSU), Guangzhou, China
| | - Gan Xiong
- Department of Medical Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhihui Zhang
- Department of Otorhinolaryngology, Department of Medical Oncology, Department of Pancreato-Biliary Surgery, Department of Radiation Oncology, Cancer Center, Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University (FAHSYSU), Guangzhou, China
| | - Jieyi Ma
- Department of Otorhinolaryngology, Department of Medical Oncology, Department of Pancreato-Biliary Surgery, Department of Radiation Oncology, Cancer Center, Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University (FAHSYSU), Guangzhou, China
| | - Yan Zhu
- Department of Otorhinolaryngology, Department of Medical Oncology, Department of Pancreato-Biliary Surgery, Department of Radiation Oncology, Cancer Center, Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University (FAHSYSU), Guangzhou, China
| | - Bin Zhou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Liang Peng
- Senior Department of Oncology, The Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Zhenwei Peng
- Department of Otorhinolaryngology, Department of Medical Oncology, Department of Pancreato-Biliary Surgery, Department of Radiation Oncology, Cancer Center, Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University (FAHSYSU), Guangzhou, China
| | - Heping Li
- Department of Medical Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Demeng Chen
- Department of Otorhinolaryngology, Department of Medical Oncology, Department of Pancreato-Biliary Surgery, Department of Radiation Oncology, Cancer Center, Center for Translational Medicine, The First Affiliated Hospital of Sun Yat-sen University (FAHSYSU), Guangzhou, China
- State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
8
|
Huang P, Wei G, Kirkpatrick JD, Lin Y, Tan L, Matta H, Nasser I, Huang M, Chen L, Petitjean M, Skelton-Badlani D, Gao W, Vaid K, Zhao S, Lugovskoy A, Alenzi M, Chen X, Gores GJ, Popov YV. Transposon-based oncogene integration in Abcb4(Mdr2) -/- mice recapitulates high susceptibility to cholangiocarcinoma in primary sclerosing cholangitis. J Hepatol 2025; 82:84-96. [PMID: 39089631 PMCID: PMC11655257 DOI: 10.1016/j.jhep.2024.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND & AIMS Cholangiocarcinoma (CCA) is a dreaded complication of primary sclerosing cholangitis (PSC) that is difficult to diagnose and associated with high mortality. A lack of animal models of CCA recapitulating the hepatic microenvironment of sclerosing cholangitis has hindered the development of novel treatments. Herein, we sought to develop a mouse model of PSC-associated CCA. METHODS Ten-week-old Mdr2-/- mice with congenital PSC-like disease, and healthy wild-type littermates were subjected to either modified retrograde biliary instillation or hydrodynamic tail vein injection of a sleeping beauty transposon-transposase plasmid system with activated AKT (myr-AKT) and Yap (YapS127A) proto-oncogenes (SB AKT/YAP1). The role of TGFβ was interrogated via ALK5 inhibitor (SB-525334) administration. Tumor phenotype, burden and desmoplastic reaction were analyzed histologically and via RNA sequencing. RESULTS While SB AKT/YAP1 plasmids administered via retrograde biliary injection caused tumors in Mdr2-/-, only 26.67% (4/15) of these tumors were CCA. Alternatively, hydrodynamic tail vein injection of SB AKT/YAP1 resulted in robust tumorigenesis in all fibrotic Mdr2-/- mice with high CCA burden compared to healthy mice. Tumors phenotypically resembled human CCA, expressed multiple CCA (but not hepatocellular carcinoma) markers, and exhibited a profound desmoplastic reaction. RNA sequencing analysis revealed profound transcriptional changes in CCA evolving in a PSC-like context, with specific alterations in multiple immune pathways. Pharmacological TGFβ inhibition led to enhanced immune cell tumor infiltration, reduced tumor burden and suppressed desmoplastic collagen accumulation compared to placebo. CONCLUSION We established a new high-fidelity cholangiocarcinoma model in mice, termed SB CCA.Mdr2-/-, which recapitulates the increased susceptibility to CCA in the setting of biliary injury and fibrosis observed in PSC. Through transcriptomics and pharmacological studies, we show dysregulation of multiple immune pathways and TGFβ signaling as potential drivers of CCA in a PSC-like microenvironment. IMPACT AND IMPLICATIONS Animal models for primary sclerosing cholangitis (PSC)-related cholangiocarcinoma (PSC-CCA) are lacking. Thus, we have developed and characterized a new mouse model of PSC-CCA, termed SB CCA.Mdr2-/-, which features reliable tumor induction on a PSC-like background of biliary injury and fibrosis. Global gene expression alterations were identified and standardized tools, including automated whole slide image analysis methodology for tumor burden and feature analysis, were established to enable systematic research into PSC-CCA biology and formal preclinical drug testing.
Collapse
Affiliation(s)
- Pinzhu Huang
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Colon and Rectum Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Guangyan Wei
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Radiation Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jesse D Kirkpatrick
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yi Lin
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Department of Gastroenterology and Hepatology, Fujian Provincial Hospital, Fuzhou, China
| | - Li Tan
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Heansika Matta
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Imad Nasser
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Mingzhe Huang
- Department of Colon and Rectum Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | | | | | - Disha Skelton-Badlani
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Wen Gao
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Kahini Vaid
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Shuangshuang Zhao
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Alicia Lugovskoy
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Maram Alenzi
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xin Chen
- University of Hawaii Cancer Center, Honolulu, HI USA
| | - Gregory J Gores
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Yury V Popov
- Division of Gastroenterology and Hepatology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Lehrich BM, Tao J, Liu S, Hirsch TZ, Yasaka TM, Cao C, Delgado ER, Guan X, Lu S, Pan L, Liu Y, Singh S, Poddar M, Bell A, Singhi AD, Zucman-Rossi J, Wang Y, Monga SP. Development of mutated β-catenin gene signature to identify CTNNB1 mutations from whole and spatial transcriptomic data in patients with HCC. JHEP Rep 2024; 6:101186. [PMID: 39583094 PMCID: PMC11582745 DOI: 10.1016/j.jhepr.2024.101186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 11/26/2024] Open
Abstract
Background & Aims Patients with β-catenin (encoded by CTNNB1)-mutated hepatocellular carcinoma (HCC) demonstrate heterogenous responses to first-line immune checkpoint inhibitors (ICIs). Precision-medicine based treatments for this subclass are currently in clinical development. Here, we report derivation of the Mutated β-catenin Gene Signature (MBGS) to predict CTNNB1-mutational status in patients with HCC for future application in personalized medicine treatment regimens. Methods Co-expression of mutant-Nrf2 and hMet ± mutant-β-catenin in murine livers in mice led to HCC development. The MBGS was derived using bulk RNA-seq and intersectional transcriptomic analysis of β-catenin-mutated and non-mutated HCC models. Integrated RNA/whole-exome-sequencing and spatial transcriptomic data from multiple cohorts of patients with HCC was assessed to address the ability of MBGS to detect CTNNB1 mutation, the tumor immune microenvironment, and/or predict therapeutic responses. Results Bulk RNA-seq comparing HCC specimens in mutant β-catenin-Nrf2, β-catenin-Met and β-catenin-Nrf2-Met to Nrf2-Met HCC model yielded 95 common upregulated genes. In The Cancer Genome Atlas (TCGA)-LIHC dataset, differential gene expression analysis with false discovery rate (FDR) = 0.05 and log2(fold change) >1.5 on the 95 common genes comparing CTNNB1-mutated vs. wild-type patients narrowed the gene panel to a 13-gene MBGS. MBGS predicted CTNNB1-mutations in TCGA (n = 374) and French (n = 398) patient cohorts with AUCs of 0.90 and 0.94, respectively. Additionally, a higher MBGS expression score was associated with lack of significant improvement in overall survival or progression-free survival in the atezolizumab-bevacizumab arm vs. the sorafenib arm in the IMbrave150 cohort. MBGS performed comparable or superior to other CTNNB1-mutant classifiers. MBGS overlapped with Hoshida S3, Boyault G5/G6, and Chiang CTNNB1 subclass tumors in TCGA and in HCC spatial transcriptomic datasets visually depicting these tumors to be situated in an immune excluded tumor microenvironment. Conclusions MBGS will aid in patient stratification to guide precision medicine therapeutics for CTNNB1-mutated HCC subclass as a companion diagnostic, as anti-β-catenin therapies become available. Impact and implications As precision medicine for liver cancer treatment becomes a reality, diagnostic tools are needed to help classify patients into groups for the best treatment choices. We have developed a molecular signature that could serve as a companion diagnostic and uses bulk or spatial transcriptomic data to identify a unique subclass of liver tumors. This subgroup of liver cancer patients derive limited benefit from the current standard of care and are expected to benefit from specialized directed therapies that are on the horizon.
Collapse
Affiliation(s)
- Brandon M. Lehrich
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Junyan Tao
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Silvia Liu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Theo Z. Hirsch
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, Paris, France
- Institut du Cancer Paris CARPEM, AP-HP, Department of Oncology, Hopital Européen Georges Pompidou, Paris, France
| | - Tyler M. Yasaka
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Medical Scientist Training Program, University of Pittsburgh, Pittsburgh, PA, USA
| | - Catherine Cao
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Evan R. Delgado
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Xiangnan Guan
- Translational Medicine, Genentech Inc., San Francisco, CA, USA
| | - Shan Lu
- Translational Medicine, Genentech Inc., San Francisco, CA, USA
| | - Long Pan
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, Paris, France
- Institut du Cancer Paris CARPEM, AP-HP, Department of Oncology, Hopital Européen Georges Pompidou, Paris, France
| | - Yuqing Liu
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sucha Singh
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Minakshi Poddar
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Aaron Bell
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Aatur D. Singhi
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Université Paris Cité, Sorbonne Université, Inserm, Paris, France
- Institut du Cancer Paris CARPEM, AP-HP, Department of Oncology, Hopital Européen Georges Pompidou, Paris, France
| | - Yulei Wang
- Translational Medicine, Genentech Inc., San Francisco, CA, USA
| | - Satdarshan P. Monga
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, University of Pittsburgh and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
10
|
Xu W, Chen H, Xiao H. mTORC2: A neglected player in aging regulation. J Cell Physiol 2024; 239:e31363. [PMID: 38982866 DOI: 10.1002/jcp.31363] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/21/2024] [Accepted: 06/19/2024] [Indexed: 07/11/2024]
Abstract
Mammalian target of rapamycin (mTOR) is a serine/threonine kinase that plays a pivotal role in various biological processes, through integrating external and internal signals, facilitating gene transcription and protein translation, as well as by regulating mitochondria and autophagy functions. mTOR kinase operates within two distinct protein complexes known as mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2), which engage separate downstream signaling pathways impacting diverse cellular processes. Although mTORC1 has been extensively studied as a pro-proliferative factor and a pro-aging hub if activated aberrantly, mTORC2 received less attention, particularly regarding its implication in aging regulation. However, recent studies brought increasing evidence or clues for us, which implies the associations of mTORC2 with aging, as the genetic elimination of unique subunits of mTORC2, such as RICTOR, has been shown to alleviate aging progression in comparison to mTORC1 inhibition. In this review, we first summarized the basic characteristics of mTORC2, including its protein architecture and signaling network. We then focused on reviewing the molecular signaling regulation of mTORC2 in cellular senescence and organismal aging, and proposed the multifaceted regulatory characteristics under senescent and nonsenescent contexts. Next, we outlined the research progress of mTOR inhibitors in the field of antiaging and discussed future prospects and challenges. It is our pleasure if this review article could provide meaningful information for our readers and call forth more investigations working on this topic.
Collapse
Affiliation(s)
- Weitong Xu
- The Lab of Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Honghan Chen
- The Lab of Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hengyi Xiao
- The Lab of Aging Research, National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Chiu V, Yee C, Main N, Stevanovski I, Watt M, Wilson T, Angus P, Roberts T, Shackel N, Herath C. Oncogenic plasmid DNA and liver injury agent dictates liver cancer development in a mouse model. Clin Sci (Lond) 2024; 138:1227-1248. [PMID: 39254423 PMCID: PMC11427747 DOI: 10.1042/cs20240560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/30/2024] [Accepted: 09/10/2024] [Indexed: 09/11/2024]
Abstract
Primary liver cancer is an increasing problem worldwide and is associated with significant mortality. A popular method of modeling liver cancer in mice is plasmid hydrodynamic tail vein injection (HTVI). However, plasmid-HTVI models rarely recapitulate the chronic liver injury which precedes the development of most human liver cancer. We sought to investigate how liver injury using thioacetamide contributes to the pathogenesis and progression of liver cancer in two oncogenic plasmid-HTVI-induced mouse liver cancer models. Fourteen-week-old male mice received double-oncogene plasmid-HTVI (SB/AKT/c-Met and SB/AKT/NRas) and then twice-weekly intraperitoneal injections of thioacetamide for 6 weeks. Liver tissue was examined for histopathological changes, including fibrosis and steatosis. Further characterization of fibrosis and inflammation was performed with immunostaining and real-time quantitative PCR. RNA sequencing with pathway analysis was used to explore novel pathways altered in the cancer models. Hepatocellular and cholangiocellular tumors were observed in mice injected with double-oncogene plasmid-HTVI models (SB/AKT/c-Met and SB/AKT/NRas). Thioacetamide induced mild fibrosis and increased alpha smooth muscle actin-expressing cells. However, the combination of plasmids and thioacetamide did not significantly increase tumor size, but increased multiplicity of small neoplastic lesions. Cancer and/or liver injury up-regulated profibrotic and proinflammatory genes while metabolic pathway genes were mostly down-regulated. We conclude that the liver injury microenvironment can interact with liver cancer and alter its presentation. However, the effects on cancer development vary depending on the genetic drivers with differing active oncogenic pathways. Therefore, the choice of plasmid-HTVI model and injury agent may influence the extent to which injury promotes liver cancer development.
Collapse
Affiliation(s)
- Vincent Chiu
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- South Western Sydney Clinical School, UNSW Sydney, Liverpool, New South Wales, Australia
| | - Christine Yee
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- South Western Sydney Clinical School, UNSW Sydney, Liverpool, New South Wales, Australia
| | - Nathan Main
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- South Western Sydney Clinical School, UNSW Sydney, Liverpool, New South Wales, Australia
| | - Igor Stevanovski
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- South Western Sydney Clinical School, UNSW Sydney, Liverpool, New South Wales, Australia
| | - Matthew Watt
- School of Biomedical Sciences, University of Melbourne, Victoria, Australia
| | - Trevor Wilson
- Hudson Institute of Medical Research, Monash University, Victoria, Australia
| | - Peter Angus
- Department of Gastroenterology and Hepatology, Austin Health, Heidelberg, Victoria, Australia
| | - Tara Roberts
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- School of Medicine, Western Sydney University, Campbelltown, New South Wales, Australia
| | - Nicholas Shackel
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- South Western Sydney Clinical School, UNSW Sydney, Liverpool, New South Wales, Australia
| | - Chandana Herath
- Ingham Institute for Applied Medical Research, Liverpool, New South Wales, Australia
- South Western Sydney Clinical School, UNSW Sydney, Liverpool, New South Wales, Australia
- Department of Medicine, Austin Health, University of Melbourne, Victoria, Australia
| |
Collapse
|
12
|
Cigliano A, Gigante I, Serra M, Vidili G, Simile MM, Steinmann S, Urigo F, Cossu E, Pes GM, Dore MP, Ribback S, Milia EP, Pizzuto E, Mancarella S, Che L, Pascale RM, Giannelli G, Evert M, Chen X, Calvisi DF. HSF1 is a prognostic determinant and therapeutic target in intrahepatic cholangiocarcinoma. J Exp Clin Cancer Res 2024; 43:253. [PMID: 39243039 PMCID: PMC11378393 DOI: 10.1186/s13046-024-03177-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/29/2024] [Indexed: 09/09/2024] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (iCCA) is a lethal primary liver tumor characterized by clinical aggressiveness, poor prognosis, and scarce therapeutic possibilities. Therefore, new treatments are urgently needed to render this disease curable. Since cumulating evidence supports the oncogenic properties of the Heat Shock Factor 1 (HSF1) transcription factor in various cancer types, we investigated its pathogenetic and therapeutic relevance in iCCA. METHODS Levels of HSF1 were evaluated in a vast collection of iCCA specimens. The effects of HSF1 inactivation on iCCA development in vivo were investigated using three established oncogene-driven iCCA mouse models. In addition, the impact of HSF1 suppression on tumor cells and tumor stroma was assessed in iCCA cell lines, human iCCA cancer-associated fibroblasts (hCAFs), and patient-derived organoids. RESULTS Human preinvasive, invasive, and metastatic iCCAs displayed widespread HSF1 upregulation, which was associated with a dismal prognosis of the patients. In addition, hydrodynamic injection of a dominant-negative form of HSF1 (HSF1dn), which suppresses HSF1 activity, significantly delayed cholangiocarcinogenesis in AKT/NICD, AKT/YAP, and AKT/TAZ mice. In iCCA cell lines, iCCA hCAFs, and patient-derived organoids, administration of the HSF1 inhibitor KRIBB-11 significantly reduced proliferation and induced apoptosis. Cell death was profoundly augmented by concomitant administration of the Bcl-xL/Bcl2/Bcl-w inhibitor ABT-263. Furthermore, KRIBB-11 reduced mitochondrial bioenergetics and glycolysis of iCCA cells. CONCLUSIONS The present data underscore the critical pathogenetic, prognostic, and therapeutic role of HSF1 in cholangiocarcinogenesis.
Collapse
Affiliation(s)
- Antonio Cigliano
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, via P. Manzella 4, Sassari, 07100, Italy
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Isabella Gigante
- National Institute of Gastroenterology, IRCCS "Saverio de Bellis", Castellana Grotte, Italy
| | - Marina Serra
- Institute of Pathology, University of Regensburg, Regensburg, Germany
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Gianpaolo Vidili
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, via P. Manzella 4, Sassari, 07100, Italy
| | - Maria M Simile
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, via P. Manzella 4, Sassari, 07100, Italy
| | - Sara Steinmann
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Francesco Urigo
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Eleonora Cossu
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, via P. Manzella 4, Sassari, 07100, Italy
| | - Giovanni M Pes
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, via P. Manzella 4, Sassari, 07100, Italy
| | - Maria P Dore
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, via P. Manzella 4, Sassari, 07100, Italy
| | - Silvia Ribback
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Egle P Milia
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, via P. Manzella 4, Sassari, 07100, Italy
| | - Elena Pizzuto
- National Institute of Gastroenterology, IRCCS "Saverio de Bellis", Castellana Grotte, Italy
| | - Serena Mancarella
- National Institute of Gastroenterology, IRCCS "Saverio de Bellis", Castellana Grotte, Italy
| | - Li Che
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Rosa M Pascale
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, via P. Manzella 4, Sassari, 07100, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology, IRCCS "Saverio de Bellis", Castellana Grotte, Italy
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
- University of Hawaii Cancer Center, Honolulu, USA
| | - Diego F Calvisi
- Department of Medicine, Surgery, and Pharmacy, University of Sassari, via P. Manzella 4, Sassari, 07100, Italy.
| |
Collapse
|
13
|
Duan Y, Deng M, Liu B, Meng X, Liao J, Qiu Y, Wu Z, Lin J, Dong Y, Duan Y, Sun Y. Mitochondria targeted drug delivery system overcoming drug resistance in intrahepatic cholangiocarcinoma by reprogramming lipid metabolism. Biomaterials 2024; 309:122609. [PMID: 38754290 DOI: 10.1016/j.biomaterials.2024.122609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/07/2024] [Indexed: 05/18/2024]
Abstract
The challenge of drug resistance in intrahepatic cholangiocarcinoma (ICC) is intricately linked with lipid metabolism reprogramming. The hepatic lipase (HL) and the membrane receptor CD36 are overexpressed in BGJ398-resistant ICC cells, while they are essential for lipid uptake, further enhancing lipid utilization in ICC. Herein, a metal-organic framework-based drug delivery system (OB@D-pMOF/CaP-AC, DDS), has been developed. The specifically designed DDS exhibits a successive targeting property, enabling it to precisely target ICC cells and their mitochondria. By specifically targeting the mitochondria, DDS produces reactive oxygen species (ROS) through its sonodynamic therapy effect, achieving a more potent reduction in ATP levels compared to non-targeted approaches, through the impairment of mitochondrial function. Additionally, the DDS strategically minimizes lipid uptake through the incorporation of the anti-HL drug, Orlistat, and anti-CD36 monoclonal antibody, reducing lipid-derived energy production. This dual-action strategy on both mitochondria and lipids can hinder energy utilization to restore drug sensitivity to BGJ398 in ICC. Moreover, an orthotopic mice model of drug-resistant ICC was developed, which serves as an exacting platform for evaluating the multifunction of designed DDS. Upon in vivo experiments with this model, the DDS demonstrated exceptional capabilities in suppressing tumor growth, reprogramming lipid metabolism and improving immune response, thereby overcoming drug resistance. These findings underscore the mitochondria-targeted DDS as a promising and innovative solution in ICC drug resistance.
Collapse
Affiliation(s)
- Yi Duan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Mengqiong Deng
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Bin Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Xianwei Meng
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Jinghan Liao
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Yijie Qiu
- Department of Ultrasound, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 200092, Shanghai, China
| | - Zhihua Wu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Jiangtao Lin
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China
| | - Yi Dong
- Department of Ultrasound, Xinhua Hospital, School of Medicine, Shanghai Jiao Tong University, 200092, Shanghai, China.
| | - Yourong Duan
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China.
| | - Ying Sun
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200032, China.
| |
Collapse
|
14
|
Park Y, Hu S, Kim M, Oertel M, Singhi A, Monga SP, Liu S, Ko S. Context-Dependent Distinct Roles of SOX9 in Combined Hepatocellular Carcinoma-Cholangiocarcinoma. Cells 2024; 13:1451. [PMID: 39273023 PMCID: PMC11394107 DOI: 10.3390/cells13171451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Combined hepatocellular carcinoma-cholangiocarcinoma (cHCC-CCA) is a challenging primary liver cancer subtype with limited treatment options and a devastating prognosis. Recent studies have underscored the context-dependent roles of SOX9 in liver cancer formation in a preventive manner. Here, we revealed that liver-specific developmental Sox9 elimination using Alb-Cre;Sox9(flox/flox) (LKO) and CRISPR/Cas9-based tumor-specific acute Sox9 elimination (CKO) in SB-HDTVI-based Akt-YAP1 (AY) and Akt-NRAS (AN) cHCC-CCA models showed contrasting responses. LKO abrogates the AY CCA region while stimulating poorly differentiated HCC proliferation, whereas CKO prevents AY and AN cHCC-CCA development irrespective of tumor cell fate. Additionally, AN, but not AY, tumor formation partially depends on the Sox9-Dnmt1 cascade. SOX9 is dispensable for AY-mediated, HC-derived, LPC-like immature CCA formation but is required for their maintenance and transformation into mature CCA. Therapeutic Sox9 elimination using the OPN-CreERT2 strain combined with inducible Sox9 iKO specifically reduces AY but not AN cHCC-CCA tumors. This necessitates the careful consideration of genetic liver cancer studies using developmental Cre and somatic mutants, particularly for genes involved in liver development. Our findings suggest that SOX9 elimination may hold promise as a therapeutic approach for a subset of cHCC-CCA and highlight the need for further investigation to translate these preclinical insights into personalized clinical applications.
Collapse
Affiliation(s)
- Yoojeong Park
- Division of Experimental Pathology, Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (Y.P.); (S.H.); (M.K.); (M.O.); (S.P.M.); (S.L.)
| | - Shikai Hu
- Division of Experimental Pathology, Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (Y.P.); (S.H.); (M.K.); (M.O.); (S.P.M.); (S.L.)
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Minwook Kim
- Division of Experimental Pathology, Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (Y.P.); (S.H.); (M.K.); (M.O.); (S.P.M.); (S.L.)
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA;
| | - Michael Oertel
- Division of Experimental Pathology, Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (Y.P.); (S.H.); (M.K.); (M.O.); (S.P.M.); (S.L.)
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA;
| | - Aatur Singhi
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA;
- Division of Anatomic Pathology, Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Satdarshan P. Monga
- Division of Experimental Pathology, Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (Y.P.); (S.H.); (M.K.); (M.O.); (S.P.M.); (S.L.)
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA;
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Silvia Liu
- Division of Experimental Pathology, Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (Y.P.); (S.H.); (M.K.); (M.O.); (S.P.M.); (S.L.)
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA;
| | - Sungjin Ko
- Division of Experimental Pathology, Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA; (Y.P.); (S.H.); (M.K.); (M.O.); (S.P.M.); (S.L.)
- Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, USA;
| |
Collapse
|
15
|
Liu X, Guo B, Li Q, Nie J. mTOR in metabolic homeostasis and disease. Exp Cell Res 2024; 441:114173. [PMID: 39047807 DOI: 10.1016/j.yexcr.2024.114173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 07/20/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
The ability to maintain cellular metabolic homeostasis is critical to life, in which mTOR plays an important role. This kinase integrates upstream nutrient signals and performs essential functions in physiology and metabolism by increasing metabolism and suppressing autophagy. Thus, dysregulation of mTOR activity leads to diseases, especially metabolic diseases such as cancer, type 2 diabetes and neurological disorders. Therefore, inhibition of overactivated mTOR becomes a rational approach to treat a variety of metabolic diseases. In this review, we discuss how mTOR responds to upstream signals and how mTOR regulates metabolic processes, including protein, nucleic acid, and lipid metabolism. Furthermore, we discuss the possible causes and consequences of dysregulated mTOR signaling activity, and summarize relevant applications, such as inhibition of mTOR activity to treat these diseases. This review will advance our comprehensive knowledge of the association between mTOR and metabolic homeostasis, which has significant ramifications for human health.
Collapse
Affiliation(s)
- Xuejia Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Bin Guo
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Qiye Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Jing Nie
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China.
| |
Collapse
|
16
|
Kim CL, Lim SB, Kim DH, Sim YE, Kang LJ, Park SJ, Kim H, Roh TH, Mo JS, Jeong HS. Regulation of Hippo-YAP signaling axis by Isoalantolactone suppresses tumor progression in cholangiocarcinoma. Transl Oncol 2024; 46:101971. [PMID: 38797019 PMCID: PMC11152753 DOI: 10.1016/j.tranon.2024.101971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 05/29/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a devastating malignancy characterized by aggressive tumor growth and limited treatment options. Dysregulation of the Hippo signaling pathway and its downstream effector, Yes-associated protein (YAP), has been implicated in CCA development and progression. In this study, we investigated the effects of Isoalantolactone (IALT) on CCA cells to elucidate its effect on YAP activity and its potential clinical significance. Our findings demonstrate that IALT exerts cytotoxic effects, induces apoptosis, and modulates YAP signaling in SNU478 cells. We further confirmed the involvement of the canonical Hippo pathway by generating LATS1/LATS2 knockout cells, highlighting the dependence of IALT-mediated apoptosis and YAP phosphorylation on the Hippo-LATS signaling axis. In addition, IALT suppressed cell growth and migration, partially dependent on YAP-TEAD activity. These results provide insights into the therapeutic potential of targeting YAP in CCA and provide a rationale for developing of YAP-targeted therapies for this challenging malignancy.
Collapse
Affiliation(s)
- Cho-Long Kim
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon 16499, South Korea
| | - Su-Bin Lim
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon 16499, South Korea
| | - Dong Hyun Kim
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon 16499, South Korea
| | - Ye Eun Sim
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon 16499, South Korea
| | - Li-Jung Kang
- Three-Dimensional Immune System Imaging Core Facility, Ajou University, Suwon 16499, South Korea
| | - Su Jung Park
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, South Korea
| | - Hyungwoo Kim
- Division of Pharmacology, School of Korean Medicine, Pusan National University, Yangsan 50612, South Korea
| | - Tae Hoon Roh
- Department of Neurosurgery, Ajou University School of Medicine, Suwon 16499, South Korea
| | - Jung-Soon Mo
- Department of Biomedical Sciences, Graduate School, Ajou University School of Medicine, Suwon 16499, South Korea; Institute of Medical Science, Ajou University School of Medicine, Suwon 16499, South Korea.
| | - Han-Sol Jeong
- Division of Applied Medicine, School of Korean Medicine, Pusan National University, Yangsan 50612, South Korea.
| |
Collapse
|
17
|
Luo S, Li S, Liu C, Yu D, Sun L, Zhang S, Zhao N, Zhang M, Nie J, Zhao Y, Li C, Zhang Y, Zhang Q, Meng H, Li X, Shi J, Zheng T. Stage-specificity of STING activation in intrahepatic cholangiocarcinoma determines the efficacy of its agonism. Cancer Lett 2024; 594:216992. [PMID: 38797231 DOI: 10.1016/j.canlet.2024.216992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/11/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is an aggressive cancer with an extremely poor prognosis, and new treatment options are needed. Recently, immunotherapy has emerged as an efficient treatment against malignant tumors, but less effective in iCCA. Activation of stimulator of interferon genes (STING) signaling could reignite immunologically inert tumors, but the expression and role of STING in iCCA remains to be determined. Here, we show STING is expressed in iCCA, and patients with high expression of STING in early-stage iCCA have a longer overall survival than those have low expression. Increased immune cell infiltration in early-stage iCCA corresponds to elevated STING expression. In mice iCCA models, treatment with the STING agonist MSA-2 show stage-specific inhibitory effects on tumors, with beneficial effects in early-stage tumors but not with advanced-stage cancer. This discrepancy was associated with greater programmed cell death ligand 1 (PD-L1) expression in advanced-stage tumors. Combination therapy targeting PD-L1 and MSA-2 strikingly reduced tumor burden in such tumors compared to either monotherapy. Cumulatively, these data demonstrate that STING agonism monotherapy improves the immune landscape of the tumor microenvironment in early-stage iCCA, while combination therapy ameliorates advanced-stage iCCA.
Collapse
Affiliation(s)
- Shengnan Luo
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, PR China; Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China
| | - Shun Li
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, PR China; Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China
| | - Caiqi Liu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, PR China; Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China
| | - Dongyu Yu
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, PR China; Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China
| | - Linlin Sun
- Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China
| | - Shuyuan Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, PR China; Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China
| | - Na Zhao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, PR China; Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China
| | - Meng Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, PR China; Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China
| | - Jianhua Nie
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, PR China; Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China
| | - Ying Zhao
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, PR China; Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China
| | - Chunyue Li
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, PR China
| | - Yan Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, PR China; Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China
| | - Qian Zhang
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, PR China; Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China
| | - Hongxue Meng
- Department of Pathology, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, PR China
| | - Xiaobo Li
- Department of Pathology, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, 150081, PR China.
| | - Jiaqi Shi
- Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China; Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, PR China.
| | - Tongsen Zheng
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, PR China; Heilongjiang Province Key Laboratory of Molecular Oncology, No. 150 Haping Road, Nangang District, Harbin, Heilongjiang Province, 150081, PR China; Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin, 150081, PR China.
| |
Collapse
|
18
|
Zhang J, Ji F, Tan Y, Zhao L, Zhao Y, Liu J, Shao L, Shi J, Ye M, He X, Jin J, Zhao B, Huang J, Roessler S, Zheng X, Ji J. Oncogenic Roles of Laminin Subunit Gamma-2 in Intrahepatic Cholangiocarcinoma via Promoting EGFR Translation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309010. [PMID: 38526177 PMCID: PMC11151066 DOI: 10.1002/advs.202309010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/23/2024] [Indexed: 03/26/2024]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a highly lethal biliary epithelial cancer in the liver. Here, Laminin subunit gamma-2 (LAMC2) with important oncogenic roles in iCCA is discovered. In a total of 231 cholangiocarcinoma patients (82% of iCCA patients) across four independent cohorts, LAMC2 is significantly more abundant in iCCA tumor tissue compared to normal bile duct and non-tumor liver. Among 26.3% of iCCA patients, LAMC2 gene is amplified, contributing to its over-expression. Functionally, silencing LAMC2 significantly blocks tumor formation in orthotopic iCCA mouse models. Mechanistically, it promotes EGFR protein translation via interacting with nascent unglycosylated EGFR in the endoplasmic reticulum (ER), resulting in activated EGFR signaling. LAMC2-mediated EGFR translation also depends on its interaction with the ER chaperone BiP via their C-terminus. Together LAMC2 and BiP generate a binding "pocket" of nascent EGFR and facilitate EGFR translation. Consistently, LAMC2-high iCCA patients have poor prognosis in two iCCA cohorts. LAMC2-high iCCA cells are highly sensitive to EGFR tyrosine kinase inhibitors (TKIs) treatment both in vitro and in vivo. Together, these data demonstrate LAMC2 as an oncogenic player in iCCA by promoting EGFR translation and an indicator to identify iCCA patients who may benefit from available EGFR-targeted TKIs therapies.
Collapse
Affiliation(s)
- Jianjuan Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & ProtectionZhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- Center for Life SciencesShaoxing InstituteZhejiang UniversityShaoxingZhejiang321000China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
| | - Fubo Ji
- The MOE Key Laboratory of Biosystems Homeostasis & ProtectionZhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- Center for Life SciencesShaoxing InstituteZhejiang UniversityShaoxingZhejiang321000China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
| | - Yaqi Tan
- The MOE Key Laboratory of Biosystems Homeostasis & ProtectionZhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- Center for Life SciencesShaoxing InstituteZhejiang UniversityShaoxingZhejiang321000China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
| | - Lei Zhao
- Shandong Cancer Hospital and InstituteShandong Cancer Hospital of Shandong First Medical UniversityJinanShandong Province250117China
| | - Yongzhi Zhao
- The MOE Key Laboratory of Biosystems Homeostasis & ProtectionZhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- Center for Life SciencesShaoxing InstituteZhejiang UniversityShaoxingZhejiang321000China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
| | - Jiaxin Liu
- The MOE Key Laboratory of Biosystems Homeostasis & ProtectionZhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- Center for Life SciencesShaoxing InstituteZhejiang UniversityShaoxingZhejiang321000China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
| | - Liyuan Shao
- Center for Life SciencesShaoxing InstituteZhejiang UniversityShaoxingZhejiang321000China
| | - Jiong Shi
- Department of PathologyNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical SchoolNanjingJiangsu Province210008China
| | - Meihua Ye
- Zhejiang Provincial People's HospitalHangzhouZhejiang310014China
| | - Xianglei He
- Zhejiang Provincial People's HospitalHangzhouZhejiang310014China
| | - Jianping Jin
- The MOE Key Laboratory of Biosystems Homeostasis & ProtectionZhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- Center for Life SciencesShaoxing InstituteZhejiang UniversityShaoxingZhejiang321000China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
| | - Bin Zhao
- The MOE Key Laboratory of Biosystems Homeostasis & ProtectionZhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- Center for Life SciencesShaoxing InstituteZhejiang UniversityShaoxingZhejiang321000China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
| | - Jun Huang
- The MOE Key Laboratory of Biosystems Homeostasis & ProtectionZhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- Center for Life SciencesShaoxing InstituteZhejiang UniversityShaoxingZhejiang321000China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
| | - Stephanie Roessler
- Institute of PathologyUniversity Hospital Heidelberg69120HeidelbergGermany
| | - Xin Zheng
- Taoharmony Biotech L.L.C.HangzhouZhejiang310018China
| | - Junfang Ji
- The MOE Key Laboratory of Biosystems Homeostasis & ProtectionZhejiang Provincial Key Laboratory for Cancer Molecular Cell BiologyLife Sciences InstituteZhejiang UniversityHangzhouZhejiang310058China
- Center for Life SciencesShaoxing InstituteZhejiang UniversityShaoxingZhejiang321000China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058China
| |
Collapse
|
19
|
Luo Y, Li Z, Zhu H, Lu J, Lei Z, Su C, Liu F, Zhang H, Huang Q, Han S, Rao D, Wang T, Chen X, Cao H, Zhang Z, Huang W, Liang H. Transcription factor EHF drives cholangiocarcinoma development through transcriptional activation of glioma-associated oncogene homolog 1 and chemokine CCL2. MedComm (Beijing) 2024; 5:e535. [PMID: 38741887 PMCID: PMC11089446 DOI: 10.1002/mco2.535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 05/16/2024] Open
Abstract
Cholangiocarcinoma (CCA) is characterized by rapid onset and high chance of metastasis. Therefore, identification of novel therapeutic targets is imperative. E26 transformation-specific homologous factor (EHF), a member of the E26 transformation-specific transcription factor family, plays a pivotal role in epithelial cell differentiation and cancer progression. However, its precise role in CCA remains unclear. In this study, through in vitro and in vivo experiments, we demonstrated that EHF plays a profound role in promoting CCA by transcriptional activation of glioma-associated oncogene homolog 1 (GLI1). Moreover, EHF significantly recruited and activated tumor-associated macrophages (TAMs) through the C-C motif chemokine 2/C-C chemokine receptor type 2 (CCL2/CCR2) axis, thereby remodeling the tumor microenvironment. In human CCA tissues, EHF expression was positively correlated with GLI1 and CCL2 expression, and patients with co-expression of EHF/GLI1 or EHF/CCL2 had the most adverse prognosis. Furthermore, the combination of the GLI1 inhibitor, GANT58, and CCR2 inhibitor, INCB3344, substantially reduced the occurrence of EHF-mediated CCA. In summary, our findings suggest that EHF is a potential prognostic biomarker for patients with CCA, while also advocating the therapeutic approach of combined targeting of GLI1 and CCL2/CCR2-TAMs to inhibit EHF-driven CCA development.
Collapse
Affiliation(s)
- Yiming Luo
- Hepatic Surgery CentreTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhi Li
- State Key Laboratory of Biocatalysis and Enzyme EngineeringSchool of Life SciencesHubei UniversityWuhanChina
- Key Laboratory of Breeding Biotechnology and Sustainable AquacultureInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
| | - He Zhu
- Hepatic Surgery CentreTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Junli Lu
- Hepatic Surgery CentreTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Zhen Lei
- Hepatic Surgery CentreTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Chen Su
- Hepatic Surgery CentreTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Furong Liu
- Hepatic Surgery CentreTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hongwei Zhang
- Hepatic Surgery CentreTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Qibo Huang
- Hepatic Surgery CentreTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Shenqi Han
- Hepatic Surgery CentreTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Dean Rao
- Hepatic Surgery CentreTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Tiantian Wang
- Hepatic Surgery CentreTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaoping Chen
- Hepatic Surgery CentreTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanChina
- Key Laboratory of Organ TransplantationMinistry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ TransplantationChinese Academy of Medical SciencesWuhanChina
| | - Hong Cao
- Key Laboratory of Breeding Biotechnology and Sustainable AquacultureInstitute of HydrobiologyChinese Academy of SciencesWuhanChina
| | - Zhiwei Zhang
- Hepatic Surgery CentreTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanChina
| | - Wenjie Huang
- Hepatic Surgery CentreTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanChina
- Key Laboratory of Organ TransplantationMinistry of Education, NHC Key Laboratory of Organ Transplantation, Key Laboratory of Organ TransplantationChinese Academy of Medical SciencesWuhanChina
| | - Huifang Liang
- Hepatic Surgery CentreTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- Hubei Key Laboratory of Hepato‐Pancreato‐Biliary DiseasesWuhanChina
| |
Collapse
|
20
|
Cao R, Guo S, Min L, Li P. Roles of Rictor alterations in gastrointestinal tumors (Review). Oncol Rep 2024; 51:37. [PMID: 38186315 PMCID: PMC10807360 DOI: 10.3892/or.2024.8696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/28/2023] [Indexed: 01/09/2024] Open
Abstract
Gastrointestinal tumors account for five of the top 10 causes of mortality from all cancers (colorectal, liver, stomach, esophageal and pancreatic cancer). Mammalian target of rapamycin (mTOR) signaling is commonly dysregulated in various human cancers. As a core component of the mTOR complex 2 (mTORC2), Rictor is a key effector molecule of the PI3K/Akt pathway. A high alteration rate of Rictor has been observed in gastrointestinal tumors, and such Rictor alterations are often associated with resistance to chemotherapy and related adverse clinical outcomes. However, the exact roles of Rictor in gastrointestinal tumors remain elusive. The aim of the present study was to critically discuss the following: i) Mutation and biological characteristics of Rictor in tumors with a detailed overview of Rictor in cell proliferation, angiogenesis, apoptosis, autophagy and drug resistance; ii) the role of Rictor in tumors of the digestive system, particularly colorectal, hepatobiliary, gastric, esophageal and pancreatic cancer and cholangiocarcinoma; and iii) the current status and prospects of targeted therapy for Rictor by inhibiting Akt activation. Despite the growing realization of the importance of Rictor/mTORC2 in cancer, the underlying mechanistic details remain poorly understood; this needs to change in order for the development of efficient targeted therapies and re‑sensitization of therapy‑resistant cancers to be made possible.
Collapse
Affiliation(s)
- Ruizhen Cao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P.R. China
| | - Shuilong Guo
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P.R. China
| | - Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P.R. China
| | - Peng Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing 100050, P.R. China
| |
Collapse
|
21
|
Ye L, Ziesch A, Schneider JS, Ofner A, Nieß H, Denk G, Hohenester S, Mayr D, Mahajan UM, Munker S, Khaled NB, Wimmer R, Gerbes AL, Mayerle J, He Y, Geier A, Toni END, Zhang C, Reiter FP. The inhibition of YAP Signaling Prevents Chronic Biliary Fibrosis in the Abcb4 -/- Model by Modulation of Hepatic Stellate Cell and Bile Duct Epithelium Cell Pathophysiology. Aging Dis 2024; 15:338-356. [PMID: 37307826 PMCID: PMC10796084 DOI: 10.14336/ad.2023.0602] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 06/02/2023] [Indexed: 06/14/2023] Open
Abstract
Primary sclerosing cholangitis (PSC) represents a chronic liver disease characterized by poor prognosis and lacking causal treatment options. Yes-associated protein (YAP) functions as a critical mediator of fibrogenesis; however, its therapeutic potential in chronic biliary diseases such as PSC remains unestablished. The objective of this study is to elucidate the possible significance of YAP inhibition in biliary fibrosis by examining the pathophysiology of hepatic stellate cells (HSC) and biliary epithelial cells (BEC). Human liver tissue samples from PSC patients were analyzed to assess the expression of YAP/connective tissue growth factor (CTGF) relative to non-fibrotic control samples. The pathophysiological relevance of YAP/CTGF in HSC and BEC was investigated in primary human HSC (phHSC), LX-2, H69, and TFK-1 cell lines through siRNA or pharmacological inhibition utilizing verteporfin (VP) and metformin (MF). The Abcb4-/- mouse model was employed to evaluate the protective effects of pharmacological YAP inhibition. Hanging droplet and 3D matrigel culture techniques were utilized to investigate YAP expression and activation status of phHSC under various physical conditions. YAP/CTGF upregulation was observed in PSC patients. Silencing YAP/CTGF led to inhibition of phHSC activation and reduced contractility of LX-2 cells, as well as suppression of epithelial-mesenchymal transition (EMT) in H69 cells and proliferation of TFK-1 cells. Pharmacological inhibition of YAP mitigated chronic liver fibrosis in vivo and diminished ductular reaction and EMT. YAP expression in phHSC was effectively modulated by altering extracellular stiffness, highlighting YAP's role as a mechanotransducer. In conclusion, YAP regulates the activation of HSC and EMT in BEC, thereby functioning as a checkpoint of fibrogenesis in chronic cholestasis. Both VP and MF demonstrate effectiveness as YAP inhibitors, capable of inhibiting biliary fibrosis. These findings suggest that VP and MF warrant further investigation as potential therapeutic options for the treatment of PSC.
Collapse
Affiliation(s)
- Liangtao Ye
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
- Department of Medicine II, University Hospital, LMU Munich, Germany.
| | - Andreas Ziesch
- Department of Medicine II, University Hospital, LMU Munich, Germany.
| | | | - Andrea Ofner
- Department of Medicine II, University Hospital, LMU Munich, Germany.
| | - Hanno Nieß
- Biobank of the Department of General, Visceral and Transplantion Surgery, University Hospital, LMU Munich, Germany.
| | - Gerald Denk
- Department of Medicine II, University Hospital, LMU Munich, Germany.
| | - Simon Hohenester
- Department of Medicine II, University Hospital, LMU Munich, Germany.
| | - Doris Mayr
- Institute of Pathology, Faculty of Medicine, LMU Munich, Germany.
| | - Ujjwal M. Mahajan
- Department of Medicine II, University Hospital, LMU Munich, Germany.
| | - Stefan Munker
- Department of Medicine II, University Hospital, LMU Munich, Germany.
| | - Najib Ben Khaled
- Department of Medicine II, University Hospital, LMU Munich, Germany.
| | - Ralf Wimmer
- Department of Medicine II, University Hospital, LMU Munich, Germany.
| | | | - Julia Mayerle
- Department of Medicine II, University Hospital, LMU Munich, Germany.
| | - Yulong He
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Andreas Geier
- Division of Hepatology, Department of Medicine II, University Hospital Würzburg, Würzburg, Germany.
| | - Enrico N. De Toni
- Department of Medicine II, University Hospital, LMU Munich, Germany.
| | - Changhua Zhang
- Digestive Diseases Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| | - Florian P. Reiter
- Department of Medicine II, University Hospital, LMU Munich, Germany.
- Division of Hepatology, Department of Medicine II, University Hospital Würzburg, Würzburg, Germany.
| |
Collapse
|
22
|
Hong J, Wang X, Jin H, Chen Y, Jiang Y, Du K, Chen D, Zheng S, Cao L. Environment relevant exposure of perfluorooctanoic acid accelerates the growth of hepatocellular carcinoma cells through mammalian target of rapamycin (mTOR) signal pathway. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122910. [PMID: 37967710 DOI: 10.1016/j.envpol.2023.122910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/25/2023] [Accepted: 11/08/2023] [Indexed: 11/17/2023]
Abstract
Perfluorooctanoic acid (PFOA), a synthetic alkyl chain fluorinated compound, has emerged as a persistent organic pollutant of grave concern, casting a shadow over both ecological integrity and humans. Its insidious presence raises alarms due to its capacity to bioaccumulate within the human liver, potentially paving the treacherous path toward liver cancer. Yet, the intricate mechanisms underpinning PFOA's role in promoting the growth of hepatocellular carcinoma (HCC) remain shrouded in ambiguity. Here, we determined the proliferation and transcription changes of HCC after PFOA exposure through integrated experiments including cell culture, nude mice tests, and colony-forming assays. Based on our findings, PFOA effectively promotes the proliferation of HCC cells within the experimental range of concentrations, both in vivo and in vitro. The proliferation efficiency of HCC cells was observed to increase by approximately 10% due to overexposure to PFOA. Additionally, the cancer weight of tumor-bearing nude mice increased by 87.0% (p < 0.05). We systematically evaluated the effects of PFOA on HCC cells and found that PFOA's exposure can selectively activate the PI3K/AKT/mTOR/4E-BP1 signaling pathway, thereby playing a pro-cancer effect on HCC cells Confirmation echoed through western blot assays and inhibitor combination analyses. These insights summon a response to PFOA's dual nature as both an environmental threat and a promoter of liver cancer. Our work illuminates the obscured domain of PFOA-induced hepatoxicity, shedding light on its ties to hepatocellular carcinoma progression.
Collapse
Affiliation(s)
- Jiawei Hong
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, PR China
| | - Xiaoyan Wang
- Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Yuanchen Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, PR China
| | - Yifan Jiang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, PR China
| | - Keyi Du
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, PR China
| | - Diyu Chen
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, PR China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, PR China
| | - Linping Cao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, PR China; Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310003, PR China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, 310003, PR China.
| |
Collapse
|
23
|
Golino JL, Bian J, Wang X, Fu J, Zhu XB, Yeo J, Kelly M, Escorcia FE, Cam M, Xie C. Single-cell RNA sequencing reveals cancer stem-like cells and dynamics in tumor microenvironment during cholangiocarcinoma progression. Front Cell Dev Biol 2023; 11:1250215. [PMID: 38020927 PMCID: PMC10667919 DOI: 10.3389/fcell.2023.1250215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Cholangiocarcinoma is a malignancy of the bile ducts that is driven by activities of cancer stem-like cells and characterized by a heterogeneous tumor microenvironment. To better understand the transcriptional profiles of cancer stem-like cells and dynamics in the tumor microenvironment during the progression of cholangiocarcinoma, we performed single-cell RNA analysis on cells collected from three different timepoints of tumorigenesis in a YAP/AKT mouse model. Bulk RNA sequencing data from TCGA (The Cancer Genome Atlas program) and ICGC cohorts were used to verify and support the finding. In vitro and in vivo experiments were performed to assess the stemness of cancer stem-like cells. We identified Tm4sf1high malignant cells as cancer stem-like cells. Across timepoints of cholangiocarcinoma formation in YAP/AKT mice, we found dynamic change in cancer stem-like cell/stromal/immune cell composition. Nevertheless, the dynamic interaction among cancer stem-like cells, immune cells, and stromal cells at different timepoints was elaborated. Collectively, these data serve as a useful resource for better understanding cancer stem-like cell and malignant cell heterogeneity, stromal cell remodeling, and immune cell reprogramming. It also sheds new light on transcriptomic dynamics during cholangiocarcinoma progression at single-cell resolution.
Collapse
Affiliation(s)
- Jihye L. Golino
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jing Bian
- CCR Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Xin Wang
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Jianyang Fu
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Xiao Bin Zhu
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Julie Yeo
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Michael Kelly
- Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD, United States
| | - Freddy E. Escorcia
- Molecular Imaging Branch, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- NCI CCR Liver Cancer Program, Bethesda, MD, United States
| | - Maggie Cam
- CCR Collaborative Bioinformatics Resource, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Changqing Xie
- Thoracic and GI Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
- NCI CCR Liver Cancer Program, Bethesda, MD, United States
| |
Collapse
|
24
|
Dai Z, Zhu W, Hou Y, Zhang X, Ren X, Lei K, Liao J, Liu H, Chen Z, Peng S, Li S, Lin S, Kuang M. METTL5-mediated 18S rRNA m 6A modification promotes oncogenic mRNA translation and intrahepatic cholangiocarcinoma progression. Mol Ther 2023; 31:3225-3242. [PMID: 37735874 PMCID: PMC10638452 DOI: 10.1016/j.ymthe.2023.09.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/14/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a deadly cancer with rapid tumor progression. While hyperactive mRNA translation caused by mis-regulated mRNA or tRNA modifications promotes ICC development, the role of rRNA modifications remains elusive. Here, we found that 18S rRNA m6A modification and its methyltransferase METTL5 were aberrantly upregulated in ICC and associated with poorer survival (log rank test, p < 0.05). We further revealed the critical role of METTL5-mediated 18S rRNA m6A modification in regulation of ICC cell growth and metastasis using loss- and gain-of function assays in vitro and in vivo. The oncogenic function of METTL5 is corroborated using liver-specific knockout and overexpression ICC mouse models. Mechanistically, METTL5 depletion impairs 18S rRNA m6A modification that hampers ribosome synthesis and inhibits translation of G-quadruplex-containing mRNAs that are enriched in the transforming growth factor (TGF)-β pathway. Our study uncovers the important role of METTL5-mediated 18S rRNA m6A modification in ICC and unravels the mechanism of rRNA m6A modification-mediated oncogenic mRNA translation control.
Collapse
Affiliation(s)
- Zihao Dai
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Wanjie Zhu
- Department of Gastroenterology, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong Province, China
| | - Yingdong Hou
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Xinyue Zhang
- Cancer Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Xuxin Ren
- Cancer Center, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Kai Lei
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Junbin Liao
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Haining Liu
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Zhihang Chen
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Sui Peng
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China; Clinical Trials Unit, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China
| | - Shaoqiang Li
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.
| | - Shuibin Lin
- Center for Translational Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.
| | - Ming Kuang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China; Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong Province, China; Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
25
|
Panwar V, Singh A, Bhatt M, Tonk RK, Azizov S, Raza AS, Sengupta S, Kumar D, Garg M. Multifaceted role of mTOR (mammalian target of rapamycin) signaling pathway in human health and disease. Signal Transduct Target Ther 2023; 8:375. [PMID: 37779156 PMCID: PMC10543444 DOI: 10.1038/s41392-023-01608-z] [Citation(s) in RCA: 296] [Impact Index Per Article: 148.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/25/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) is a protein kinase that controls cellular metabolism, catabolism, immune responses, autophagy, survival, proliferation, and migration, to maintain cellular homeostasis. The mTOR signaling cascade consists of two distinct multi-subunit complexes named mTOR complex 1/2 (mTORC1/2). mTOR catalyzes the phosphorylation of several critical proteins like AKT, protein kinase C, insulin growth factor receptor (IGF-1R), 4E binding protein 1 (4E-BP1), ribosomal protein S6 kinase (S6K), transcription factor EB (TFEB), sterol-responsive element-binding proteins (SREBPs), Lipin-1, and Unc-51-like autophagy-activating kinases. mTOR signaling plays a central role in regulating translation, lipid synthesis, nucleotide synthesis, biogenesis of lysosomes, nutrient sensing, and growth factor signaling. The emerging pieces of evidence have revealed that the constitutive activation of the mTOR pathway due to mutations/amplification/deletion in either mTOR and its complexes (mTORC1 and mTORC2) or upstream targets is responsible for aging, neurological diseases, and human malignancies. Here, we provide the detailed structure of mTOR, its complexes, and the comprehensive role of upstream regulators, as well as downstream effectors of mTOR signaling cascades in the metabolism, biogenesis of biomolecules, immune responses, and autophagy. Additionally, we summarize the potential of long noncoding RNAs (lncRNAs) as an important modulator of mTOR signaling. Importantly, we have highlighted the potential of mTOR signaling in aging, neurological disorders, human cancers, cancer stem cells, and drug resistance. Here, we discuss the developments for the therapeutic targeting of mTOR signaling with improved anticancer efficacy for the benefit of cancer patients in clinics.
Collapse
Affiliation(s)
- Vivek Panwar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India
| | - Aishwarya Singh
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, 201313, India
| | - Manini Bhatt
- Department of Biomedical Engineering, Indian Institute of Technology, Ropar, Punjab, 140001, India
| | - Rajiv K Tonk
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), New Delhi, 110017, India
| | - Shavkatjon Azizov
- Laboratory of Biological Active Macromolecular Systems, Institute of Bioorganic Chemistry, Academy of Sciences Uzbekistan, Tashkent, 100125, Uzbekistan
- Faculty of Life Sciences, Pharmaceutical Technical University, 100084, Tashkent, Uzbekistan
| | - Agha Saquib Raza
- Rajive Gandhi Super Speciality Hospital, Tahirpur, New Delhi, 110093, India
| | - Shinjinee Sengupta
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, 201313, India.
| | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173229, India.
| | - Manoj Garg
- Amity Institute of Molecular Medicine and Stem Cell Research (AIMMSCR), Amity University Uttar Pradesh, Sector-125, Noida, Uttar Pradesh, 201313, India.
| |
Collapse
|
26
|
Liu H, Xu L, Zhang Y, Xie Y, Wang L, Zhou Y, Wang Z, Pan Y, Li W, Xu L, Xu X, Wang T, Meng K, He J, Qiu Y, Xu G, Ge W, Zhu Y, Wang L. Copper Increases the Sensitivity of Cholangiocarcinoma Cells to Tripterine by Inhibiting TMX2-Mediated Unfolded Protein Reaction Activation. Adv Healthc Mater 2023; 12:e2300913. [PMID: 37119498 DOI: 10.1002/adhm.202300913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 04/18/2023] [Indexed: 05/01/2023]
Abstract
Chemotherapy-induced adaptive resistance is a significant factor that contributes to low therapeutic efficacy in tumor cells. The unfolded protein response (UPR) is a key mechanism in the development of drug resistance and serves as a critical reactive system for endoplasmic reticulum stress. Cu(II) can reduce the abundance of 60S ribosomal subunits and inhibit rRNA processing, leading to a decrease in the translation efficiency of the GRP78/BiP mRNA, which serves as a primary sensor for UPR activation. In this study, CuET-Lipid@Cela, composed of CuET and tripterine (Cela), demonstrates a significant synergistic antitumor effect on cholangiocarcinoma (CCA) cells. RNA-Seq is used to investigate the underlying mechanism, which suggests that the transmembrane protein 2 (TMX2) gene may be crucial in Cu(II) regulation of UPR by inhibiting the activation of GRP78/BiP and PERK/eIF2α. The synergistic antitumor efficacy of CuET-Lipid@Cela via inhibition of TMX2 is also confirmed in a myrAKT/YapS127A plasmid-induced primary CCA mouse model, providing new insights into the reversal of acquired chemotherapy-induced resistance in CCA.
Collapse
Affiliation(s)
- Hongwen Liu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, P. R. China
| | - Lei Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, P. R. China
| | - Yiyang Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, P. R. China
| | - Yiqiong Xie
- Department of Pharmacy, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 21008, P. R. China
| | - Lishan Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 21008, P. R. China
| | - Yue Zhou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, P. R. China
| | - Zhangding Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, P. R. China
| | - Yani Pan
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, P. R. China
| | - Wenying Li
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 21008, P. R. China
| | - Lu Xu
- Department of Pharmacy, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 21008, P. R. China
| | - Xinyun Xu
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, P. R. China
| | - Ting Wang
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, P. R. China
| | - Kui Meng
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, P. R. China
| | - Jian He
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, P. R. China
| | - Yudong Qiu
- Department of Hepatopancreatobiliary Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, P. R. China
| | - Guifang Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, P. R. China
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 21008, P. R. China
| | - Weihong Ge
- Department of Pharmacy, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 21008, P. R. China
- Nanjing Medical Center for Clinical Pharmacy, Nanjing, Jiangsu Province, 210008, P. R. China
| | - Yun Zhu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, P. R. China
- Department of Pharmacy, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 21008, P. R. China
- Nanjing Medical Center for Clinical Pharmacy, Nanjing, Jiangsu Province, 210008, P. R. China
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu Province, 210008, P. R. China
- Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu Province, 21008, P. R. China
| |
Collapse
|
27
|
Wang J, Zhu Y, Chen Y, Huang Y, Guo Q, Wang Y, Chen A, Zhou Y, Xu L, Wang L, Zou X, Li X. Three-in-One Oncolytic Adenovirus System Initiates a Synergetic Photodynamic Immunotherapy in Immune-Suppressive Cholangiocarcinoma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207668. [PMID: 37127884 DOI: 10.1002/smll.202207668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Although photodynamic immunotherapy has been promoted in the clinical practice of cholangiocarcinoma, the insensitivity to photodynamic immunotherapy remains to be a great problem. This can be largely attributed to an immune-suppressive tumor microenvironment (TME) manifested as immature myeloid cells and exhausted cytotoxic T lymphocytes. Here, a three-in-one oncolytic adenovirus system PEG-PEI-Adv-Catalase-KillerRed (p-Adv-CAT-KR) has been constructed to multiply, initiate, and enhance immune responses in photodynamic immunotherapy, using genetically-engineered KillerRed as photosensitizer, catalase as in situ oxygen-supplying mediator, and adenovirus as immunostimulatory bio-reproducible carrier. Meanwhile, PEG-PEI is applied to protect adenovirus from circulating immune attack. The administration of p-Adv-CAT-KR induces increased antigen presenting cells, elevated T cell infiltrations, and reduced tumor burden. Further investigation into underlying mechanism indicates that hypoxia inducible factor 1 subunit alpha (Hif-1α) and its downstream PD-1/PD-L1 pathway contribute to the transformation of immune-suppressive TME in cholangiocarcinoma. Collectively, the combination of KillerRed, catalase, and adenovirus brings about multi-amplified antitumor photo-immunity and has the potential to be an effective immunotherapeutic strategy for cholangiocarcinoma.
Collapse
Affiliation(s)
- Jialun Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yun Zhu
- Department of Pharmacy, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
- Nanjing Medical Center for Clinical Pharmacy, Nanjing, 210008, China
| | - Yu Chen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Ying Huang
- Department of Pain, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Qiyuan Guo
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yue Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Aotian Chen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Yue Zhou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Lei Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| | - Xihan Li
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, 210008, China
| |
Collapse
|
28
|
Tang Y, Thiess L, Weiler SME, Tóth M, Rose F, Merker S, Ruppert T, Schirmacher P, Breuhahn K. α-catenin interaction with YAP/FoxM1/TEAD-induced CEP55 supports liver cancer cell migration. Cell Commun Signal 2023; 21:162. [PMID: 37381005 DOI: 10.1186/s12964-023-01169-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/20/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Adherens junctions (AJs) facilitate cell-cell contact and contribute to cellular communication as well as signaling under physiological and pathological conditions. Aberrant expression of AJ proteins is frequently observed in human cancers; however, how these factors contribute to tumorigenesis is poorly understood. In addition, for some factors such as α-catenin contradicting data has been described. In this study we aim to decipher how the AJ constituent α-catenin contributes to liver cancer formation. METHODS TCGA data was used to detect transcript changes in 23 human tumor types. For the detection of proteins, liver cancer tissue microarrays were analyzed by immunohistochemistry. Liver cancer cell lines (HLF, Hep3B, HepG2) were used for viability, proliferation, and migration analyses after RNAinterference-mediated gene silencing. To investigate the tumor initiating potential, vectors coding for α-catenin and myristoylated AKT were injected in mice by hydrodynamic gene delivery. A BioID assay combined with mass spectrometry was performed to identify α-catenin binding partners. Results were confirmed by proximity ligation and co-immunoprecipitation assays. Binding of transcriptional regulators at gene promoters was investigated using chromatin-immunoprecipitation. RESULTS α-catenin mRNA was significantly reduced in many human malignancies (e.g., colon adenocarcinoma). In contrast, elevated α-catenin expression in other cancer entities was associated with poor clinical outcome (e.g., for hepatocellular carcinoma; HCC). In HCC cells, α-catenin was detectable at the membrane as well as cytoplasm where it supported tumor cell proliferation and migration. In vivo, α-catenin facilitated moderate oncogenic properties in conjunction with AKT overexpression. Cytokinesis regulator centrosomal protein 55 (CEP55) was identified as a novel α-catenin-binding protein in the cytoplasm of HCC cells. The physical interaction between α-catenin and CEP55 was associated with CEP55 stabilization. CEP55 was highly expressed in human HCC tissues and its overexpression correlated with poor overall survival and cancer recurrence. Next to the α-catenin-dependent protein stabilization, CEP55 was transcriptionally induced by a complex consisting of TEA domain transcription factors (TEADs), forkhead box M1 (FoxM1), and yes-associated protein (YAP). Surprisingly, CEP55 did not affect HCC cell proliferation but significantly supported migration in conjunction with α-catenin. CONCLUSION Migration-supporting CEP55 is induced by two independent mechanisms in HCC cells: stabilization through interaction with the AJ protein α-catenin and transcriptional activation via the FoxM1/TEAD/YAP complex.
Collapse
Affiliation(s)
- Yingyue Tang
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Lena Thiess
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Sofia M E Weiler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Marcell Tóth
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Fabian Rose
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Sabine Merker
- CFMP, Core Facility for Mass Spectrometry & Proteomics at the Center for Molecular Biology (ZMBH), Heidelberg University, Heidelberg, Germany
| | - Thomas Ruppert
- CFMP, Core Facility for Mass Spectrometry & Proteomics at the Center for Molecular Biology (ZMBH), Heidelberg University, Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Kai Breuhahn
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.
| |
Collapse
|
29
|
Franklin JM, Wu Z, Guan KL. Insights into recent findings and clinical application of YAP and TAZ in cancer. Nat Rev Cancer 2023:10.1038/s41568-023-00579-1. [PMID: 37308716 DOI: 10.1038/s41568-023-00579-1] [Citation(s) in RCA: 98] [Impact Index Per Article: 49.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/19/2023] [Indexed: 06/14/2023]
Abstract
Decades of research have mapped out the basic mechanics of the Hippo pathway. The paralogues Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ), as the central transcription control module of the Hippo pathway, have long been implicated in the progression of various human cancers. The current literature regarding oncogenic YAP and TAZ activities consists mostly of context-specific mechanisms and treatments of human cancers. Furthermore, a growing number of studies demonstrate tumour-suppressor functions of YAP and TAZ. In this Review we aim to synthesize an integrated perspective of the many disparate findings regarding YAP and TAZ in cancer. We then conclude with the various strategies for targeting and treating YAP- and TAZ-dependent cancers.
Collapse
Affiliation(s)
- J Matthew Franklin
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Zhengming Wu
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
30
|
Li Z, Zhou H, Xia Z, Xia T, Du G, Franziska SD, Li X, Zhai X, Jin B. HMGA1 augments palbociclib efficacy via PI3K/mTOR signaling in intrahepatic cholangiocarcinoma. Biomark Res 2023; 11:33. [PMID: 36978140 PMCID: PMC10053751 DOI: 10.1186/s40364-023-00473-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (iCCA) is a highly aggressive cancer that is challenging to diagnose at an early stage. Despite recent advances in combination chemotherapy, drug resistance limits the therapeutic value of this regimen. iCCA reportedly harbors high HMGA1 expression and pathway alterations, especially hyperactivation of the CCND1/CDK4/CDK6 and PI3K signaling pathway. In this study, we explored the potential of targeting CDK4/6 and PI3K inhibition to treat iCCA. METHODS The significance of HMGA1 in iCCA was investigated with in vitro/vivo experiments. Western blot, qPCR, dual-luciferase reporter and immunofluorescence assays were performed to examine the mechanism of HMGA1 induced CCND1 expression. CCK-8, western blot, transwell, 3D sphere formation and colony formation assays were conducted to predict the potential role of CDK4/6 inhibitors PI3K/mTOR inhibitors in iCCA treatment. Xenograft mouse models were also used to determine the efficacy of combination treatment strategies related to HMGA1 in iCCA. RESULTS HMGA1 promoted the proliferation, epithelial-mesenchymaltransition (EMT), metastasis and stemness of iCCA. In vitro studies showed that HMGA1 induced CCND1 expression via promoting CCND1 transcription and activating the PI3K signaling pathway. Palbociclib(CDK4/6 inhibitor) could suppress iCCA proliferation, migration and invasion, especially during the first 3 days. Although there was more stable attenuation of growth in the HIBEpic model, we observed substantial outgrowth in each hepatobiliary cancer cell model. PF-04691502(PI3K/mTOR inhibitor) exhibited similar effects to palbociclib. Compared with monotherapy, the combination retained effective inhibition for iCCA through the more potent and steady inhibition of CCND1, CDK4/6 and PI3K pathway. Furthermore, more significant inhibition of the common downstream signaling pathways is observed with the combination compared to monotherapy. CONCLUSIONS Our study reveals the potential therapeutic role of dual inhibition of CDK4/6 and PI3K/mTOR pathways in iCCA, and proposes a new paradigm for the clinical treatment of iCCA.
Collapse
Affiliation(s)
- Zhipeng Li
- Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, China
| | - Huaxin Zhou
- Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, China
- The Second Clinical College of Shandong University, Jinan, China
| | - Zhijia Xia
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tong Xia
- Organ Transplant Department, Qilu Hospital of Shandong University, Jinan, China
| | - Gang Du
- Organ Transplant Department, Qilu Hospital of Shandong University, Jinan, China
| | - Strohmer Dorothee Franziska
- Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Xiaoming Li
- Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, China.
| | - Xiangyu Zhai
- Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, China.
| | - Bin Jin
- Department of Hepatobiliary Surgery, The Second Hospital of Shandong University, Jinan, China.
- Organ Transplant Department, Qilu Hospital of Shandong University, Jinan, China.
| |
Collapse
|
31
|
Li L, Wang C, Qiu Z, Deng D, Chen X, Wang Q, Meng Y, Zhang B, Zheng G, Hu J. Triptolide inhibits intrahepatic cholangiocarcinoma growth by suppressing glycolysis via the AKT/mTOR pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 109:154575. [PMID: 36610163 DOI: 10.1016/j.phymed.2022.154575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/04/2022] [Accepted: 11/20/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND High levels of glycolysis supply large quantities of energy and biological macromolecular raw materials for cell proliferation. Triptolide (TP) is a kind of epoxy diterpene lactone extracted from the roots, flowers, leaves, or grains of the Celastraceae plant, Tripterygium wilfordii. TP has multiple biological activities, including anti-inflammatory, immunologic suppression, and anti-cancer effects. Nevertheless, it is little known regarding its anti-intrahepatic cholangiocarcinoma (ICC) growth, and the mechanism still require exploration. PURPOSE This research explored the effect of TP on ICC growth and investigated whether TP inhibits glycolysis via the AKT/mTOR pathway. METHODS Cell proliferation was analyzed by Cell Counting Kit-8 (CCK-8), clonogenic assay, and flow cytometry. The underlying molecular mechanism was identified by determining glucose consumption, ATP production, lactate production, hexokinase (HK) and pyruvate kinase (PK) activity, and Western blot analysis. A rapid ICC model of AKT/YapS127A oncogene coactivation in mice was used to clarify the effect of TP treatment on tumor growth and glycolysis. RESULTS The results showed that TP treatment significantly inhibited ICC cell proliferation and glycolysis in a dose- and time-dependent manner(P < 0.05). Further analysis suggested that TP suppressed ICC cell glycolysis by targeting AKT/mTOR signaling. Additionally, we found that TP inhibits tumor growth and glycolysis in AKT/YapS127A mice(P < 0.05). CONCLUSION Taken together, we revealed that TP suppressed ICC growth by suppressing glycolysis via the AKT/mTOR pathway and may provide a potential therapeutic target for ICC treatment.
Collapse
Affiliation(s)
- Li Li
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Chuting Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Zhenpeng Qiu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Dongjie Deng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Xin Chen
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Qi Wang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yan Meng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Baohui Zhang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Guohua Zheng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China; Key Laboratory of Chinese Medicine Resource and Compound Prescription, Ministry of Education, Hubei University of Chinese Medicine, Wuhan 430065, China.
| | - Junjie Hu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China.
| |
Collapse
|
32
|
Raggi C, Taddei ML, Rae C, Braconi C, Marra F. Metabolic reprogramming in cholangiocarcinoma. J Hepatol 2022; 77:849-864. [PMID: 35594992 DOI: 10.1016/j.jhep.2022.04.038] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/16/2022] [Accepted: 04/28/2022] [Indexed: 12/25/2022]
Abstract
Metabolic reprogramming is a hallmark of cancer and allows tumour cells to meet the increased energy demands required for rapid proliferation, invasion, and metastasis. Indeed, many tumour cells acquire distinctive metabolic and bioenergetic features that enable them to survive in resource-limited conditions, mainly by harnessing alternative nutrients. Several recent studies have explored the metabolic plasticity of cancer cells with the aim of identifying new druggable targets, while therapeutic strategies to limit the access to nutrients have been successfully applied to the treatment of some tumours. Cholangiocarcinoma (CCA), a highly heterogeneous tumour, is the second most common form of primary liver cancer. It is characterised by resistance to chemotherapy and poor prognosis, with 5-year survival rates of below 20%. Deregulation of metabolic pathways have been described during the onset and progression of CCA. Increased aerobic glycolysis and glutamine anaplerosis provide CCA cells with the ability to generate biosynthetic intermediates. Other metabolic alterations involving carbohydrates, amino acids and lipids have been shown to sustain cancer cell growth and dissemination. In this review, we discuss the complex metabolic rewiring that occurs during CCA development and leads to unique nutrient addiction. The possible role of therapeutic interventions based on metabolic changes is also thoroughly discussed.
Collapse
Affiliation(s)
- Chiara Raggi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| | - Maria Letizia Taddei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Colin Rae
- Institute of Cancer Sciences, The University of Glasgow, Glasgow, United Kingdom
| | - Chiara Braconi
- Institute of Cancer Sciences, The University of Glasgow, Glasgow, United Kingdom; Beatson West of Scotland Cancer Centre, Glasgow, United Kingdom
| | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy.
| |
Collapse
|
33
|
Zhang Y, Xu H, Cui G, Liang B, Chen X, Ko S, Affo S, Song X, Liao Y, Feng J, Wang P, Wang H, Xu M, Wang J, Pes GM, Ribback S, Zeng Y, Singhi A, Schwabe RF, Monga SP, Evert M, Tang L, Calvisi DF, Chen X. β-Catenin Sustains and Is Required for YES-associated Protein Oncogenic Activity in Cholangiocarcinoma. Gastroenterology 2022; 163:481-494. [PMID: 35489428 PMCID: PMC9329198 DOI: 10.1053/j.gastro.2022.04.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 04/05/2022] [Accepted: 04/19/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS YES-associated protein (YAP) aberrant activation is implicated in intrahepatic cholangiocarcinoma (iCCA). Transcriptional enhanced associate domain (TEAD)-mediated transcriptional regulation is the primary signaling event downstream of YAP. The role of Wnt/β-Catenin signaling in cholangiocarcinogenesis remains undetermined. Here, we investigated the possible molecular interplay between YAP and β-Catenin cascades in iCCA. METHODS Activated AKT (Myr-Akt) was coexpressed with YAP (YapS127A) or Tead2VP16 via hydrodynamic tail vein injection into mouse livers. Tumor growth was monitored, and liver tissues were collected and analyzed using histopathologic and molecular analysis. YAP, β-Catenin, and TEAD interaction in iCCAs was investigated through coimmunoprecipitation. Conditional Ctnnb1 knockout mice were used to determine β-Catenin function in murine iCCA models. RNA sequencing was performed to analyze the genes regulated by YAP and/or β-Catenin. Immunostaining of total and nonphosphorylated/activated β-Catenin staining was performed in mouse and human iCCAs. RESULTS We discovered that TEAD factors are required for YAP-dependent iCCA development. However, transcriptional activation of TEADs did not fully recapitulate YAP's activities in promoting cholangiocarcinogenesis. Notably, β-Catenin physically interacted with YAP in human and mouse iCCA. Ctnnb1 ablation strongly suppressed human iCCA cell growth and Yap-dependent cholangiocarcinogenesis. Furthermore, RNA-sequencing analysis revealed that YAP/ transcriptional coactivator with PDZ-binding motif (TAZ) regulate a set of genes significantly overlapping with those controlled by β-Catenin. Importantly, activated/nonphosphorylated β-Catenin was detected in more than 80% of human iCCAs. CONCLUSION YAP induces cholangiocarcinogenesis via TEAD-dependent transcriptional activation and interaction with β-Catenin. β-Catenin binds to YAP in iCCA and is required for YAP full transcriptional activity, revealing the functional crosstalk between YAP and β-Catenin pathways in cholangiocarcinogenesis.
Collapse
Affiliation(s)
- Yi Zhang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China; Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| | - Hongwei Xu
- Department of Liver Surgery, Center of Liver Transplantation, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Guofei Cui
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California
| | - Binyong Liang
- Hepatic Surgery Center, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangzheng Chen
- Liver Transplantation Division, Department of Liver Surgery, and Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Sungjin Ko
- Department of Pathology and Medicine, and Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Silvia Affo
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Xinhua Song
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Yi Liao
- The Central Laboratory, Shenzhen Second People's Hospital/First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Jianguo Feng
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China; Laboratory of Anesthesiology, Southwest Medical University, Luzhou, China
| | - Pan Wang
- Collaborative Innovation Center for Agricultural Product Processing and Nutrition & Health, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
| | - Haichuan Wang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California; Liver Transplantation Division, Department of Liver Surgery, and Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Meng Xu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an, China
| | - Jingxiao Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Giovanni M Pes
- Department of Medical, Surgical, and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Silvia Ribback
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Yong Zeng
- Liver Transplantation Division, Department of Liver Surgery, and Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Aatur Singhi
- Department of Pathology and Medicine, and Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | | | - Satdarshan P Monga
- Department of Pathology and Medicine, and Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, and University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Liling Tang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany.
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California; Cancer Biology Program, University of Hawaii Cancer Center, Honolulu, Hawaii.
| |
Collapse
|
34
|
Liu S, Huang F, Ru G, Wang Y, Zhang B, Chen X, Chu L. Mouse Models of Hepatocellular Carcinoma: Classification, Advancement, and Application. Front Oncol 2022; 12:902820. [PMID: 35847898 PMCID: PMC9279915 DOI: 10.3389/fonc.2022.902820] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the subtype of liver cancer with the highest incidence, which is a heterogeneous malignancy with increasing incidence rate and high mortality. For ethical reasons, it is essential to validate medical clinical trials for HCC in animal models before further consideration on humans. Therefore, appropriate models for the study of the pathogenesis of the disease and related treatment methods are necessary. For tumor research, mouse models are the most commonly used and effective in vivo model, which is closer to the real-life environment, and the repeated experiments performed on it are closer to the real situation. Several mouse models of HCC have been developed with different mouse strains, cell lines, tumor sites, and tumor formation methods. In this review, we mainly introduce some mouse HCC models, including induced model, gene-edited model, HCC transplantation model, and other mouse HCC models, and discuss how to choose the appropriate model according to the purpose of the experiments.
Collapse
Affiliation(s)
- Sha Liu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fang Huang
- Cancer Center, Department of Pathology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Guoqing Ru
- Cancer Center, Department of Pathology, Zhejiang Provincial People’s Hospital, Affiliated People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Yigang Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Bixiang Zhang
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoping Chen
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liang Chu
- Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- *Correspondence: Liang Chu,
| |
Collapse
|
35
|
Metabolic Reprogramming in Cancer Cells: Emerging Molecular Mechanisms and Novel Therapeutic Approaches. Pharmaceutics 2022; 14:pharmaceutics14061303. [PMID: 35745875 PMCID: PMC9227908 DOI: 10.3390/pharmaceutics14061303] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/01/2022] [Accepted: 06/13/2022] [Indexed: 12/03/2022] Open
Abstract
The constant changes in cancer cell bioenergetics are widely known as metabolic reprogramming. Reprogramming is a process mediated by multiple factors, including oncogenes, growth factors, hypoxia-induced factors, and the loss of suppressor gene function, which support malignant transformation and tumor development in addition to cell heterogeneity. Consequently, this hallmark promotes resistance to conventional anti-tumor therapies by adapting to the drastic changes in the nutrient microenvironment that these therapies entail. Therefore, it represents a revolutionary landscape during cancer progression that could be useful for developing new and improved therapeutic strategies targeting alterations in cancer cell metabolism, such as the deregulated mTOR and PI3K pathways. Understanding the complex interactions of the underlying mechanisms of metabolic reprogramming during cancer initiation and progression is an active study field. Recently, novel approaches are being used to effectively battle and eliminate malignant cells. These include biguanides, mTOR inhibitors, glutaminase inhibition, and ion channels as drug targets. This review aims to provide a general overview of metabolic reprogramming, summarise recent progress in this field, and emphasize its use as an effective therapeutic target against cancer.
Collapse
|
36
|
Cigliano A, Zhang S, Ribback S, Steinmann S, Sini M, Ament CE, Utpatel K, Song X, Wang J, Pilo MG, Berger F, Wang H, Tao J, Li X, Pes GM, Mancarella S, Giannelli G, Dombrowski F, Evert M, Calvisi DF, Chen X, Evert K. The Hippo pathway effector TAZ induces intrahepatic cholangiocarcinoma in mice and is ubiquitously activated in the human disease. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:192. [PMID: 35655220 PMCID: PMC9164528 DOI: 10.1186/s13046-022-02394-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/16/2022] [Indexed: 12/31/2022]
Abstract
Background Intrahepatic cholangiocarcinoma (iCCA) is a highly aggressive primary liver tumor with increasing incidence worldwide, dismal prognosis, and few therapeutic options. Mounting evidence underlines the role of the Hippo pathway in this disease; however, the molecular mechanisms whereby the Hippo cascade contributes to cholangiocarcinogenesis remain poorly defined. Methods We established novel iCCA mouse models via hydrodynamic transfection of an activated form of transcriptional coactivator with PDZ-binding motif (TAZ), a Hippo pathway downstream effector, either alone or combined with the myristoylated AKT (myr-AKT) protooncogene, in the mouse liver. Hematoxylin and eosin staining, immunohistochemistry, electron microscopy, and quantitative real-time RT-PCR were applied to characterize the models. In addition, in vitro cell line studies were conducted to address the growth-promoting roles of TAZ and its paralog YAP. Results Overexpression of TAZ in the mouse liver triggered iCCA development with very low incidence and long latency. In contrast, co-expression of TAZ and myr-AKT dramatically increased tumor frequency and accelerated cancer formation in mice, with 100% iCCA incidence and high tumor burden by 10 weeks post hydrodynamic injection. AKT/TAZ tumors faithfully recapitulated many of the histomolecular features of human iCCA. At the molecular level, the development of the cholangiocellular lesions depended on the binding of TAZ to TEAD transcription factors. In addition, inhibition of the Notch pathway did not hamper carcinogenesis but suppressed the cholangiocellular phenotype of AKT/TAZ tumors. Also, knockdown of YAP, the TAZ paralog, delayed cholangiocarcinogenesis in AKT/TAZ mice without affecting the tumor phenotype. Furthermore, human preinvasive and invasive iCCAs and mixed hepatocellular carcinoma/iCCA displayed widespread TAZ activation and downregulation of the mechanisms protecting TAZ from proteolysis. Conclusions Overall, the present data underscore the crucial role of TAZ in cholangiocarcinogenesis Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02394-2.
Collapse
Affiliation(s)
- Antonio Cigliano
- Institute of Pathology, University of Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany.,Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Shanshan Zhang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, 513 Parnassus Avenue, San Francisco, CA, USA.,Department of Pathology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Silvia Ribback
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Sara Steinmann
- Institute of Pathology, University of Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Marcella Sini
- Experimental Pathology Unit, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Cindy E Ament
- Institute of Pathology, University of Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Kirsten Utpatel
- Institute of Pathology, University of Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Xinhua Song
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, 513 Parnassus Avenue, San Francisco, CA, USA.,School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Jingxiao Wang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, 513 Parnassus Avenue, San Francisco, CA, USA.,School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Maria G Pilo
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Fabian Berger
- Institute of Pathology, University of Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Haichuan Wang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, 513 Parnassus Avenue, San Francisco, CA, USA.,Liver Transplantation Division, Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Junyan Tao
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, 513 Parnassus Avenue, San Francisco, CA, USA
| | - Xiaolei Li
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, 513 Parnassus Avenue, San Francisco, CA, USA.,Department of Thyroid and Breast Surgery, The 960th Hospital of the PLA, Jinan, 250031, China
| | - Giovanni M Pes
- Department of Medical, Surgical and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Serena Mancarella
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology "S. de Bellis", Research Hospital, Castellana Grotte, Italy
| | - Frank Dombrowski
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, 513 Parnassus Avenue, San Francisco, CA, USA.,University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Katja Evert
- Institute of Pathology, University of Regensburg, Franz-Josef-Strauß-Allee 11, Regensburg, Germany.
| |
Collapse
|
37
|
Huang X, Zhu L, Wang L, Huang W, Tan L, Liu H, Huo J, Su T, Zhang M, Kuang M, Li X, Dai Z, Xu L. YTHDF1 promotes intrahepatic cholangiocarcinoma progression via regulating EGFR mRNA translation. J Gastroenterol Hepatol 2022; 37:1156-1168. [PMID: 35233828 DOI: 10.1111/jgh.15816] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/26/2022]
Abstract
BACKGROUND AND AIM Intrahepatic cholangiocarcinoma (ICC) is a highly aggressive disease with the underlying mechanisms poorly understood. YTHDF1, an N6 -methyladenosine (m6 A) reader protein, has important physiological functions in regulation of tumor development. However, the effect of YTHDF1 on ICC progression remains unknown yet. METHODS The expression level of YTHDF1 in human ICC tissue was examined in The Cancer Genome Atlas database and our cohort. The role of YTHDF1 was detected using two human ICC cell lines in vitro. An ICC tumorigenesis mouse model was established via hydrodynamic transfection of AKT/YAP plasmids. m6 A sequencing, RNA immunoprecipitation sequencing, and RNA sequencing were carried out to explore the mechanism of YTHDF1 modulating ICC progression. RESULTS Here, we find that YTHDF1 is upregulated in ICC and associated with shorter survival of ICC patients. Depletion of YTHDF1 inhibits cell proliferation, migration, and invasion, while overexpression of wild-type YTHDF1, but not m6 A reader domain mutant YTHDF1, significantly enhances tumor cell growth and aggressive abilities in vitro. Moreover, overexpression of YTHDF1 promotes the AKT/YAP transfection-induced orthotopic ICC tumorigenesis and progression in vivo. Mechanistically, we identify that YTHDF1 regulates the translation of epidermal growth factor receptor (EGFR) mRNA via binding m6 A sites in the 3'-UTR of EGFR transcript, thus leading to aberrant activities of downstream signal pathways that impact tumor progression. CONCLUSIONS Our data uncover the oncogenic function and m6 A reader-dependent mechanism of YTHDF1 in regulation of ICC progression. Restricting abnormal oncogenic mRNA translation by targeting YTHDF1 may be a novel and promising strategy for ICC treatment.
Collapse
Affiliation(s)
- Xiang Huang
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lefan Zhu
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lina Wang
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Wenjie Huang
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Li Tan
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Haining Liu
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jihui Huo
- Department of Oncology, Cancer Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Tianhong Su
- Department of Oncology, Cancer Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Mengping Zhang
- Department of Oncology, Cancer Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ming Kuang
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Oncology, Cancer Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Xiaoxing Li
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Zihao Dai
- Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lixia Xu
- Institute of Precision Medicine, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China.,Department of Oncology, Cancer Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
38
|
Zhou Y, Xu L, Wang Z, Liu H, Zhang X, Shu C, Zhang M, Wang T, Xu X, Pu X, He J, Wang P, Qiu Y, Xu G, Zou X, Zhu Y, Wang L. Sequentially targeting and intervening mutual Polo-like Kinase 1 on CAFs and tumor cells by dual targeting nano-platform for cholangiocarcinoma treatment. Theranostics 2022; 12:3911-3927. [PMID: 35664077 PMCID: PMC9131280 DOI: 10.7150/thno.70557] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
Rationale: Synergistic treatment strategies for two or more drugs have gradually developed as the main options in clinics for cholangiocarcinoma (CCA) owing to the complicated crosstalk between the tumor and stroma. However, the different synergetic mechanisms pose great challenges to the dosages and order of administration of drugs. Thus, a strategy for exploring and intervening in mutual targets derived from stromal cells and cholangiocarcinoma cells was proposed. Methods: Genes with overexpression patterns in tumors and displaying a significant association with overall survival were identified from RNA-seq data of human CCA patients and CCA mouse models. Western blotting, qRT-PCR, immunofluorescence (IF), colony formation and flow cytometry assays were conducted to determine the biological roles of the key oncogene in cholangiocarcinoma and stromal cells respectively. Additionally, a dual-targeting drug delivery system (AA-HA-ODA) for cancer-associated fibroblasts (CAFs) and tumor cells was constructed to verify the effectiveness of intervening the screened genes in vivo. Results: Polo-like kinase 1 (PLK1) was verified to play vital role in the malignant proliferation of CCA by regulating the cell cycle pathway. PLK1 also decreased stromal production by regulating the CAF phenotype. In addition, a PLK1 inhibitor (Ro3280) loaded dual-targeting drug delivery system (AA-HA-ODA) was prepared and exhibited high affinity for CAFs and cholangiocarcinoma cells. The in vivo distribution pattern and antitumor efficacy of AA-HA-ODA/Ro also verify the effectiveness of inhibiting PLK1 in CCA in vivo. Conclusion: In summary, PLK1 is a mutual target derived from tumor cells and stroma due to its crucial role in the proliferation of tumor cells and stroma regulation in CAFs, which might provide enlightenment for multitarget treatment strategies and guidance for clinical cholangiocarcinoma treatment.
Collapse
Affiliation(s)
- Yue Zhou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, Jiangsu Province, China
| | - Lei Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, Jiangsu Province, China
| | - Zhangding Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, Jiangsu Province, China
| | - Hongwen Liu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, Jiangsu Province, China
| | - Xiang Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, Jiangsu Province, China
| | - Chuanjun Shu
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, Jiangsu Province, China
| | - Meng Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, Jiangsu Province, China
| | - Ting Wang
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Xinyun Xu
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Xiaohong Pu
- Department of Pathology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Jian He
- Department of Nuclear Medicine, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Pin Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, Jiangsu Province, China
| | - Yudong Qiu
- Department of Hepatopancreatobiliary Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
| | - Guifang Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, Jiangsu Province, China
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, Jiangsu Province, China
| | - Yun Zhu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, Jiangsu Province, China
- Department of Pharmacy, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, Jiangsu Province, China
- Nanjing Medical Center for Clinical Pharmacy, Nanjing 210008, Jiangsu Province, China
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu Province, China
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing 210008, Jiangsu Province, China
| |
Collapse
|
39
|
Ko S, Kim M, Molina L, Sirica AE, Monga SP. YAP1 activation and Hippo pathway signaling in the pathogenesis and treatment of intrahepatic cholangiocarcinoma. Adv Cancer Res 2022; 156:283-317. [PMID: 35961703 PMCID: PMC9972177 DOI: 10.1016/bs.acr.2022.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Intrahepatic cholangiocarcinoma (iCCA), the second most common primary liver cancer, is a highly lethal epithelial cell malignancy exhibiting features of cholangiocyte differentiation. iCCAs can potentially develop from multiple cell types of origin within liver, including immature or mature cholangiocytes, hepatic stem cells/progenitor cells, and from transdifferentiation of hepatocytes. Understanding the molecular mechanisms and genetic drivers that diversely drive specific cell lineage pathways leading to iCCA has important biological and clinical implications. In this context, activation of the YAP1-TEAD dependent transcription, driven by Hippo-dependent or -independent diverse mechanisms that lead to the stabilization of YAP1 is crucially important to biliary fate commitment in hepatobiliary cancer. In preclinical models, YAP1 activation in hepatocytes or cholangiocytes is sufficient to drive their malignant transformation into iCCA. Moreover, nuclear YAP1/TAZ is highly prevalent in human iCCA irrespective of the varied etiology, and significantly correlates with poor prognosis in iCCA patients. Based on the ubiquitous expression and diverse physiologic roles for YAP1/TAZ in the liver, recent studies have further revealed distinct functions of active YAP1/TAZ in regulating tumor metabolism, as well as the tumor immune microenvironment. In the current review, we discuss our current understanding of the various roles of the Hippo-YAP1 signaling in iCCA pathogenesis, with a specific focus on the roles played by the Hippo-YAP1 pathway in modulating biliary commitment and oncogenicity, iCCA metabolism, and immune microenvironment. We also discuss the therapeutic potential of targeting the YAP1/TAZ-TEAD transcriptional machinery in iCCA, its current limitations, and what future studies are needed to facilitate clinical translation.
Collapse
Affiliation(s)
- Sungjin Ko
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Pittsburgh Liver Research Center, Pittsburgh, PA, United States.
| | - Minwook Kim
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Laura Molina
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Pittsburgh Liver Research Center, Pittsburgh, PA, United States
| | - Alphonse E Sirica
- Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Satdarshan P Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Pittsburgh Liver Research Center, Pittsburgh, PA, United States; Division of Gastroenterology, Hepatology, and Nutrition, University of Pittsburgh and UPMC, Pittsburgh, PA, United States.
| |
Collapse
|
40
|
Joechle K, Jumaa H, Thriene K, Hellerbrand C, Kulemann B, Fichtner-Feigl S, Lang SA, Guenzle J. Dual Inhibition of mTORC1/2 Reduces Migration of Cholangiocarcinoma Cells by Regulation of Matrixmetalloproteinases. Front Cell Dev Biol 2022; 9:785979. [PMID: 35096817 PMCID: PMC8793831 DOI: 10.3389/fcell.2021.785979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/17/2021] [Indexed: 12/30/2022] Open
Abstract
Cholangiocarcinoma (CCA) is a rare but highly aggressive tumor entity for which systemic therapies only showed limited efficacy so far. As OSI-027—a dual kinase inhibitor targeting both mTOR complexes, mTORC1 and mTORC2 - showed improved anti-cancer effects, we sought to evaluate its impact on the migratory and metastatic capacity of CCA cells in vitro. We found that treatment with OSI-027 leads to reduced cell mobility and migration as well as a reduced surviving fraction in colony-forming ability. While neither cell viability nor proliferation rate was affected, OSI-027 decreased the expression of MMP2 and MMP9. Moreover, survival as well as anti-apoptotic signaling was impaired upon the use of OSI-027 as determined by AKT and MAPK blotting. Dual targeting of mTORC1/2 might therefore be a viable option for anti-neoplastic therapy in CCA.
Collapse
Affiliation(s)
- Katharina Joechle
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Aachen, Germany.,Department of General and Visceral Surgery, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Huda Jumaa
- Department of General and Visceral Surgery, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Kerstin Thriene
- Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany
| | - Claus Hellerbrand
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Birte Kulemann
- Department of Surgery, University Medical Center Schleswig-Holstein Campus Lübeck, Lübeck, Germany
| | - Stefan Fichtner-Feigl
- Department of General and Visceral Surgery, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany.,Comprehensive Cancer Center Freiburg-CCCF, Medical Center-University, Freiburg, Germany
| | - Sven A Lang
- Department of Surgery and Transplantation, University Hospital RWTH Aachen, Aachen, Germany.,Department of General and Visceral Surgery, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Jessica Guenzle
- Department of General and Visceral Surgery, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| |
Collapse
|
41
|
Lin Y, Cai Q, Chen Y, Shi T, Liu W, Mao L, Deng B, Ying Z, Gao Y, Luo H, Yang X, Huang X, Shi Y, He R. CAFs shape myeloid-derived suppressor cells to promote stemness of intrahepatic cholangiocarcinoma through 5-lipoxygenase. Hepatology 2022; 75:28-42. [PMID: 34387870 DOI: 10.1002/hep.32099] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 07/16/2021] [Accepted: 08/02/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND AIMS We previously demonstrated that cancer-associated fibroblasts (CAFs) promote tumor growth through recruitment of myeloid-derived suppressor cells (MDSCs). 5-lipoxygenase (5-LO) is highly expressed in myeloid cells and is critical for synthesizing leukotriene B4 (LTB4), which is involved in tumor progression by activating its receptor leukotriene B4 receptor type 2 (BLT2). In this study, we investigated whether and how CAFs regulate MDSC function to enhance cancer stemness, the driving force of the cancer aggressiveness and chemotherapy refractoriness, in highly desmoplastic intrahepatic cholangiocarcinoma (ICC). APPROACH AND RESULTS RNA-sequencing analysis revealed enriched metabolic pathways but decreased inflammatory pathways in cancer MDSCs compared with blood MDSCs from patients with ICC. Co-injection of ICC patient-derived CAFs promoted cancer stemness in an orthotopic ICC model, which was blunted by MDSC depletion. Conditioned media (CM) from CAF-educated MDSCs drastically promoted tumorsphere formation efficiency and stemness marker gene expression in ICC cells. CAF-CM stimulation increased expression and activity of 5-LO in MDSCs, while 5-LO inhibitor impaired the stemness-enhancing capacity of MDSCs in vitro and in vivo. Furthermore, IL-6 and IL-33 primarily expressed by CAFs mediated hyperactivated 5-LO metabolism in MDSCs. We identified the LTB4-BLT2 axis as the critical downstream metabolite signaling of 5-LO in promoting cancer stemness, as treatment with LTB4 was elevated in CAF-educated MDSCs, or blockade of BLT2 (which was preferentially expressed in stem-like ICC cells) significantly reduced stemness-enhancing effects of CAF-educated MDSCs. Finally, BLT2 blockade augmented chemotherapeutic efficacy in ICC patient-derived xenograft models. CONCLUSIONS Our study reveals a role for CAFs in orchestrating the optimal cancer stemness-enhancing microenvironment by educating MDSCs, and suggests the 5-LO/LTB4-BLT2 axis as promising therapeutic targets for ICC chemoresistance by targeting cancer stemness.
Collapse
Affiliation(s)
- Yuli Lin
- Department of Immunology and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qian Cai
- Department of Immunology and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yu Chen
- Department of Immunology and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Tiancong Shi
- Department of Immunology and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Weiren Liu
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Shanghai, China
| | - Li Mao
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Shanghai, China
| | - Bo Deng
- Division of Nephrology, School of Medicine, Shanghai Ninth People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Zhen Ying
- Department of Immunology and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yuan Gao
- Department of Immunology and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Haoyang Luo
- Department of Immunology and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xuguang Yang
- Department of Oncology, Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaowu Huang
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Shanghai, China
| | - Yinghong Shi
- Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Department of Liver Surgery, Liver Cancer Institute, Zhongshan Hospital, Shanghai, China
| | - Rui He
- Department of Immunology and Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Sciences, Fudan University, Shanghai, China.,National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
42
|
Joechle K, Guenzle J, Hellerbrand C, Strnad P, Cramer T, Neumann UP, Lang SA. Role of mammalian target of rapamycin complex 2 in primary and secondary liver cancer. World J Gastrointest Oncol 2021; 13:1632-1647. [PMID: 34853640 PMCID: PMC8603445 DOI: 10.4251/wjgo.v13.i11.1632] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/30/2021] [Accepted: 08/16/2021] [Indexed: 02/06/2023] Open
Abstract
The mammalian target of rapamycin (mTOR) acts in two structurally and functionally distinct protein complexes, mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). Upon deregulation, activated mTOR signaling is associated with multiple processes involved in tumor growth and metastasis. Compared with mTORC1, much less is known about mTORC2 in cancer, mainly because of the unavailability of a selective inhibitor. However, existing data suggest that mTORC2 with its two distinct subunits Rictor and mSin1 might play a more important role than assumed so far. It is one of the key effectors of the PI3K/AKT/mTOR pathway and stimulates cell growth, cell survival, metabolism, and cytoskeletal organization. It is not only implicated in tumor progression, metastasis, and the tumor microenvironment but also in resistance to therapy. Rictor, the central subunit of mTORC2, was found to be upregulated in different kinds of cancers and is associated with advanced tumor stages and a bad prognosis. Moreover, AKT, the main downstream regulator of mTORC2/Rictor, is one of the most highly activated proteins in cancer. Primary and secondary liver cancer are major problems for current cancer therapy due to the lack of specific medical treatment, emphasizing the need for further therapeutic options. This review, therefore, summarizes the role of mTORC2/Rictor in cancer, with special focus on primary liver cancer but also on liver metastases.
Collapse
Affiliation(s)
- Katharina Joechle
- Department of General, Visceral and Transplantation Surgery, University Hospital Rheinisch-Westfälisch Technische Hochschule Aachen, Aachen 52074, Germany
| | - Jessica Guenzle
- Department of General and Visceral Surgery, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg 79106, Germany
| | - Claus Hellerbrand
- Institute of Biochemistry, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen 91054, Germany
| | - Pavel Strnad
- Department of Internal Medicine III, University Hospital Rheinisch-Westfälisch Technische Hochschule Aachen, Aachen 52074, Germany
| | - Thorsten Cramer
- Department of General, Visceral and Transplantation Surgery, University Hospital Rheinisch-Westfälisch Technische Hochschule Aachen, Aachen 52074, Germany
| | - Ulf Peter Neumann
- Department of General, Visceral and Transplantation Surgery, University Hospital Rheinisch-Westfälisch Technische Hochschule Aachen, Aachen 52074, Germany
| | - Sven Arke Lang
- Department of General, Visceral and Transplantation Surgery, University Hospital Rheinisch-Westfälisch Technische Hochschule Aachen, Aachen 52074, Germany
| |
Collapse
|
43
|
Miao X, Liu C, Jiang Y, Wang Y, Kong D, Wu Z, Wang X, Tian R, Yu X, Zhu X, Gong W. BET protein inhibition evidently enhances sensitivity to PI3K/mTOR dual inhibition in intrahepatic cholangiocarcinoma. Cell Death Dis 2021; 12:1020. [PMID: 34716294 PMCID: PMC8556340 DOI: 10.1038/s41419-021-04305-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/05/2021] [Accepted: 10/14/2021] [Indexed: 01/07/2023]
Abstract
Intrahepatic cholangiocarcinoma (ICC), the second most common primary liver cancer, is a fatal malignancy with a poor prognosis and only very limited therapeutic options. Although molecular targeted therapy is emerged as a promising treatment strategy, resistance to molecular-targeted therapy occurs inevitably, which represents a major clinical challenge. In this study, we confirmed that mammalian target of rapamycin (mTOR) signaling is the most significantly affected pathways in ICC. As a novel phosphoinositide 3-kinase (PI3K)/mTOR dual inhibitor, BEZ235, exerts antitumour activity by effectively and specifically blocking the dysfunctional activation of the PI3K/serine/threonine kinase (AKT)/mTOR pathway. We generate the orthotopic ICC mouse model through hydrodynamic transfection of AKT and yes-associated protein (YAP) plasmids into the mouse liver. Our study confirmed that BEZ235 can suppress the proliferation, invasion and colony conformation abilities of ICC cells in vitro but cannot effectively inhibit ICC progression in vivo. Inhibition of PI3K/mTOR allowed upregulation of c-Myc and YAP through suppressed the phosphorylation of LATS1. It would be a novel mechanism that mediated resistance to PI3K/mTOR dual inhibitor. However, Bromo- and extraterminal domain (BET) inhibition by JQ1 downregulates c-Myc and YAP transcription, which could enhance the efficacy of PI3K/mTOR inhibitors. The efficacy results of combination therapy exhibited effective treatment on ICC in vitro and in vivo. Our data further confirmed that the combination of PI3K/mTOR dual inhibitor and BET inhibition induces M1 polarization and suppresses M2 polarization in macrophages by regulating the expression of HIF-1α. Our study provides a novel and efficient therapeutic strategy in treating primary ICC.
Collapse
Affiliation(s)
- Xiaolong Miao
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Chen Liu
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuancong Jiang
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Yao Wang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Deqiang Kong
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Zelai Wu
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Xinyi Wang
- Department of Biochemistry, Zhejiang University, Hangzhou, China
| | - Rui Tian
- Department of Biochemistry, Zhejiang University, Hangzhou, China
| | - Xing Yu
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China
| | - Xuhang Zhu
- Department of head and neck Surgery, Zhejiang Cancer Hospital, Hangzhou, China
| | - Weihua Gong
- Department of Surgery, Second Affiliated Hospital of School of Medicine, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University Medical Center, 1369 West Wenyi Road, Hangzhou, China.
| |
Collapse
|
44
|
Xu H, Chen K, Shang R, Chen X, Zhang Y, Song X, Evert M, Zhong S, Li B, Calvisi DF, Chen X. Alpelisib combination treatment as novel targeted therapy against hepatocellular carcinoma. Cell Death Dis 2021; 12:920. [PMID: 34625531 PMCID: PMC8501067 DOI: 10.1038/s41419-021-04206-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/07/2021] [Accepted: 09/16/2021] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma (HCC) is the sixth most common primary cancer with an unsatisfactory long-term survival. Gain of function mutations of PIK3CA occur in a subset of human HCC. Alpelisib, a selective PIK3CA inhibitor, has been approved by the FDA to treat PIK3CA mutant breast cancers. In this manuscript, we evaluated the therapeutic efficacy of alpelisib, either alone or in combination, for the treatment of HCC. We tested alpelisib in mouse HCC induced by hydrodynamic injection of c-Met/PIK3CA(H1047R) (c-Met/H1047R), c-Met/PIK3CA(E545K) (c-Met/E545K), and c-Met/sgPten gene combinations. Alpelisib slowed down the growth of c-Met/H1047R and c-Met/E545K HCC but was ineffective in c-Met/sgPten HCC. Mechanistically, alpelisib inhibited p-ERK and p-AKT in c-Met/H1047R and c-Met/E545K HCC progression but did not affect the mTOR pathway or genes involved in cell proliferation. In human HCC cell lines transfected with PIK3CA(H1047R), alpelisib synergized with the mTOR inhibitor MLN0128 or the CDK4/6 inhibitor palbociclib to suppress HCC cell growth. In c-Met/H1047R mice, alpelisib/MLN0128 or alpelisib/palbociclib combination therapy caused tumor regression. Our study demonstrates that alpelisib is effective for treating PIK3CA-mutated HCC by inhibiting MAPK and AKT cascades. Furthermore, combining alpelisib with mTOR or CDK4/6 inhibitors has a synergistic efficacy against PIK3CA-mutated HCC, providing novel opportunities for precision medicine against HCC.
Collapse
Affiliation(s)
- Hongwei Xu
- Department of Liver Surgery, Center of Liver Transplantation, West China Hospital of Sichuan University, Chengdu, Sichuan, China
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - Kefei Chen
- Department of Liver Surgery, Center of Liver Transplantation, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Runze Shang
- Department of General Surgery, Affiliated Haixia Hospital of Huaqiao University, The 910 Hospital, Quanzhou, Fujian, China
| | - Xinyan Chen
- Department of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Yi Zhang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Xinhua Song
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Sheng Zhong
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - Bo Li
- Department of Liver Surgery, Center of Liver Transplantation, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany.
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA.
| |
Collapse
|
45
|
Song X, Xu H, Wang P, Wang J, Affo S, Wang H, Xu M, Liang B, Che L, Qiu W, Schwabe RF, Chang TT, Vogl M, Pes GM, Ribback S, Evert M, Chen X, Calvisi DF. Focal adhesion kinase (FAK) promotes cholangiocarcinoma development and progression via YAP activation. J Hepatol 2021; 75:888-899. [PMID: 34052254 PMCID: PMC8453055 DOI: 10.1016/j.jhep.2021.05.018] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 04/28/2021] [Accepted: 05/14/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND & AIMS Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that is upregulated in many tumor types and is a promising target for cancer therapy. Herein, we elucidated the functional role of FAK in intrahepatic cholangiocarcinoma (iCCA) development and progression. METHODS Expression levels and activation status of FAK were determined in human iCCA samples. The functional contribution of FAK to Akt/YAP murine iCCA initiation and progression was investigated using conditional Fak knockout mice and constitutive Cre or inducible Cre mice, respectively. The oncogenic potential of FAK was further examined via overexpression of FAK in mice. In vitro cell line studies and in vivo drug treatment were applied to address the therapeutic potential of targeting FAK for iCCA treatment. RESULTS FAK was ubiquitously upregulated and activated in iCCA lesions. Ablation of FAK strongly delayed Akt/YAP-driven mouse iCCA initiation. FAK overexpression synergized with activated AKT to promote iCCA development and accelerated Akt/Jag1-driven cholangiocarcinogenesis. Mechanistically, FAK was required for YAP(Y357) phosphorylation, supporting the role of FAK as a central YAP regulator in iCCA. Significantly, ablation of FAK after Akt/YAP-dependent iCCA formation strongly suppressed tumor progression in mice. Furthermore, a remarkable iCCA growth reduction was achieved when a FAK inhibitor and palbociclib, a CDK4/6 inhibitor, were administered simultaneously in human iCCA cell lines and Akt/YAP mice. CONCLUSIONS FAK activation contributes to the initiation and progression of iCCA by inducing the YAP proto-oncogene. Targeting FAK, either alone or in combination with anti-CDK4/6 inhibitors, may be an effective strategy for iCCA treatment. LAY SUMMARY We found that the protein FAK (focal adhesion kinase) is upregulated and activated in human and mouse intrahepatic cholangiocarcinoma samples. FAK promotes intrahepatic cholangiocarcinoma development, whereas deletion of FAK strongly suppresses its initiation and progression. Combined FAK and CDK4/6 inhibitor treatment had a strong anti-cancer effect in in vitro and in vivo models. This combination therapy might represent a valuable and novel treatment against human intrahepatic cholangiocarcinoma.
Collapse
Affiliation(s)
- Xinhua Song
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA.
| | - Hongwei Xu
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA,Liver Transplantation Division, Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Pan Wang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA,Collaborative Innovation Center for Agricultural Product Processing and Nutrition & Health, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing, China
| | - Jingxiao Wang
- Beijing University of Chinese Medicine, Beijing, China
| | - Silvia Affo
- Department of Medicine, Columbia University, New York, NY, USA
| | - Haichuan Wang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA,Liver Transplantation Division, Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Meng Xu
- Department of General Surgery, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an Jiaotong University, Xi’an, PR China
| | - Binyong Liang
- Hepatic Surgery Center, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Che
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA
| | - Wei Qiu
- Department of Surgery and Cancer Biology, Loyola University Chicago Stritch School of Medicine, Maywood, IL
| | | | - Tammy T Chang
- Department of Surgery and Liver Center, University of California, San Francisco, CA, USA
| | - Marion Vogl
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Giovanni M. Pes
- Department of Medical, Surgical, and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Silvia Ribback
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, CA, USA.
| | - Diego F. Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| |
Collapse
|
46
|
Chen S, Xie Y, Cai Y, Hu H, He M, Liu L, Liao C, Wang Y, Wang J, Ren X, Zeng Q, Peng H, Shen S, Li S, Li D, Lai J, Peng B, Ren J, Kuang M, Peng S. Multiomic Analysis Reveals Comprehensive Tumor Heterogeneity and Distinct Immune Subtypes in Multifocal Intrahepatic Cholangiocarcinoma. Clin Cancer Res 2021; 28:1896-1910. [PMID: 34526363 DOI: 10.1158/1078-0432.ccr-21-1157] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/09/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Targeted therapy and immunotherapy are transforming the treatment approach for intrahepatic cholangiocarcinoma (ICC). However, little is known about the intertumor heterogeneity (ITH) of multifocal ICC and its impacts on patient response to these treatments. We aimed to characterize the immunogenomic and epigenomic heterogeneity of multifocal ICC to guide treatment decision making. EXPERIMENTAL DESIGN We obtained 66 tumor samples from 16 patients with multifocal ICC and characterized the tumor and immune heterogeneity using whole-exome sequencing, bulk and single-cell RNA sequencing, methylation microarray, and multiplex immunostaining. Patients were divided into high- or low-ITH groups according to the median ITH index. Two independent cohorts were used to validate findings. Responses to anti-PD-1 therapy were assessed. RESULTS Multifocal ICC presented considerable intertumor genomic, transcriptional, and epigenomic heterogeneity within a patient in high ITH group. The immune profile among multiple tumors within a patient was relatively less heterogeneous in high- or low-ITH group, and consistent responses of multiple tumors to anti-PD-1 immunotherapy were observed. Unsupervised clustering of immune markers identified one low and one high immune subtype, with higher immune cell infiltration, closer tumor-immune cell interactions, and upregulated IFN-signature expression in high-immune subtype. Determining expression levels of CD8B and ICOS facilitated this immune classification and prediction of patient prognosis. Finally, promoter DNA methylation contributed to different immune profiles of two subtypes by regulating immune-gene expression. CONCLUSIONS There is comprehensive heterogeneity in the genome, transcriptome, and epigenome of multifocal ICC. On the basis of the less heterogeneous immune profile of ICC, we suggest an immune classification that stratifies patients' prognosis and may support personalized immunotherapy.
Collapse
Affiliation(s)
- Shuling Chen
- Cancer Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Division of Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yubin Xie
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuhong Cai
- Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huanjing Hu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Minghui He
- Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lijuan Liu
- Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Changyi Liao
- Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yuanqi Wang
- Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianping Wang
- Department of Gastroenterology and Hepatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoxue Ren
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qianwen Zeng
- Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hong Peng
- Department of Pancreaticobiliary Surgery, Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shunli Shen
- Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shaoqiang Li
- Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Dongming Li
- Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jiaming Lai
- Department of Pancreaticobiliary Surgery, Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Baogang Peng
- Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian Ren
- State Key Laboratory of Oncology in South China, Cancer Center, Collaborative Innovation Center for Cancer Medicine, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ming Kuang
- Cancer Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China. .,Division of Interventional Ultrasound, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Department of Liver Surgery, Center of Hepato-Pancreato-Biliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Sui Peng
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China. .,Clinical Trials Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
47
|
Wu F, Chen Z, Liu J, Hou Y. The Akt-mTOR network at the interface of hematopoietic stem cell homeostasis. Exp Hematol 2021; 103:15-23. [PMID: 34464661 DOI: 10.1016/j.exphem.2021.08.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/19/2021] [Accepted: 08/20/2021] [Indexed: 12/15/2022]
Abstract
Hematopoietic stem cells (HSCs) are immature blood cells that exhibit multilineage differentiation capacity. Homeostasis is critical for HSC potential and lifelong hematopoiesis, and HSC homeostasis is tightly governed by both intrinsic molecular networks and microenvironmental signals. The evolutionarily conserved serine/threonine protein kinase B (PKB, also referred to as Akt)-mammalian target of rapamycin (mTOR) pathway is universal to nearly all multicellular organisms and plays an integral role in most cellular processes. Emerging evidence has revealed a central role of the Akt-mTOR network in HSC homeostasis, because it responds to multiple intracellular and extracellular signals and regulates various downstream targets, eventually affecting several cellular processes, including the cell cycle, mitochondrial metabolism, and protein synthesis. Dysregulated Akt-mTOR signaling greatly affects HSC self-renewal, maintenance, differentiation, survival, autophagy, and aging, as well as transformation of HSCs to leukemia stem cells. Here, we review recent works and provide an advanced understanding of how the Akt-mTOR network regulates HSC homeostasis, thus offering insights into future clinical applications.
Collapse
Affiliation(s)
- Feng Wu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China
| | - Zhe Chen
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jingbo Liu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China.
| | - Yu Hou
- Department of Hematology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
48
|
Shang R, Song X, Wang P, Zhou Y, Lu X, Wang J, Xu M, Chen X, Utpatel K, Che L, Liang B, Cigliano A, Evert M, Calvisi DF, Chen X. Cabozantinib-based combination therapy for the treatment of hepatocellular carcinoma. Gut 2021; 70:1746-1757. [PMID: 33144318 PMCID: PMC8089119 DOI: 10.1136/gutjnl-2020-320716] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 09/25/2020] [Accepted: 10/06/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC) is the most common type of primary liver cancer with limited treatment options. Cabozantinib, an orally bioavailable multikinase inhibitor is now approved by Food and Drug Administration (FDA) for HCC patients. We evaluated the therapeutic efficacy of cabozantinib, either alone or in combination, in vitro and in vivo. DESIGN Human HCC cell lines and HCC mouse models were used to assess the therapeutic efficacy and targeted molecular pathways of cabozantinib, either alone or in combination with the pan-mTOR inhibitor MLN0128 or the checkpoint inhibitor anti-PD-L1 antibody. RESULTS Cabozantinib treatment led to stable disease in c-Met/β-catenin and Akt/c-Met mouse HCC while possessing limited efficacy on Akt/Ras and c-Myc liver tumours. Importantly, cabozantinib effectively inhibited c-MET and ERK activity, leading to decreased PKM2 and increased p21 expression in HCC cells and in c-Met/β-catenin and Akt/c-Met HCC. However, cabozantinib was ineffective in inhibiting the Akt/mTOR cascade. Intriguingly, a strong inhibition of angiogenesis by cabozantinib occurred regardless of the oncogenic drivers. However, cabozantinib had limited impact on other tumour microenvironment parameters, including tumour infiltrating T cells, and did not induce programmed death-ligand 1 (PD-L1) expression. Combining cabozantinib with MLN0128 led to tumour regression in c-Met/β-catenin mice. In contrast, combined treatment with cabozantinib and the checkpoint inhibitor anti-PD-L1 antibody did not provide any additional therapeutic benefit in the four mouse HCC models tested. CONCLUSION c-MET/ERK/p21/PKM2 cascade and VEGFR2-induced angiogenesis are the primary targets of cabozantinib in HCC treatment. Combination therapies with cabozantinib and mTOR inhibitors may be effective against human HCC.
Collapse
Affiliation(s)
- Runze Shang
- Department of Hepatobiliary Surgery, Xijing Hospital, Xian, Shaanxi, China,Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA,Department of General Surgery, The 910 Hospital, Quanzhou, Fujian, China
| | - Xinhua Song
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Pan Wang
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA,Collaborative Innovation Center for Agricultural Product Processing and Nutrition & Health, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Yi Zhou
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA,Department of Infectious Diseases, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xinjun Lu
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA,Department of Hepatic Surgery, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Jingxiao Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, Beijing, China
| | - Meng Xu
- Department of General Surgery, The Second Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Xinyan Chen
- Department of Pharmacy, Hubei University of Chinese Medicine, Wuhan, Hubei, China
| | - Kirsten Utpatel
- Institute of Pathology, University of Regensburg, Regensburg, Bayern, Germany
| | - Li Che
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA,R&D Center, Legend Biotech USA Inc, Piscataway, New Jersey, USA
| | - Binyong Liang
- Hepatic Surgery Center, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Antonio Cigliano
- Institute of Pathology, University of Regensburg, Regensburg, Bayern, Germany
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Bayern, Germany
| | - Diego F Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Bayern, Germany
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
49
|
N 7-Methylguanosine tRNA modification enhances oncogenic mRNA translation and promotes intrahepatic cholangiocarcinoma progression. Mol Cell 2021; 81:3339-3355.e8. [PMID: 34352206 DOI: 10.1016/j.molcel.2021.07.003] [Citation(s) in RCA: 178] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/08/2021] [Accepted: 07/04/2021] [Indexed: 12/12/2022]
Abstract
Cancer cells selectively promote translation of specific oncogenic transcripts to facilitate cancer survival and progression, but the underlying mechanisms are poorly understood. Here, we find that N7-methylguanosine (m7G) tRNA modification and its methyltransferase complex components, METTL1 and WDR4, are significantly upregulated in intrahepatic cholangiocarcinoma (ICC) and associated with poor prognosis. We further reveal the critical role of METTL1/WDR4 in promoting ICC cell survival and progression using loss- and gain-of-function assays in vitro and in vivo. Mechanistically, m7G tRNA modification selectively regulates the translation of oncogenic transcripts, including cell-cycle and epidermal growth factor receptor (EGFR) pathway genes, in m7G-tRNA-decoded codon-frequency-dependent mechanisms. Moreover, using overexpression and knockout mouse models, we demonstrate the crucial oncogenic function of Mettl1-mediated m7G tRNA modification in promoting ICC tumorigenesis and progression in vivo. Our study uncovers the important physiological function and mechanism of METTL1-mediated m7G tRNA modification in the regulation of oncogenic mRNA translation and cancer progression.
Collapse
|
50
|
Wang H, Song X, Liao H, Wang P, Zhang Y, Che L, Zhang J, Zhou Y, Cigliano A, Ament C, Superville D, Ribback S, Reeves M, Pes GM, Liang B, Wu H, Evert M, Calvisi DF, Zeng Y, Chen X. Overexpression of Mothers Against Decapentaplegic Homolog 7 Activates the Yes-Associated Protein/NOTCH Cascade and Promotes Liver Carcinogenesis in Mice and Humans. Hepatology 2021; 74:248-263. [PMID: 33368437 PMCID: PMC8222417 DOI: 10.1002/hep.31692] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND AND AIMS Mothers against decapentaplegic homolog (SMAD) 7 is an antagonist of TGF-β signaling. In the present investigation, we sought to determine the relevance of SMAD7 in liver carcinogenesis using in vitro and in vivo approaches. APPROACH AND RESULTS We found that SMAD7 is up-regulated in a subset of human HCC samples with poor prognosis. Gene set enrichment analysis revealed that SMAD7 expression correlates with activated yes-associated protein (YAP)/NOTCH pathway and cholangiocellular signature genes in HCCs. These findings were substantiated in human HCC cell lines. In vivo, overexpression of Smad7 alone was unable to initiate HCC development, but it significantly accelerated c-Myc/myeloid cell leukemia 1 (MCL1)-induced mouse HCC formation. Consistent with human HCC data, c-Myc/MCL1/Smad7 liver tumors exhibited an increased cholangiocellular gene expression along with Yap/Notch activation and epithelial-mesenchymal transition (EMT). Intriguingly, blocking of the Notch signaling did not affect c-Myc/MCL1/Smad7-induced hepatocarcinogenesis while preventing cholangiocellular signature expression and EMT, whereas ablation of Yap abolished c-Myc/MCL1/Smad7-driven HCC formation. In mice overexpressing a myristoylated/activated form of AKT, coexpression of SMAD7 accelerated carcinogenesis and switched the phenotype from HCC to intrahepatic cholangiocarcinoma (iCCA) lesions. In human iCCA, SMAD7 expression was robustly up-regulated, especially in the most aggressive tumors, and directly correlated with the levels of YAP/NOTCH targets as well as cholangiocellular and EMT markers. CONCLUSIONS The present data indicate that SMAD7 contributes to liver carcinogenesis by activating the YAP/NOTCH signaling cascade and inducing a cholangiocellular and EMT signature.
Collapse
Affiliation(s)
- Haichuan Wang
- Liver Transplantation Division, Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California, USA
| | - Xinhua Song
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California, USA
| | - Haotian Liao
- Liver Transplantation Division, Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Pan Wang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California, USA
| | - Yi Zhang
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California, USA
| | - Li Che
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California, USA
| | - Jie Zhang
- Department of Thoracic Oncology II, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, People’s Republic of China
| | - Yi Zhou
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California, USA
| | - Antonio Cigliano
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Cindy Ament
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Daphne Superville
- Department of Microbiology and Immunology, UCSF, San Francisco, CA, USA
| | - Silvia Ribback
- Institute of Pathology, University of Greifswald, Greifswald, Germany
| | - Melissa Reeves
- Department of Microbiology and Immunology, UCSF, San Francisco, CA, USA
| | - Giovanni M. Pes
- Department of Medical, Surgical, and Experimental Sciences, University of Sassari, Sassari, Italy
| | - Binyong Liang
- Hepatic Surgery Center, Department of Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hong Wu
- Liver Transplantation Division, Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Matthias Evert
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Diego F. Calvisi
- Institute of Pathology, University of Regensburg, Regensburg, Germany
| | - Yong Zeng
- Liver Transplantation Division, Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, China; Laboratory of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences and Liver Center, University of California, San Francisco, California, USA
| |
Collapse
|