1
|
Wang J, Qiu K, Zhou S, Gan Y, Jiang K, Wang D, Wang H. Risk factors for hepatocellular carcinoma: an umbrella review of systematic review and meta-analysis. Ann Med 2025; 57:2455539. [PMID: 39834076 PMCID: PMC11753015 DOI: 10.1080/07853890.2025.2455539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 01/09/2025] [Accepted: 01/10/2025] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Numerous meta-analyses have identified various risk factors for hepatocellular carcinoma (HCC), prompting a comprehensive study to synthesize evidence quality and strength. METHODS This umbrella review of meta-analyses was conducted throughout PubMed, EMBASE, Web of Science, and Cochrane Database of Systematic Reviews. Evidence strength was evaluated according to the evidence categories criteria. RESULTS We identified 101 risk factors throughout 175 meta-analyses. 31 risk factors were classified as evidence levels of class I, II, or III. HBV and HCV infections increase HCC risk by 12.5-fold and 11.2-fold, respectively. These risks are moderated by antiviral treatments and virological responses but are exacerbated by higher HBsAg levels, anti-HBc positivity, and co-infection. Smoking, obesity, non-alcoholic fatty liver disease, diabetes, low platelet, elevated liver enzymes and liver fluke infection increase HCC risk, while coffee consumption, a healthy diet, and bariatric surgery lower it. Medications like metformin, glucagon-like peptide-1 receptor agonists (GLP-1 RAs), aspirin, statins, and selective serotonin reuptake inhibitors reduce HCC risk, while acid suppressive agents, particularly proton pump inhibitors, elevate it. Blood type O reduces the risk of HCC, while male gender and older age increase the risk. CONCLUSIONS HBV and HCV are major HCC risk factors, with risk mitigation through antiviral treatments. Lifestyle habits such as smoking and alcohol use significantly increase HCC risk, highlighting the importance of cessation. Certain drugs like aspirin, statins, GLP-1 RAs, and metformin may reduce HCC occurrence, but further research is needed to confirm these effects.
Collapse
Affiliation(s)
- Jie Wang
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Kaijie Qiu
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Songsheng Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Yichao Gan
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Keting Jiang
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Donghuan Wang
- Operations Department, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Haibiao Wang
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
2
|
Zhu J, Wang L, Nie X, Ou S, Shen J, Zhang S, Wu G. RBMS3-loss impedes TRIM21-induced ubiquitination of ANGPT2 in an RNA-independent manner and drives sorafenib resistance in hepatocellular carcinoma. Oncogene 2025; 44:1620-1633. [PMID: 40069332 DOI: 10.1038/s41388-025-03335-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 02/12/2025] [Accepted: 02/27/2025] [Indexed: 05/23/2025]
Abstract
Sorafenib, a first-line targeted drug for advanced hepatocellular carcinoma (HCC), has limited clinical application due to intrinsic/acquired resistance. In this study, we have identified the RNA-binding protein RBMS3 as a pivotal regulator involved in sorafenib resistance among patients with HCC. Loss- and gain-of-function experiments further demonstrate that downregulation of RBMS3 promotes angiogenesis and confers resistance to sorafenib by augmenting the capacity of HCC cells to express and secrete ANGPT2, while upregulation of RBMS3 reverse these phenotypes.Through immunoprecipitation mass spectrometry experiments and co-immunoprecipitation (co-IP), we further verified that RBMS3 can facilitate the K48-linked ubiquitination and subsequent protein degradation of ANGPT2 by recruiting the ubiquitin E3 ligase TRIM21 in an RNA-independent manner.Additionally, RBMS3 is found to be deleted in HCC tissues and exhibits a significant positive correlation with angiogenesis and resistance to sorafenib treatment. Importantly, the combination of ANGPT2 antibody in RBMS3-deficient HCC cells restores sensitivity to sorafenib both in vitro and in vivo. These findings uncovered a novel molecular basis for post-translational upregulation of ANGPT2, suggesting that RBMS3-loss plays an oncogenic role in HCC by promoting angiogenesis and conferring resistance to sorafenib treatment.
Collapse
Affiliation(s)
- Jinrong Zhu
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
- Biomedicine Research Centre, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provicial Clinical Research Center for Obsterics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, PR China
| | - Lei Wang
- Biomedicine Research Centre, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provicial Clinical Research Center for Obsterics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, PR China
| | - Xiaoya Nie
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Shengming Ou
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China
| | - Jianfei Shen
- Department of Cardiothoracic Surgery, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Taizhou, PR China
| | - Shuxia Zhang
- Department of Oncobiology, Department of Basic Medical Sciences, Shantou University Medical College, Shantou, Guangdong, PR China.
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area, Cancer Research Center, Shantou University Medical College, Shantou, Guangdong, PR China.
| | - Geyan Wu
- Biomedicine Research Centre, Guangdong Provincial Key Laboratory of Major Obstetric Diseases; Guangdong Provicial Clinical Research Center for Obsterics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, PR China.
| |
Collapse
|
3
|
Dhanasekaran R, Suzuki H, Lemaitre L, Kubota N, Hoshida Y. Molecular and immune landscape of hepatocellular carcinoma to guide therapeutic decision-making. Hepatology 2025; 81:1038-1057. [PMID: 37300379 PMCID: PMC10713867 DOI: 10.1097/hep.0000000000000513] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023]
Abstract
Liver cancer, primarily HCC, exhibits highly heterogeneous histological and molecular aberrations across tumors and within individual tumor nodules. Such intertumor and intratumor heterogeneities may lead to diversity in the natural history of disease progression and various clinical disparities across the patients. Recently developed multimodality, single-cell, and spatial omics profiling technologies have enabled interrogation of the intertumor/intratumor heterogeneity in the cancer cells and the tumor immune microenvironment. These features may influence the natural history and efficacy of emerging therapies targeting novel molecular and immune pathways, some of which had been deemed undruggable. Thus, comprehensive characterization of the heterogeneities at various levels may facilitate the discovery of biomarkers that enable personalized and rational treatment decisions, and optimize treatment efficacy while minimizing the risk of adverse effects. Such companion biomarkers will also refine HCC treatment algorithms across disease stages for cost-effective patient management by optimizing the allocation of limited medical resources. Despite this promise, the complexity of the intertumor/intratumor heterogeneity and ever-expanding inventory of therapeutic agents and regimens have made clinical evaluation and translation of biomarkers increasingly challenging. To address this issue, novel clinical trial designs have been proposed and incorporated into recent studies. In this review, we discuss the latest findings in the molecular and immune landscape of HCC for their potential and utility as biomarkers, the framework of evaluation and clinical application of predictive/prognostic biomarkers, and ongoing biomarker-guided therapeutic clinical trials. These new developments may revolutionize patient care and substantially impact the still dismal HCC mortality.
Collapse
Affiliation(s)
| | - Hiroyuki Suzuki
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka
| | - Lea Lemaitre
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, California
| | - Naoto Kubota
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yujin Hoshida
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
4
|
Li J, Fu Y, Zhang H, Ma H. Molecular and pathological landscape of the AT-rich interaction domain 1A (ARID1A) mutation in hepatocellular carcinoma. Pathol Res Pract 2025; 266:155763. [PMID: 39706068 DOI: 10.1016/j.prp.2024.155763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 11/17/2024] [Accepted: 12/08/2024] [Indexed: 12/23/2024]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related deaths worldwide, with complex etiological factors and a diverse genetic landscape. Among the critical genetic mutations in HCC, the AT-rich interaction domain 1 A (ARID1A) gene, a key component of the SWI/SNF chromatin remodeling complex, stands out due to its significant role in both tumor suppression and oncogenesis. This review comprehensively examines the molecular and pathological impacts of ARID1A mutations in HCC. ARID1A mutations, which occur in approximately 7.9 % of HCC cases, predominantly involve truncating mutations leading to loss of function. These mutations are associated with various aggressive cancer features, including larger tumor size, higher rates of metastasis, and poor prognosis. The dual role of ARID1A in HCC is context-dependent, acting as a tumor suppressor by regulating cell cycle control, DNA damage repair, and gene expression, while also displaying oncogenic properties in specific contexts by promoting early tumorigenesis through oxidative stress pathways. Understanding the molecular mechanisms of ARID1A, including its interactions with key cellular pathways such as PI3K/AKT/mTOR, β-catenin, and PD-L1, provides insights into its complex role in HCC pathogenesis. Furthermore, ARID1A's impact on cancer stem cell maintenance, metabolic reprogramming, and immune evasion underscores its potential as a therapeutic target. This review highlights the need for context-specific therapeutic strategies targeting ARID1A, which could lead to more effective treatments for HCC, addressing both its tumor-suppressive and oncogenic activities.
Collapse
Affiliation(s)
- Junfeng Li
- Department of Oncology, Dianjiang People's Hospital of Chongqing, Chongqing, China.
| | - Yuxia Fu
- Department of Ultrasound, Dianjiang People's Hospital of Chongqing, Chongqing, China
| | - Hongchuan Zhang
- Department of Oncology, Dianjiang People's Hospital of Chongqing, Chongqing, China
| | - Hong Ma
- Department of Oncology, Dianjiang People's Hospital of Chongqing, Chongqing, China
| |
Collapse
|
5
|
Liu F, Ying J, Yang K, Xiong X, Yang N, Wang S, Zhao W, Zhu H, Yu M, Wu J, Yang J, Wang X, Sun X. Deciphering the regulatory mechanisms and biological implications of ARID1A missense mutations in cancer. Cell Rep 2024; 43:114916. [PMID: 39475510 DOI: 10.1016/j.celrep.2024.114916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/15/2024] [Accepted: 10/09/2024] [Indexed: 12/01/2024] Open
Abstract
ARID1A is a key component of the switch/sucrose non-fermentable (SWI/SNF) chromatin remodeling complex and functions as a critical tumor suppressor in various cancers. In this study, we find that tumor cells with hotspot missense mutations in ARID1A (AT-rich interactive domain-containing protein 1A) exhibit a malignant phenotype. Mechanistically, these mutations facilitate the translocation of ARID1A mutant proteins to the cytoplasm by the nucleocytoplasmic shuttler XPO1 (exportin 1). Subsequently, the E3 ubiquitin ligase STUB1 ubiquitinates the ARID1A mutant protein, marking it for degradation. Knocking down STUB1 or inhibiting XPO1 stabilizes the ARID1A mutant protein, retaining it in the nucleus, which restores the assembly of the cBAF complex, the chromatin remodeling function, and the normal expression of genes related to the MAPK and anti-apoptotic pathways, thereby decreasing the tumor burden. Our research shows that nuclear-localized mutated ARID1A proteins retain tumor-suppressive function. We identify promising strategies to treat cancers harboring missense mutations in the BAF complex.
Collapse
Affiliation(s)
- Fang Liu
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Laboratory Medicine, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201803, China
| | - Jun Ying
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Faculty of Medical Laboratory Science, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Kai Yang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xinyuan Xiong
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Nan Yang
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Shu Wang
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Wenzhen Zhao
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Huiqin Zhu
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ming Yu
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jun Wu
- Department of Laboratory Medicine, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201803, China
| | - Jie Yang
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Xiaonan Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Xuxu Sun
- Department of Biochemistry and Molecular Cell Biology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Laboratory Medicine, Jiading Branch of Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201803, China.
| |
Collapse
|
6
|
Wang Y, Wang C, Yang F, Chen Y, Shi Y, Xu R, Zhang Z, Yan Y. USP9X-enriched MSC-sEV inhibits LSEC angiogenesis in MASH mice by downregulating the IκBα/NF-κB/Ang-2 pathway. Pharmacol Res 2024; 209:107471. [PMID: 39427871 DOI: 10.1016/j.phrs.2024.107471] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Pathological angiogenesis of liver sinusoidal endothelial cells (LSEC) plays a crucial role in the progression of metabolic dysfunction-associated steatohepatitis (MASH)-induced liver fibrosis. Mesenchymal stem cell-derived small extracellular vesicles (MSC-sEV) have shown promising therapeutic potential against MASH. This study aimed to investigate the impact of MSC-sEV on LSEC angiogenesis and elucidate the underlying molecular mechanisms. The effects of MSC-sEV on LSEC angiogenesis were evaluated in Tumor Necrosis Factor- alpha (TNF-α)-treated LSECs in vitro and in Methionine and Choline Deficient Diet (MCD)-induced MASH mice in vivo. Herein, we found that MSC-sEV effectively suppressed LSEC angiogenesis by targeting the angiogenesis marker Angiogenin 2 (Ang-2) in both TNF-α-treated LSECs and MASH mice. Gene manipulation experiments revealed that the primary mechanism by which MSC-sEV inhibited LSEC angiogenesis was through the modulation of nuclear factor kappa B inhibitor alpha (IκBα) / nuclear factor kappa B (NF-κB) / Ang-2 pathway. Additionally, mass spectrometry and co-immunoprecipitation (Co-IP) data suggested that MSC-sEV delivered the ubiquitin specific peptidase 9 X-linked (USP9X) protein to LSECs, leading to enhanced IκBα deubiquitination and NF-κB in activation, ultimately resulting in the inhibition of Ang-2-mediated LSEC angiogenesis. Knockdown of USP9X attenuated the regulatory effects of MSC-sEV on Ang-2 expression, LSEC angiogenesis, and the progression of MASH. In conclusion, our findings indicate that USP9X delivered via MSC-sEV can suppress LSEC angiogenesis and alleviate MASH-induced liver fibrosis through the IκBα/NF-κB/Ang-2 signaling pathway.
Collapse
Affiliation(s)
- Yanjin Wang
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou 213017, China; Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Chen Wang
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Fuji Yang
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou 213017, China; Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yifei Chen
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou 213017, China; Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yujie Shi
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou 213017, China; Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Ruizi Xu
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou 213017, China; Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Zhuan Zhang
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou 213017, China; Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China
| | - Yongmin Yan
- Department of Laboratory Medicine, Wujin Hospital Affiliated with Jiangsu University, Jiangsu University, Changzhou 213017, China; Wujin Institute of Molecular Diagnostics and Precision Cancer Medicine of Jiangsu University, Changzhou 213017, China; Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine, Wujin Hospital Affiliated with Jiangsu University (Wujin Clinical College of Xuzhou Medical University), Changzhou 213017, China.
| |
Collapse
|
7
|
Helal IM, Kamal MA, Abd El-Aziz MK, El Tayebi HM. Epigenetic tuning of tumour-associated macrophages (TAMs): a potential approach in hepatocellular carcinoma (HCC) immunotherapy. Expert Rev Mol Med 2024; 26:e18. [PMID: 39320855 PMCID: PMC11440614 DOI: 10.1017/erm.2024.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 01/21/2024] [Accepted: 02/26/2024] [Indexed: 09/26/2024]
Abstract
Recent development in immunotherapy for cancer treatment has substantiated to be more effective than most of the other treatments. Immunity is the first line of defence of the body; nevertheless, cancerous cells can manipulate immunity compartments to play several roles in tumour progression. Tumour-associated macrophages (TAMs), one of the most dominant components in the tumour microenvironment, are recognized as anti-tumour suppressors. Unfortunately, the complete behaviour of TAMs is still unclear and understudied. TAM density is directly correlated with the progression and poor prognosis of hepatocellular carcinoma (HCC), therefore studying TAMs from different points of view passing by all the factors that may affect its existence, polarization, functions and repolarization are of great importance. Different epigenetic regulations were reported to have a direct relation with both HCC and TAMs. Here, this review discusses different epigenetic regulations that can affect TAMs in HCC whether positively or negatively.
Collapse
Affiliation(s)
- Israa M. Helal
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo - GUC, Cairo, Egypt
| | - Monica A. Kamal
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo - GUC, Cairo, Egypt
| | - Mostafa K. Abd El-Aziz
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo - GUC, Cairo, Egypt
| | - Hend M. El Tayebi
- Clinical Pharmacology and Pharmacogenomics Research Group, Department of Pharmacology and Toxicology, Faculty of Pharmacy and Biotechnology, German University in Cairo - GUC, Cairo, Egypt
| |
Collapse
|
8
|
Zhang X, Zhang Y, Zhang Q, Lu M, Chen Y, Zhang X, Zhang P. Role of AT-rich interaction domain 1A in gastric cancer immunotherapy: Preclinical and clinical perspectives. J Cell Mol Med 2024; 28:e18063. [PMID: 38041544 PMCID: PMC10902580 DOI: 10.1111/jcmm.18063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/31/2023] [Accepted: 11/14/2023] [Indexed: 12/03/2023] Open
Abstract
The application of immune checkpoint inhibitor (ICI) using monoclonal antibodies has brought about a profound transformation in the clinical outcomes for patients grappling with advanced gastric cancer (GC). Nonetheless, despite these achievements, the quest for effective functional biomarkers for ICI therapy remains constrained. Recent research endeavours have shed light on the critical involvement of modified epigenetic regulators in the pathogenesis of gastric tumorigenesis, thus providing a glimpse into potential biomarkers. Among these regulatory factors, AT-rich interaction domain 1A (ARID1A), a pivotal constituent of the switch/sucrose non-fermentable (SWI/SNF) complex, has emerged as a promising candidate. Investigations have unveiled the pivotal role of ARID1A in bridging the gap between genome instability and the reconfiguration of the tumour immune microenvironment, culminating in an enhanced response to ICI within the landscape of gastric cancer treatment. This all-encompassing review aims to dissect the potential of ARID1A as a valuable biomarker for immunotherapeutic approaches in gastric cancer, drawing from insights garnered from both preclinical experimentation and clinical observations.
Collapse
Affiliation(s)
- Xuemei Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Youzhi Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- School of PharmacyHubei University of Science and TechnologyXianningChina
| | - Qiaoyun Zhang
- School of PharmacyHubei University of Science and TechnologyXianningChina
| | - Mengyao Lu
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Yuan Chen
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Xiaoyu Zhang
- Division of Gastrointestinal Surgery, Department of General Surgery, Huai'an Second People's Hospitalthe Affiliated Huai'an Hospital of Xuzhou Medical UniversityHuaianChina
| | - Peng Zhang
- Department of Oncology, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
9
|
Huang F, Zhang C, Yang W, Zhou Y, Yang Y, Yang X, Guo W, Wang B. Identification of a DNA damage repair-related LncRNA signature for predicting the prognosis and immunotherapy response of hepatocellular carcinoma. BMC Genomics 2024; 25:155. [PMID: 38326754 PMCID: PMC10851502 DOI: 10.1186/s12864-024-10055-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/26/2024] [Indexed: 02/09/2024] Open
Abstract
BACKGROUND DNA damage repair (DDR) may affect tumorigenesis and therapeutic response in hepatocellular carcinoma (HCC). Long noncoding RNAs (LncRNAs) can regulate DDR and play a vital role in maintaining genomic stability in cancers. Here, we identified a DDR-related prognostic signature in HCC and explored its potential clinical value. METHODS Data of HCC samples were obtained from the Cancer Genome Atlas (TCGA), and a list of DDR-related genes was extracted from the Molecular Signatures database (MSigDB). A DDR-related lncRNAs signature associated to overall survival (OS) was constructed using the least absolute shrinkage and selection operator-cox regression, and was further validated by the Kaplan-Meier curve and receiver operating characteristic curve. A nomogram integrating other clinical risk factors was established. Moreover, the relationships between the signature with somatic mutation, immune landscape and drug sensitivity were explored. RESULTS The prognostic model of 5 DDR-related lncRNAs was constructed and classified patients into two risk groups at median cut-off. The low-risk group had a better OS, and the signature was an independent prognostic indicator in HCC. A nomogram of the signature combined with TNM stage was constructed. TP53 gene was more frequently mutated in the high-risk group. Marked differences in immune cells were observed, such as CD4 + T cells, NK cells and macrophages, between the two groups. Moreover, an increase in the expression of immune checkpoint molecules was found in the high-risk group. The low-risk group presented with a significantly higher response to sorafenib or cisplatin. Finally, potential value of this signature was validated in real-world HCC patients. CONCLUSION Our findings provided a promising insight into DDR-related lncRNAs in HCC and a personalized prediction tool for prognosis and therapeutic response.
Collapse
Affiliation(s)
- Fei Huang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chunyan Zhang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Laboratory Medicine, Shanghai Geriatric Medical Centre, Shanghai, China
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China
| | - Wenjing Yang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yan Zhou
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yihui Yang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xinrong Yang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Wei Guo
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
- Department of Laboratory Medicine, Shanghai Geriatric Medical Centre, Shanghai, China.
- Department of Laboratory Medicine, Xiamen Branch, Zhongshan Hospital, Fudan University, Xiamen, China.
- Department of Laboratory Medicine, Wusong Branch, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Beili Wang
- Department of Laboratory Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Li JJ, Lee CS. The Role of the AT-Rich Interaction Domain 1A Gene ( ARID1A) in Human Carcinogenesis. Genes (Basel) 2023; 15:5. [PMID: 38275587 PMCID: PMC10815128 DOI: 10.3390/genes15010005] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
The switch/sucrose non-fermentable (SWI/SNF) (SWI/SNF) complex uses energy from ATP hydrolysis to mobilise nucleosomes on chromatin. Components of SWI/SNF are mutated in 20% of all human cancers, of which mutations in AT-rich binding domain protein 1A (ARID1A) are the most common. ARID1A is mutated in nearly half of ovarian clear cell carcinoma and around one-third of endometrial and ovarian carcinomas of the endometrioid type. This review will examine in detail the molecular functions of ARID1A, including its role in cell cycle control, enhancer regulation, and the prevention of telomerase activity. ARID1A has key roles in the maintenance of genomic integrity, including DNA double-stranded break repair, DNA decatenation, integrity of the cohesin complex, and reduction in replication stress, and is also involved in mismatch repair. The role of ARID1A loss in the pathogenesis of some of the most common human cancers is discussed, with a particular emphasis on gynaecological cancers. Finally, several promising synthetic lethal strategies, which exploit the specific vulnerabilities of ARID1A-deficient cancer cells, are briefly mentioned.
Collapse
Affiliation(s)
- Jing Jing Li
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW 2170, Australia;
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
| | - Cheok Soon Lee
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW 2170, Australia;
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, NSW 2560, Australia
- South Western Sydney Clinical School, University of New South Wales, Liverpool, NSW 2170, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW 2010, Australia
| |
Collapse
|
11
|
Yoodee S, Peerapen P, Plumworasawat S, Malaitad T, Thongboonkerd V. Identification and characterization of ARID1A-interacting proteins in renal tubular cells and their molecular regulation of angiogenesis. J Transl Med 2023; 21:862. [PMID: 38017409 PMCID: PMC10683333 DOI: 10.1186/s12967-023-04750-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023] Open
Abstract
BACKGROUND Defects and deficiency of AT-rich interactive domain-containing protein 1A (ARID1A) encoded by a tumor suppressor gene ARID1A have recently been suggested to get involved in angiogenesis, a crucial process in carcinogenesis. However, molecular mechanisms of ARID1A deficiency to induce angiogenesis in kidney cancer remain underinvestigated. METHODS We performed large-scale identification of ARID1A protein interactors in renal tubular epithelial cells (RTECs) using immunoprecipitation (IP) followed by nanoLC-ESI-LTQ-Orbitrap tandem mass spectrometry (MS/MS). Their roles in angiogenesis were investigated using various assays. RESULTS A total of 74 ARID1A-interacting proteins were identified. Protein-protein interactions analysis revealed that these identified proteins interacted directly or indirectly with ARID1A. Among them, the direct interaction between ARID1A and β-actin was validated by IP and reciprocal IP followed by Western blotting. Small interfering RNA (siRNA) was used for single and double knockdowns of ARID1A and ACTB. Semi-quantitative RT-PCR demonstrated that deficiency of ARID1A, but not ACTB, significantly affected expression of angiogenesis-related genes in RTECs (VEGF and FGF2 were increased, whereas PDGF and EGF were decreased). However, the knockdowns did not affect TGFB1 and FGF1 levels. The quantitative mRNA expression data of VEGF and TGFB1 were consistent with the secreted levels of their protein products as measured by ELISA. Only secreted products derived from ARID1A-deficient RTECs significantly increased endothelial cells (ECs) migration and tube formation. Some of the other carcinogenic features could also be confirmed in the ARID1A-deficient RTECs, including increased cell migration and chemoresistance. Double knockdowns of both ARID1A and ACTB did not enhance the effects of single ARID1A knockdown in all assays. CONCLUSIONS We report herein a large dataset of the ARID1A-interacting proteins in RTECs using an IP-MS/MS approach and confirm the direct interaction between ARID1A and β-actin. However, the role of ARID1A deficiency in angiogenesis is independent of β-actin.
Collapse
Affiliation(s)
- Sunisa Yoodee
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 6thFloor - SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 6thFloor - SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Sirikanya Plumworasawat
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 6thFloor - SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Thanyalak Malaitad
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 6thFloor - SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, 6thFloor - SiMR Building, 2 Wanglang Road, Bangkoknoi, Bangkok, 10700, Thailand.
| |
Collapse
|
12
|
Xing T, Li L, Chen Y, Ju G, Li G, Zhu X, Ren Y, Zhao J, Cheng Z, Li Y, Xu D, Liang J. Targeting the TCA cycle through cuproptosis confers synthetic lethality on ARID1A-deficient hepatocellular carcinoma. Cell Rep Med 2023; 4:101264. [PMID: 37939712 PMCID: PMC10694624 DOI: 10.1016/j.xcrm.2023.101264] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/10/2023] [Accepted: 10/10/2023] [Indexed: 11/10/2023]
Abstract
ARID1A is among the most commonly mutated tumor suppressor genes in hepatocellular carcinoma (HCC). In this study, we conduct a CRISPR-Cas9 synthetic lethality screen using ARID1A-deficient HCC cells to identify approaches to treat HCC patients harboring ARID1A deficiency. This strategy reveals that the survival of these ARID1A-deficient HCC cells is highly dependent on genes related to the tricarboxylic acid (TCA) cycle. Mechanistically, ARID1A loss represses expression of key glycolysis-related gene PKM, shifting cellular glucose metabolism from aerobic glycolysis to dependence on the TCA cycle and oxidative phosphorylation. Cuproptosis is a recently defined form of copper-induced cell death reported to directly target the TCA cycle. Here, we find that ARID1A-deficient HCC cells and xenograft tumors are highly sensitive to copper treatment. Together, these results offer evidence of the synthetic lethality between ARID1A deficiency and mitochondrial respiration impairment, suggesting that copper treatment constitutes a promising therapeutic strategy for selectively targeting ARID1A-deficient HCC.
Collapse
Affiliation(s)
- Tao Xing
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Li Li
- Department of Oncology, Peking University International Hospital, Beijing 102206, China
| | - Yiran Chen
- Department of Radiation Oncology, Fujian Medical University Cancer Hospital, Fujian Cancer Hospital, Fuzhou 350014, China
| | - Gaoda Ju
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Guilan Li
- Department of Pathology, Peking University International Hospital, Beijing 102206, China
| | - Xiaoyun Zhu
- Department of Pathology, Peking University International Hospital, Beijing 102206, China
| | - Yubo Ren
- Department of Pathology, Peking University International Hospital, Beijing 102206, China
| | - Jing Zhao
- Department of Pathology and Neuropathology, University Hospital Tübingen, 72074 Tübingen, Germany
| | - Zhilei Cheng
- Department of Hepatobiliary Surgery, Peking University International Hospital, Beijing 102206, China
| | - Yan Li
- Department of Hematology, Peking University International Hospital, Beijing 102206, China
| | - Da Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Hepatopancreatobiliary Surgery Department I, Peking University Cancer Hospital & Institute, Beijing 100142, China.
| | - Jun Liang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing 100142, China; Department of Oncology, Peking University International Hospital, Beijing 102206, China.
| |
Collapse
|
13
|
Sanchez-Martin A, Sanchon-Sanchez P, Romero MR, Marin JJG, Briz O. Impact of tumor suppressor genes inactivation on the multidrug resistance phenotype of hepatocellular carcinoma cells. Biomed Pharmacother 2023; 165:115209. [PMID: 37499450 DOI: 10.1016/j.biopha.2023.115209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
The response of advanced hepatocellular carcinoma (HCC) to pharmacological treatments is unsatisfactory and heterogeneous. Inactivation of tumor suppressor genes (TSGs) by genetic and epigenetic events is frequent in HCC. This study aimed at investigating the impact of frequently altered TSGs on HCC chemoresistance. TSG alterations were screened by in silico analysis of TCGA-LIHC database, and their relationship with survival was investigated. These TSGs were silenced in HCC-derived cell lines using CRISPR/Cas9. TLDA was used to determine the expression of a panel of 94 genes involved in the resistome. Drug sensitivity, cell proliferation, colony formation and cell migration were assessed. The in silico study revealed the down-regulation of frequently inactivated TSGs in HCC (ARID1A, PTEN, CDH1, and the target of p53, CDKN1A). The presence of TP53 and ARID1A variants and the low expression of PTEN and CDH1 correlated with a worse prognosis of HCC patients. In PLC/PRF/5 cells, ARID1A knockout (ARID1AKO) induced increased sensitivity to cisplatin, doxorubicin, and cabozantinib, without affecting other characteristics of malignancy. PTENKO and E-CadKO showed minimal changes in malignancy, resistome, and drug response. In p53KO HepG2 cells, enhanced malignant properties and higher resistance to cisplatin, doxorubicin, sorafenib, and regorafenib were found. This was associated with changes in the resistome. In conclusion, the altered expression and function of several TSGs are involved in the heterogeneity of HCC chemoresistance and other features of malignancy, contributing to the poor prognosis of these patients. Individual identification of pharmacological vulnerabilities is required to select the most appropriate treatment for each patient.
Collapse
Affiliation(s)
- Anabel Sanchez-Martin
- Experimental Hepatology and Drug Targeting (HEVEPHARM), Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain
| | - Paula Sanchon-Sanchez
- Experimental Hepatology and Drug Targeting (HEVEPHARM), Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Marta R Romero
- Experimental Hepatology and Drug Targeting (HEVEPHARM), Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Jose J G Marin
- Experimental Hepatology and Drug Targeting (HEVEPHARM), Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain.
| | - Oscar Briz
- Experimental Hepatology and Drug Targeting (HEVEPHARM), Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| |
Collapse
|
14
|
Wang Y, Su L, Wang W, Zhao J, Wang Y, Li S, Liu Y, Chai R, Li X, Teng Z, Liu C, Hu B, Ji F, Jiao J. Endothelial Arid1a deletion disrupts the balance among angiogenesis, neurogenesis and gliogenesis in the developing brain. Cell Prolif 2023; 56:e13447. [PMID: 36916004 DOI: 10.1111/cpr.13447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/22/2023] [Accepted: 03/01/2023] [Indexed: 03/16/2023] Open
Abstract
The vascular system and the neural system processes occur simultaneously, the interaction among them is fundamental to the normal development of the central nervous system. Arid1a (AT-rich interaction domain 1A), which encodes an epigenetic subunit of the SWI/SNF chromatin-remodelling complex, is associated with promoter-mediated gene regulation and histone modification. However, the molecular mechanism of the interaction between cerebrovascular and neural progenitor cells (NPCs) remains unclear. To generate Arid1acKO-Tie2 mice, Arid1afl/fl mice were hybridized with Tie2-Cre mice. The Angiogenesis, neurogenesis and gliogenesis were studied by immunofluorescence staining and Western blotting. RNA-seq, RT-PCR, Western blotting, CO-IP and rescue experiments were performed to dissect the molecular mechanisms of Arid1a regulates fate determination of NPCs. We found that the absence of Arid1a results in increased the density of blood vessels, delayed neurogenesis and decreased gliogenesis, even after birth. Mechanistically, the deletion of Arid1a in endothelial cells causes a significant increase in H3k27ac and the secretion of maternal protein 2 (MATN2). In addition, matn2 alters the AKT/SMAD4 signalling pathway through its interaction with the NPCs receptor EGFR, leading to the decrease of SMAD4. SMAD complex further mediates the expression of downstream targets, thereby promoting neurogenesis and inhibiting gliogenesis. This study suggests that endothelial Arid1a tightly controls fate determination of NPCs by regulating the AKT-SMAD signalling pathway.
Collapse
Affiliation(s)
- Yuanyuan Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Libo Su
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Wenwen Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Jinyue Zhao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yanyan Wang
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Sihan Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yan Liu
- State Key Laboratory of Reproductive Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Renjie Chai
- Institute of Life Sciences, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Xin Li
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Zhaoqian Teng
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Changmei Liu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Baoyang Hu
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Fen Ji
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Jianwei Jiao
- State Key Laboratory of Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China.,Innovation Academy for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Tao S, Liang S, Zeng T, Yin D. Epigenetic modification-related mechanisms of hepatocellular carcinoma resistance to immune checkpoint inhibition. Front Immunol 2023; 13:1043667. [PMID: 36685594 PMCID: PMC9845774 DOI: 10.3389/fimmu.2022.1043667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/28/2022] [Indexed: 01/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC) constitutes most primary liver cancers and is one of the most lethal and life-threatening malignancies globally. Unfortunately, a substantial proportion of HCC patients are identified at an advanced stage that is unavailable for curative surgery. Thus, palliative therapies represented by multi-tyrosine kinase inhibitors (TKIs) sorafenib remained the front-line treatment over the past decades. Recently, the application of immune checkpoint inhibitors (ICIs), especially targeting the PD-1/PD-L1/CTLA-4 axis, has achieved an inspiring clinical breakthrough for treating unresectable solid tumors. However, many HCC patients with poor responses lead to limited benefits in clinical applications, which has quickly drawn researchers' attention to the regulatory mechanisms of immune checkpoints in HCC immune evasion. Evasion of immune surveillance by cancer is attributed to intricate reprogramming modulation in the tumor microenvironment. Currently, more and more studies have found that epigenetic modifications, such as chromatin structure remodeling, DNA methylation, histone post-translational modifications, and non-coding RNA levels, may contribute significantly to remodeling the tumor microenvironment to avoid immune clearance, affecting the efficacy of immunotherapy for HCC. This review summarizes the rapidly emerging progress of epigenetic-related changes during HCC resistance to ICIs and discusses the mechanisms of underlying epigenetic therapies available for surmounting immune resistance. Finally, we summarize the clinical advances in combining epigenetic therapies with immunotherapy, aiming to promote the formation of immune combination therapy strategies.
Collapse
Affiliation(s)
- Shengwei Tao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Shuhang Liang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Taofei Zeng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Dalong Yin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of University of Science and Technology of China (USTC), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
16
|
Chang G, Li W, Bai H, Duan J, Wang Z, Du X, Yu R, Wang Y, Wang M, Zhu Y, Zhang X, Li L, Wan R, Wang J. Correlations of switch/sucrose nonfermentable complex mutations with clinical outcomes in advanced non-small cell lung cancer. Thorac Cancer 2022; 13:2951-2959. [PMID: 36126963 PMCID: PMC9626335 DOI: 10.1111/1759-7714.14635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The switch/sucrose nonfermentable complex mutations (SWI/SNF-mut) are common in non-small cell lung cancer (NSCLC). However, the association of SWI/SNF-mut with the clinical outcomes of immune checkpoint inhibitors (ICIs), particularly of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), has not been established. METHODS We retrospectively collected data of patients at Cancer Hospital Chinese Academy of Medical Sciences. Patients with advanced NSCLC who received programmed cell death protein-1 or programmed cell death ligand 1 (PD-[L]1) inhibitors were included in cohort 1 and those with EGFR mutations (EGFR-mutant) received EGFR-TKIs monotherapy were included in cohort 2. Two reported Memorial Sloan-Kettering Cancer Center (MSKCC) cohorts received immunotherapy alone used as the validation for cohort 1. We analyzed the relationship between SWI/SNF alterations and clinical outcomes in each cohort. RESULTS In total, 1162 patients were included, of which 230 patients (19.8%) were identified as SWI/SNF-mut with the most common genetic alterations being ARID1A (33.4%) and SMARCA4 (28.3%). In cohort 1 (n = 146), patients with co-mutations of SWI/SNF and Kirsten rat sarcoma oncogene (KRAS) (SWI/SNFmutKRASmut, n = 18) had significantly prolonged progression-free survival (PFS) (8.6 m vs. 1.9 m; hazard ratio [HR], 0.31; 95% confidence intervals [CI], 0.11-0.83; p = 0.032) to PD-(L)1 inhibitors monotherapy, which was consistent with the MSKCC cohorts (not reach [NR] vs. 6.3 m; HR, 0.36, 95% CI, 0.15-0.82; p = 0.016). In cohort 2 (n = 205), ARID1A-mut (n = 16) was associated with improved PFS after EGFR-TKIs (20.6 m vs. 11.2 m; HR, 0.47, 95% CI, 0.27-0.94; p = 0.023). CONCLUSIONS In advanced NSCLC, patients with SWI/SNFmutKRASmut seem to benefit more from ICIs. Furthermore, ARID1A-mut may provide a protective effect to EGFR-TKIs in EGFR-mutant patients. However, this is a retrospective single-institution analysis that requires further validation by large prospective studies.
Collapse
Affiliation(s)
- Geyun Chang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Weihua Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Hua Bai
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jianchun Duan
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xinyang Du
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ruofei Yu
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yaxi Wang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Minghao Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yixiang Zhu
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xue Zhang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Li Li
- Department of Medical Records, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Rui Wan
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
17
|
Testa U, Pelosi E, Castelli G. Clinical value of identifying genes that inhibit hepatocellular carcinomas. Expert Rev Mol Diagn 2022; 22:1009-1035. [PMID: 36459631 DOI: 10.1080/14737159.2022.2154658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
INTRODUCTION Primary liver cancer is a major health problem being the sixth most frequent cancer in the world and the fourth most frequent cause of cancer-related death in the world. The most common histological type of liver cancer is hepatocellular carcinoma (HCC, 75-80%). AREAS COVERED Based on primary literature, this review provides an updated analysis of studies of genetic characterization of HCC at the level of gene mutation profiling, copy number alterations and gene expression, with definition of molecular subgroups and identification of some molecular biomarkers and therapeutic targets. EXPERT OPINION A detailed and comprehensive study of the genetic abnormalities characterizing different HCC subsets represents a fundamental tool for a better understanding of the disease heterogeneity and for the identification of subgroups of patients responding or resistant to targeted treatments and for the discovery of new therapeutic targets. It is expected that a comprehensive characterization of these tumors may provide a fundamental contribution to improve the survival of a subset of HCC patients. Immunotherapy represents a new fundamental strategy for the treatment of HCC.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore Di Sanità, ROME, ITALY
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore Di Sanità, ROME, ITALY
| | - Germana Castelli
- Department of Oncology, Istituto Superiore Di Sanità, ROME, ITALY
| |
Collapse
|
18
|
Zhang FL, Li DQ. Targeting Chromatin-Remodeling Factors in Cancer Cells: Promising Molecules in Cancer Therapy. Int J Mol Sci 2022; 23:12815. [PMID: 36361605 PMCID: PMC9655648 DOI: 10.3390/ijms232112815] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 03/28/2024] Open
Abstract
ATP-dependent chromatin-remodeling complexes can reorganize and remodel chromatin and thereby act as important regulator in various cellular processes. Based on considerable studies over the past two decades, it has been confirmed that the abnormal function of chromatin remodeling plays a pivotal role in genome reprogramming for oncogenesis in cancer development and/or resistance to cancer therapy. Recently, exciting progress has been made in the identification of genetic alteration in the genes encoding the chromatin-remodeling complexes associated with tumorigenesis, as well as in our understanding of chromatin-remodeling mechanisms in cancer biology. Here, we present preclinical evidence explaining the signaling mechanisms involving the chromatin-remodeling misregulation-induced cancer cellular processes, including DNA damage signaling, metastasis, angiogenesis, immune signaling, etc. However, even though the cumulative evidence in this field provides promising emerging molecules for therapeutic explorations in cancer, more research is needed to assess the clinical roles of these genetic cancer targets.
Collapse
Affiliation(s)
- Fang-Lin Zhang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Da-Qiang Li
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
19
|
Wang L, Deng CH, Luo Q, Su XB, Shang XY, Song SJ, Cheng S, Qu YL, Zou X, Shi Y, Wang Q, Du SC, Han ZG. Inhibition of Arid1a increases stem/progenitor cell-like properties of liver cancer. Cancer Lett 2022; 546:215869. [PMID: 35964817 DOI: 10.1016/j.canlet.2022.215869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 07/01/2022] [Accepted: 08/06/2022] [Indexed: 11/28/2022]
Abstract
ARID1A, a key subunit of the SWI/SNF chromatin remodeling complex, exhibits recurrent mutations in various types of human cancers, including liver cancer. However, the function of ARID1A in the pathogenesis of liver cancer remains controversial. Here, we demonstrate that Arid1a knockout may result in states of different cell differentiation, as indicated by single-cell RNA sequencing (scRNA-seq) analysis. Bulk RNA-seq also revealed that Arid1a deficiency upregulated these genes related to cell stemness and differentiation, but downregulated genes related to the hepatic functions. Furthermore, we confirmed that deficiency of Arid1a increased the expression of hepatic stem/progenitor cell markers, such as Cd133 and Epcam, and enhanced the self-renewal ability of cells. Mechanistic studies revealed that Arid1a loss remodeled the chromatin accessibility of some genes related to liver functions. Thus, Arid1a deficiency might contribute to cancer development by increasing the number of stem/progenitor-like cells through dysregulating the expression of these genes related to cell stemness, differentiation and liver functions.
Collapse
Affiliation(s)
- Lan Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Chuan-Huai Deng
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qing Luo
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xian-Bin Su
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xue-Ying Shang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shu-Jin Song
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sheng Cheng
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yu-Lan Qu
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xin Zou
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yi Shi
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qian Wang
- International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Shi-Chun Du
- Department of Endocrinology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Ze-Guang Han
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
20
|
Guo B, Friedland SC, Alexander W, Myers JA, Wang W, O'Dell MR, Getman M, Whitney-Miller CL, Agostini-Vulaj D, Huber AR, Mello SS, Vertino PM, Land HK, Steiner LA, Hezel AF. Arid1a mutation suppresses TGF-β signaling and induces cholangiocarcinoma. Cell Rep 2022; 40:111253. [PMID: 36044839 PMCID: PMC9808599 DOI: 10.1016/j.celrep.2022.111253] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 06/02/2022] [Accepted: 08/01/2022] [Indexed: 01/07/2023] Open
Abstract
Activating KRAS mutations and functional loss of members of the SWI/SNF complex, including ARID1A, are found together in the primary liver tumor cholangiocarcinoma (CC). How these mutations cooperate to promote CC has not been established. Using murine models of hepatocyte and biliary-specific lineage tracing, we show that Kras and Arid1a mutations drive the formation of CC and tumor precursors from the biliary compartment, which are accelerated by liver inflammation. Using cultured cells, we find that Arid1a loss causes cellular proliferation, escape from cell-cycle control, senescence, and widespread changes in chromatin structure. Notably, we show that the biliary proliferative response elicited by Kras/Arid1a cooperation and tissue injury in CC is caused by failed engagement of the TGF-β-Smad4 tumor suppressor pathway. We thus identify an ARID1A-TGF-β-Smad4 axis as essential in limiting the biliary epithelial response to oncogenic insults, while its loss leads to biliary pre-neoplasia and CC.
Collapse
Affiliation(s)
- Bing Guo
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA; Division of Hematology and Oncology, Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, 300 Elmwood Avenue, Rochester, NY 14642, USA
| | - Scott C Friedland
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - William Alexander
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jacquelyn A Myers
- Genomics Research Center, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Wenjia Wang
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA; Division of Hematology and Oncology, Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, 300 Elmwood Avenue, Rochester, NY 14642, USA
| | - Michael R O'Dell
- Division of Hematology and Oncology, Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, 300 Elmwood Avenue, Rochester, NY 14642, USA
| | - Michael Getman
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Christa L Whitney-Miller
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Diana Agostini-Vulaj
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Aaron R Huber
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Stephano S Mello
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Paula M Vertino
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hartmut K Land
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA; Division of Hematology and Oncology, Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, 300 Elmwood Avenue, Rochester, NY 14642, USA
| | - Laurie A Steiner
- Department of Pediatrics, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Aram F Hezel
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA; Division of Hematology and Oncology, Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, 300 Elmwood Avenue, Rochester, NY 14642, USA.
| |
Collapse
|
21
|
Jackson CG, Moore KN, Cantrell L, Erickson BK, Duska LR, Richardson DL, Landrum LM, Holman LL, Walker JL, Mannel RS, Moxley KM, Queimado L, Cohoon A, Ding K, Dockery LE. A phase II trial of bevacizumab and rucaparib in recurrent carcinoma of the cervix or endometrium. Gynecol Oncol 2022; 166:44-49. [PMID: 35491267 PMCID: PMC10428664 DOI: 10.1016/j.ygyno.2022.04.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The aim of this study was to examine the tolerability and efficacy of combination bevacizumab rucaparib therapy in patients with recurrent cervical or endometrial cancer. PATIENTS & METHODS Thirty-three patients with recurrent cervical or endometrial cancer were enrolled. Patients were required to have tumor progression after first line treatment for metastatic, or recurrent disease. Rucaparib was given at 600 mg BID twice daily for each 21-day cycle. Bevacizumab was given at 15 mg/kg on day 1 of each 21-day cycle. The primary endpoint was efficacy as determined by objective response rate or 6-month progression free survival. RESULTS Of the 33 patients enrolled, 28 were evaluable. Patients with endometrial cancer had a response rate of 17% while patients with cervical cancer had a response rate of 14%. Median progression free survival was 3.8 months (95% C·I 2.5 to 5.7 months), and median overall survival was 10.1 months (95% C·I 7.0 to 15.1 months). Patients with ARID1A mutations displayed a better response rate (33%) and 6-month progression free survival (PFS6) rate (67%) than the entire study population. Observed toxicity was similar to that of previous studies with bevacizumab and rucaparib. CONCLUSIONS The combination of bevacizumab with rucaparib did not show significantly increased anti-tumor activity in all patients with recurrent cervical or endometrial cancer. However, patients with ARID1A mutations had a higher response rate and PFS6 suggesting this subgroup may benefit from the combination of bevacizumab and rucaparib. Further study is needed to confirm this observation. No new safety signals were seen.
Collapse
Affiliation(s)
- C G Jackson
- Stephenson Cancer Center Section of Gynecologic Oncology, University of Oklahoma Health Sciences Center; Oklahoma City, OK, USA
| | - K N Moore
- Stephenson Cancer Center Section of Gynecologic Oncology, University of Oklahoma Health Sciences Center; Oklahoma City, OK, USA
| | - L Cantrell
- Division of Gynecologic Oncology, University of Virginia, Department of Obstetrics and Gynecology; Charlottesville, VA, USA
| | - B K Erickson
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Minnesota; Minneapolis, MN, USA
| | - L R Duska
- Division of Gynecologic Oncology, University of Virginia, Department of Obstetrics and Gynecology; Charlottesville, VA, USA
| | - D L Richardson
- Stephenson Cancer Center Section of Gynecologic Oncology, University of Oklahoma Health Sciences Center; Oklahoma City, OK, USA
| | - L M Landrum
- Stephenson Cancer Center Section of Gynecologic Oncology, University of Oklahoma Health Sciences Center; Oklahoma City, OK, USA
| | - L L Holman
- Stephenson Cancer Center Section of Gynecologic Oncology, University of Oklahoma Health Sciences Center; Oklahoma City, OK, USA
| | - J L Walker
- Stephenson Cancer Center Section of Gynecologic Oncology, University of Oklahoma Health Sciences Center; Oklahoma City, OK, USA
| | - R S Mannel
- Stephenson Cancer Center Section of Gynecologic Oncology, University of Oklahoma Health Sciences Center; Oklahoma City, OK, USA
| | - K M Moxley
- Stephenson Cancer Center Section of Gynecologic Oncology, University of Oklahoma Health Sciences Center; Oklahoma City, OK, USA
| | - L Queimado
- Department of Otolaryngology, University of Oklahoma Health Sciences Center; Oklahoma City, OK, USA
| | - A Cohoon
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center; Oklahoma City, OK, USA
| | - K Ding
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center; Oklahoma City, OK, USA
| | - L E Dockery
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of North Carolina; Chapel Hill, NC, USA.
| |
Collapse
|
22
|
Elkhadragy L, Dasteh Goli K, Totura WM, Carlino MJ, Regan MR, Guzman G, Schook LB, Gaba RC, Schachtschneider KM. Effect of CRISPR Knockout of AXIN1 or ARID1A on Proliferation and Migration of Porcine Hepatocellular Carcinoma. Front Oncol 2022; 12:904031. [PMID: 35669430 PMCID: PMC9163418 DOI: 10.3389/fonc.2022.904031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is an aggressive disease lacking effective treatment. Animal models of HCC are necessary for preclinical evaluation of the safety and efficacy of novel therapeutics. Large animal models of HCC allow testing image-guided locoregional therapies, which are widely used in the management of HCC. Models with precise tumor mutations mimicking human HCC provide valuable tools for testing precision medicine. AXIN1 and ARID1A are two of the most frequently mutated genes in human HCC. Here, we investigated the effects of knockout of AXIN1 and/or ARID1A on proliferation, migration, and chemotherapeutic susceptibility of porcine HCC cells and we developed subcutaneous tumors harboring these mutations in pigs. Gene knockout was achieved by CRISPR/Cas9 and was validated by Next Generation Sequencing. AXIN1 knockout increased the migration of porcine HCC cells but did not alter the cell proliferation. Knockout of ARID1A increased both the proliferation and migration of porcine HCC cells. Simultaneous knockout of AXIN1 and ARID1A increased the migration, but did not alter the proliferation of porcine HCC cells. The effect of gene knockout on the response of porcine HCC cells to two of the most commonly used systemic and locoregional HCC treatments was investigated; sorafenib and doxorubicin, respectively. Knockout of AXIN1 and/or ARID1A did not alter the susceptibility of porcine HCC cells to sorafenib or doxorubicin. Autologous injection of CRISPR edited HCC cells resulted in development of subcutaneous tumors in pigs, which harbored the anticipated edits in AXIN1 and/or ARID1A. This study elucidates the effects of CRISPR-mediated knockout of HCC-associated genes in porcine HCC cells, and lays the foundation for development and utilization of genetically-tailored porcine HCC models for in vivo testing of novel therapeutic approaches in a clinically-relevant large animal model.
Collapse
Affiliation(s)
- Lobna Elkhadragy
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States
| | - Kimia Dasteh Goli
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States
| | - William M. Totura
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States
| | | | - Maureen R. Regan
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, United States
| | - Grace Guzman
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, United States
| | - Lawrence B. Schook
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Ron C. Gaba
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, United States
| | - Kyle M. Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL, United States
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL, United States
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- *Correspondence: Kyle M. Schachtschneider,
| |
Collapse
|
23
|
ARID1A expression in hepatocellular carcinoma and relation to tumor recurrence after microwave ablation. Clin Exp Hepatol 2022; 8:49-59. [PMID: 35415261 PMCID: PMC8984801 DOI: 10.5114/ceh.2022.114172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 12/20/2021] [Indexed: 12/24/2022] Open
Abstract
Aim of the study AT-rich interactive domain 1A (ARID1A) is a subunit of the switch/sucrose non-fermentable chromatin remodeling complex, which is commonly mutated in human cancers. The clinical and pathological significance of ARID1A alteration in hepatocellular carcinoma (HCC) has not yet been clarified. The present study aimed to evaluate the clinical significance of the ARID1A gene signature in HCC and its relation to the likelihood of tumor recurrence after microwave ablation (MWA). Material and methods This study included 50 patients with cirrhotic HCC of Barcelona Clinic Liver Cancer stages 0/A eligible for MWA. Tumor and peri-tumor biopsies were obtained just prior to MWA and assessed for tumor pathological grade and ARID1A expression by immunohistochemistry. Patients were followed for one year after complete tumor ablation to detect any recurrence. Results Tumor size (MCp = 0.010) and α-fetoprotein level (p = 0.013) can effectively predict the response to MWA. Nuclear expression of ARID1A was significantly lower in HCC compared to the corresponding peri-tumor cirrhotic liver tissues (p = 0.002), but no significant difference in ARID1A cytoplasmic expression was found. Nuclear ARID1A expression level in HCC showed a significantly negative relation to tumor size (MCp = 0.006), pathological grade (MCp = 0.046) and post-MWA tumor recurrence (FEp = 0.041). Conclusions ARID1A loss may enhance HCC aggressiveness and post-MWA tumor recurrence. ARID1A could be a potential target to select HCC patients for future therapies.
Collapse
|
24
|
Zhang FK, Ni QZ, Wang K, Cao HJ, Guan DX, Zhang EB, Ma N, Wang YK, Zheng QW, Xu S, Zhu B, Chen TW, Xia J, Qiu XS, Ding XF, Jiang H, Qiu L, Wang X, Chen W, Cheng SQ, Xie D, Li JJ. Targeting USP9X-AMPK Axis in ARID1A-Deficient Hepatocellular Carcinoma. Cell Mol Gastroenterol Hepatol 2022; 14:101-127. [PMID: 35390516 PMCID: PMC9117818 DOI: 10.1016/j.jcmgh.2022.03.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 12/17/2022]
Abstract
BACKGROUND & AIMS Hepatocellular carcinoma (HCC) is a highly heterogeneous solid tumor with high morbidity and mortality. AT-rich interaction domain 1A (ARID1A) accounts for up to 10% of mutations in liver cancer, however, its role in HCC remains controversial, and no targeted therapy has been established. METHODS The expression of ARID1A in clinical samples was examined by Western blot and immunohistochemical staining. ARID1A was knocked out by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) in HCC cell lines, and the effects of glucose deprivation on cell viability, proliferation, and apoptosis were measured. Mass spectrometry analysis was used to find ARID1A-interacting proteins, and the result was verified by co-immunoprecipitation and Glutathione S Transferase (GST) pull-down. The regulation of ARID1A target gene USP9X was investigated by chromatin immunoprecipitation, Glutathione S Transferase (GST) pull-down, luciferase reporter assay, and so forth. Finally, drug treatments were performed to explore the therapeutic potential of the agents targeting ARID1A-deficient HCC in vitro and in vivo. RESULTS Our study has shown that ARID1A loss protected cells from glucose deprivation-induced cell death. A mechanism study disclosed that AIRD1A recruited histone deacetylase 1 via its C-terminal region DUF3518 to the promoter of USP9X, resulting in down-regulation of USP9X and its target protein kinase AMP-activated catalytic subunit α2 (PRKAA2). ARID1A knockout and a 1989∗ truncation mutant in HCC abolished this effect, increased the levels of H3K9 and H3K27 acetylation at the USP9X promoter, and up-regulated the expression of USP9X and protein kinase AMP-activated catalytic subunit α2 (PRKAA2), which mediated the adaptation of tumor cells to glucose starvation. Compound C dramatically inhibited the growth of ARID1A-deficient tumors and prolongs the survival of tumor-bearing mice. CONCLUSIONS HCC patients with ARID1A mutation may benefit from synthetic lethal therapy targeting the ubiquitin-specific peptidase 9 X-linked (USP9X)-adenosine 5'-monophosphate-activated protein kinase (AMPK) axis.
Collapse
Affiliation(s)
- Feng-Kun Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qian-Zhi Ni
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Kang Wang
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Hui-Jun Cao
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dong-Xian Guan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Er-Bin Zhang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ning Ma
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi-Kang Wang
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qian-Wen Zheng
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Sheng Xu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bing Zhu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tian-Wei Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ji Xia
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiao-Song Qiu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Xu-Fen Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hao Jiang
- Department of Biomedical Informatics, School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Lin Qiu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiang Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Wei Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Shu-Qun Cheng
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Dong Xie
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; School of Life Science and Technology, Shanghai Tech University, Shanghai, China; National Health Commission Key Laboratory of Food Safety Risk Assessment, China National Center for Food Safety Risk Assessment, Beijing, China.
| | - Jing-Jing Li
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
25
|
Peerapen P, Sueksakit K, Boonmark W, Yoodee S, Thongboonkerd V. ARID1A knockdown enhances carcinogenesis features and aggressiveness of Caco-2 colon cancer cells: An in vitro cellular mechanism study. J Cancer 2022; 13:373-384. [PMID: 35069887 PMCID: PMC8771531 DOI: 10.7150/jca.65511] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/30/2021] [Indexed: 01/05/2023] Open
Abstract
Loss of ARID1A, a tumor suppressor gene, is associated with the higher grade of colorectal cancer (CRC). However, molecular and cellular mechanisms underlying the progression and aggressiveness of CRC induced by the loss of ARID1A remain poorly understood. Herein, we evaluated cellular mechanisms underlying the effects of ARID1A knockdown on the carcinogenesis features and aggressiveness of CRC cells. A human CRC cell line (Caco-2) was transfected with small interfering RNA (siRNA) specific to ARID1A (siARID1A) or scrambled (non-specific) siRNA (siControl). Cell death, proliferation, senescence, chemoresistance and invasion were then evaluated. In addition, formation of polyploid giant cancer cells (PGCCs), self-aggregation (multicellular spheroid) and secretion of an angiogenic factor, vascular endothelial growth factor (VEGF), were examined. The results showed that ARID1A knockdown led to significant decreases in cell death and senescence. On the other hand, ARID1A knockdown enhanced cell proliferation, chemoresistance and invasion. The siARID1A-transfected cells also had greater number of PGCCs and larger spheroid size and secreted greater level of VEGF compared with the siControl-transfected cells. These data, at least in part, explain the cellular mechanisms of ARID1A deficiency in carcinogenesis and aggressiveness features of CRC.
Collapse
Affiliation(s)
- Paleerath Peerapen
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Kanyarat Sueksakit
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Wanida Boonmark
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sunisa Yoodee
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| |
Collapse
|
26
|
Zhang Q, Liu X, Wei S, Zhang L, Tian Y, Gao Z, Jin M, Yan S. Lenvatinib Plus PD-1 Inhibitors as First-Line Treatment in Patients With Unresectable Biliary Tract Cancer: A Single-Arm, Open-Label, Phase II Study. Front Oncol 2021; 11:751391. [PMID: 34900698 PMCID: PMC8651538 DOI: 10.3389/fonc.2021.751391] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022] Open
Abstract
Objective We investigated lenvatinib plus programmed cell death-1 (PD-1) inhibitors as a first-line treatment for initially unresectable biliary tract cancer (BTC). Methods In this Phase II study, adults with initially unresectable BTC received lenvatinib (body weight ≥60 kg, 12 mg; <60 kg, 8 mg) daily and PD-1 inhibitors (pembrolizumab/tislelizumab/sintilimab/camrelizumab 200 mg or toripalimab 240 mg) every 3 weeks. Primary endpoints were objective response rate (ORR) and safety. Secondary endpoints included surgical conversion rate, disease control rate (DCR), event-free survival (EFS), overall survival (OS) and tumor biomarkers. Results Among 38 enrolled patients, the ORR was 42.1% and the DCR was 76.3%. Thirteen (34.2%) patients achieved downstaging and underwent surgery, six of whom (46.2%) achieved a major pathologic response (n=2) or partial pathologic response (n=4) in the primary tumor. In total, 84.2% of patients experienced ≥1 treatment-related adverse event (TRAE), 34.2% experienced a Grade ≥3 TRAE and no treatment-related deaths occurred. After a median follow-up of 13.7 months the median EFS was 8.0 months (95% CI: 4.6–11.4) and the median OS was 17.7 months (95% CI: not estimable). Conclusions Lenvatinib plus PD-1 inhibitors showed promising anti-tumor efficacy in patients with initially unresectable BTC and was generally well tolerated. Clinical Trial Registration www.chictr.org.cn, ChiCTR2100044476.
Collapse
Affiliation(s)
- Qiyi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
| | - Xingyu Liu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
| | - Shumei Wei
- Department of Pathology, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China
| | - Lufei Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
| | - Yang Tian
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
| | - Zhenzhen Gao
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
| | - Ming Jin
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
| | - Sheng Yan
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, China
| |
Collapse
|
27
|
Methionine and leucine induce ARID1A degradation to promote mTOR expression and milk synthesis in mammary epithelial cells. J Nutr Biochem 2021; 101:108924. [PMID: 34843932 DOI: 10.1016/j.jnutbio.2021.108924] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 09/26/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022]
Abstract
Amino acids can activate mTOR to promote milk synthesis in mammary epithelial cells (MECs), but the underlying molecular mechanism is still largely unknown. The objective is to investigate the regulatory mechanism of amino acids (Met and Leu) in stimulating mRNA expression of mTOR in MECs. We found that the protein abundance of AT-rich interaction domain 1A (ARID1A) was poorly expressed in mouse mammary gland tissues of lactating period. ARID1A knockdown and gene activation experiments detected whether ARID1A negatively regulated milk protein and fat synthesis in bovine MECs, cell proliferation and the expression and activation of mTOR. ChIP-PCR detected that ARID1A, H3K27ac, H3K27me3 and H3K4me3 all bound to the mTOR promoter at -548∼-793 nt. Knockdown or gene activation of ARID1A enhanced or weakened the binding of H3K27ac on the mTOR promoter, respectively. The stimulation of Met and Leu on mTOR expression and phosphorylation were eliminated by ARID1A gene activation. Furthermore, Met and Leu decreased the protein level of ARID1A through ubiquitination and proteasomal degradation. TRIM21 bound to ARID1A, and TRIM21 knockdown blocked the stimulation of Met and Leu on ARID1A degradation. In summary, these data reveal that ARID1A blocks Met and Leu signaling to mTOR gene transcription through inhibiting H3K27ac deposition on its promoter, and Met and Leu decrease ARID1A protein level through TRIM21-mediated ubiquitination and proteasomal degradation. Our findings uncover that Met and Leu promote mTOR expression for milk synthesis through the TRIM21-ARID1A signaling pathway, providing a novel theoretical basis for the application of amino acids in milk production.
Collapse
|
28
|
Ren X, Rong Z, Liu X, Gao J, Xu X, Zi Y, Mu Y, Guan Y, Cao Z, Zhang Y, Zeng Z, Fan Q, Wang X, Pei Q, Wang X, Xin H, Li Z, Nie Y, Qiu Z, Li N, Sun L, Deng Y. The protein kinase activity of NME7 activates Wnt/β-Catenin signaling to promote one-carbon metabolism in hepatocellular carcinoma. Cancer Res 2021; 82:60-74. [PMID: 34764205 DOI: 10.1158/0008-5472.can-21-1020] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/11/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022]
Abstract
Metabolic reprogramming by oncogenic signaling is a hallmark of cancer. Hyperactivation of Wnt/β-catenin signaling has been reported in hepatocellular carcinoma (HCC). However, the mechanisms inducing hyperactivation of Wnt/β-catenin signaling and strategies for targeting this pathway are incompletely understood. In this study, we find nucleoside diphosphate kinase 7 (NME7) to be a positive regulator of Wnt/β-catenin signaling. Upregulation of NME7 positively correlated with the clinical features of HCC. Knockdown of NME7 inhibited HCC growth in vitro and in vivo, while overexpression of NME7 cooperated with c-Myc to drive tumorigenesis in a mouse model and promote the growth of tumor-derived organoids. Mechanistically, NME7 bound and phosphorylated serine 9 of GSK3β to promote β-catenin activation. Furthermore, MTHFD2, the key enzyme in one-carbon metabolism, was a target gene of β-catenin and mediated the effects of NME7. Tumor-derived organoids with NME7 overexpression exhibited increased sensitivity to MTHFD2 inhibition. Additionally, expression levels of NME7, β-catenin and MTHFD2 correlated with each other and with poor prognosis in HCC patients. Collectively, this study emphasizes the crucial roles of NME7 protein kinase activity in promoting Wnt/β-catenin signaling and one-carbon metabolism, suggesting NME7 and MTHFD2 as potential therapeutic targets for HCC.
Collapse
Affiliation(s)
- Xinxin Ren
- Xiangya Cancer Center, Xiangya Hospital, Central South University
| | - Zhuoxian Rong
- Xiangya Cancer Center, Xiangya Hospital, Central South University
| | - Xiaoyu Liu
- Department of Interventional Radiology, Ruijin Hospital
| | - Jie Gao
- Xiangya Cancer Center, Xiangya Hospital, Central South University
| | - Xu Xu
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Yuyuan Zi
- Xiangya Cancer Center, Xiangya Hospital, Central South University
| | - Yun Mu
- Xiangya Cancer Center, Xiangya Hospital, Central South University
| | | | - Zhen Cao
- Xiangya Cancer Center, Xiangya Hospital, Central South University
| | - Yuefang Zhang
- Institute of Neuroscience, State Kay Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences
| | - Zimei Zeng
- Xiangya Cancer Center, Xiangya Hospital, Central South University
| | - Qi Fan
- Xiangya Cancer Center, Xiangya Hospital, Central South University
| | - Xitao Wang
- Xiangya Cancer Center, Xiangya Hospital, Central South University
| | - Qian Pei
- Xiangya Hospital Central South University
| | - Xiang Wang
- Department of Pharmacy, Xiangya Hospital, Central South University
| | - Haiguang Xin
- Ruijin Hospital, Shanghai Jiao Tong University School of Medicine
| | - Zhi Li
- Xiangya Cancer Center, Xiangya Hospital, Central South University, Changsha 410008, China
| | | | - Zilong Qiu
- Molecular Neuroscience, Institute of Neuroscience, Chinese Academy of Sciences
| | - Nan Li
- The Eestern Hepatobiliary Surgery Hospital, Second Military Medical University
| | | | - Yuezhen Deng
- Xiangya Cancer Center, Xiangya Hospital, Central South University
| |
Collapse
|
29
|
Sun D, Teng F, Xing P, Li J. ARID1A serves as a receivable biomarker for the resistance to EGFR-TKIs in non-small cell lung cancer. Mol Med 2021; 27:138. [PMID: 34715776 PMCID: PMC8555283 DOI: 10.1186/s10020-021-00400-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/14/2021] [Indexed: 12/15/2022] Open
Abstract
ARID1A is a key component of the SWI/SNF chromatin remodeling complexes which is important for the maintaining of biological processes of cells. Recent studies had uncovered the potential role of ARID1A alterations or expression loss in the therapeutic sensitivity of cancers, but the studies in this field requires to be further summarized and discussed. Therefore, we proposed a series of mechanisms related to the resistance to EGFR-TKIs induced by ARID1A alterations or expression loss and the potential therapeutic strategies to overcome the resistance based on published studies. It suggested that ARID1A alterations or expression loss might be the regulators in PI3K/Akt, JAK/STAT and NF-κB signaling pathways which are strongly associated with the resistance to EGFR-TKIs in NSCLC patients harboring sensitive EGFR mutations. Besides, ARID1A alterations or expression loss could lead to the resistance to EGFR-TKIs via a variety of processes during the tumorigenesis and development of cancers, including epithelial to mesenchymal transition, angiogenesis and the inhibition of apoptosis. Based on the potential mechanisms related to ARID1A, we summarized that the small molecular inhibitors targeting ARID1A or PI3K/Akt pathway, the anti-angiogenic therapy and immune checkpoint inhibitors could be used for the supplementary treatment for EGFR-TKIs among NSCLC patients harboring the concomitant alterations of sensitive EGFR mutations and ARID1A.
Collapse
Affiliation(s)
- Dantong Sun
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Fei Teng
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Puyuan Xing
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Junling Li
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
30
|
Wang J, Yan HB, Zhang Q, Liu WY, Jiang YH, Peng G, Wu FZ, Liu X, Yang PY, Liu F. Enhancement of E-cadherin expression and processing and driving of cancer cell metastasis by ARID1A deficiency. Oncogene 2021; 40:5468-5481. [PMID: 34290402 DOI: 10.1038/s41388-021-01930-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/04/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023]
Abstract
The ARID1A gene, which encodes a subunit of the SWI/SNF chromatin remodeling complex, has been found to be frequently mutated in many human cancer types. However, the function and mechanism of ARID1A in cancer metastasis are still unclear. Here, we show that knockdown of ARID1A increases the ability of breast cancer cells to proliferate, migrate, invade, and metastasize in vivo. The ARID1A-related SWI/SNF complex binds to the second exon of CDH1 and negatively modulates the expression of E-cadherin/CDH1 by recruiting the transcriptional repressor ZEB2 to the CDH1 promoter and excluding the presence of RNA polymerase II. The silencing of CDH1 attenuated the migration, invasion, and metastasis of breast cancer cells in which ARID1A was silenced. ARID1A depletion increased the intracellular enzymatic processing of E-cadherin and the production of C-terminal fragment 2 (CTF2) of E-cadherin, which stabilized β-catenin by competing for binding to the phosphorylation and degradation complex of β-catenin. The matrix metalloproteinase inhibitor GM6001 inhibited the production of CTF2. In zebrafish and nude mice, ARID1A silencing or CTF2 overexpression activated β-catenin signaling and promoted migration/invasion and metastasis of cancer cells in vivo. The inhibitors GM6001, BB94, and ICG-001 suppressed the migration and invasion of cancer cells with ARID1A-deficiency. Our findings provide novel insights into the mechanism of ARID1A metastasis and offer a scientific basis for targeted therapy of ARID1A-deficient cancer cells.
Collapse
Affiliation(s)
- Jie Wang
- Minhang Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical of Sciences, Fudan University, Shanghai, China
| | - Hai-Bo Yan
- Minhang Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical of Sciences, Fudan University, Shanghai, China
| | - Qian Zhang
- Minhang Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical of Sciences, Fudan University, Shanghai, China
| | - Wei-Yan Liu
- Minhang Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical of Sciences, Fudan University, Shanghai, China
| | - Ying-Hua Jiang
- Minhang Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical of Sciences, Fudan University, Shanghai, China
| | - Gang Peng
- Institutes of Brain Science, Fudan University, Shanghai, China
| | - Fei-Zhen Wu
- Department of Systems Biology for Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xin Liu
- Department of Central Laboratory Medicine, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Peng-Yuan Yang
- Minhang Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical of Sciences, Fudan University, Shanghai, China.
- Department of Systems Biology for Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China.
- Department of Chemistry, Fudan University, Shanghai, China.
| | - Feng Liu
- Minhang Hospital, Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical of Sciences, Fudan University, Shanghai, China.
- Department of Systems Biology for Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
31
|
The BAF chromatin remodeling complexes: structure, function, and synthetic lethalities. Biochem Soc Trans 2021; 49:1489-1503. [PMID: 34431497 DOI: 10.1042/bst20190960] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 02/08/2023]
Abstract
BAF complexes are multi-subunit chromatin remodelers, which have a fundamental role in genomic regulation. Large-scale sequencing efforts have revealed frequent BAF complex mutations in many human diseases, particularly in cancer and neurological disorders. These findings not only underscore the importance of the BAF chromatin remodelers in cellular physiological processes, but urge a more detailed understanding of their structure and molecular action to enable the development of targeted therapeutic approaches for diseases with BAF complex alterations. Here, we review recent progress in understanding the composition, assembly, structure, and function of BAF complexes, and the consequences of their disease-associated mutations. Furthermore, we highlight intra-complex subunit dependencies and synthetic lethal interactions, which have emerged as promising treatment modalities for BAF-related diseases.
Collapse
|
32
|
Jiang Y, Han Q, Zhao H, Zhang J. The Mechanisms of HBV-Induced Hepatocellular Carcinoma. J Hepatocell Carcinoma 2021; 8:435-450. [PMID: 34046368 PMCID: PMC8147889 DOI: 10.2147/jhc.s307962] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/06/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy, and the hepatitis B virus (HBV) is its major pathogenic factor. Over the past decades, it has been confirmed that HBV infection could promote disease progression through a variety of mechanisms, ultimately leading to the malignant transformation of liver cells. Many factors have been identified in the pathogenesis of HBV-associated HCC (HBV-HCC), including HBV gene integration, genomic instability caused by mutation, and activation of cancer-promoting signaling pathways. As research in the progression of HBV-HCC progresses, the role of many new mechanisms, such as epigenetics, exosomes, autophagy, metabolic regulation, and immune suppression, is also being continuously explored. The occurrence of HBV-HCC is a complex process caused by interactions across multiple genes and multiple steps, where the synergistic effects of various cancer-promoting mechanisms accelerate the process of disease evolution from inflammation to tumorigenesis. In this review, we aim to provide a brief overview of the mechanisms involved in the occurrence and development of HBV-HCC, which may contribute to a better understanding of the role of HBV in the occurrence and development of HCC.
Collapse
Affiliation(s)
- Yu Jiang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China
| | - Qiuju Han
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China
| | - Huajun Zhao
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China
| | - Jian Zhang
- Institute of Immunopharmaceutical Sciences, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong Province, People's Republic of China
| |
Collapse
|
33
|
Li XJ, Li QL, Ju LG, Zhao C, Zhao LS, Du JW, Wang Y, Zheng L, Song BL, Li LY, Li L, Wu M. Deficiency of Histone Methyltransferase SET Domain-Containing 2 in Liver Leads to Abnormal Lipid Metabolism and HCC. Hepatology 2021; 73:1797-1815. [PMID: 33058300 DOI: 10.1002/hep.31594] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 09/15/2020] [Accepted: 09/20/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIMS Trimethylation of Lys36 on histone 3 (H3K36me3) catalyzed by histone methyltransferase SET domain-containing 2 (SETD2) is one of the most conserved epigenetic marks from yeast to mammals. SETD2 is frequently mutated in multiple cancers and acts as a tumor suppressor. APPROACH AND RESULTS Here, using a liver-specific Setd2 depletion model, we found that Setd2 deficiency is sufficient to trigger spontaneous HCC. Meanwhile, Setd2 depletion significantly increased tumor and tumor size of a diethylnitrosamine-induced HCC model. The mechanistic study showed that Setd2 suppresses HCC not only through modulating DNA damage response, but also by regulating lipid metabolism in the liver. Setd2 deficiency down-regulated H3K36me3 enrichment and expression of cholesterol efflux genes and caused lipid accumulation. High-fat diet enhanced lipid accumulation and promoted the development of HCC in Setd2-deficient mice. Chromatin immunoprecipitation sequencing analysis further revealed that Setd2 depletion induced c-Jun/activator protein 1 (AP-1) activation in the liver, which was trigged by accumulated lipid. c-Jun acts as an oncogene in HCC and functions through inhibiting p53 in Setd2-deficient cells. CONCLUSIONS We revealed the roles of Setd2 in HCC and the underlying mechanisms in regulating cholesterol homeostasis and c-Jun/AP-1 signaling.
Collapse
Affiliation(s)
- Xue-Jing Li
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qing-Lan Li
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lin-Gao Ju
- Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Chen Zhao
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lan-Shen Zhao
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, College of Life Sciences, Wuhan University, Wuhan, China
| | - Jia-Wen Du
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yan Wang
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, College of Life Sciences, Wuhan University, Wuhan, China
| | - Ling Zheng
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, College of Life Sciences, Wuhan University, Wuhan, China
| | - Bao-Liang Song
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, College of Life Sciences, Wuhan University, Wuhan, China
| | - Lian-Yun Li
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, College of Life Sciences, Wuhan University, Wuhan, China
| | - Li Li
- State Key Laboratory of Oncogenes and Related Genes, School of Biomedical Engineering, Renji-Med X Clinical Stem Cell Research Center, Ren Ji Hospital, Shanghai Jiao Tong University, Shanghai, China.,School of Biomedical Engineering, Med-X Research Institute, Shanghai Jiao Tong University, Shanghai, China
| | - Min Wu
- Frontier Science Center for Immunology and Metabolism, Hubei Key Laboratory of Cell Homeostasis, Hubei Key Laboratory of Developmentally Originated Disease, Hubei Key Laboratory of Enteropathy, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
34
|
Iseda N, Itoh S, Yoshizumi T, Yugawa K, Morinaga A, Tomiyama T, Toshima T, Kohashi K, Oda Y, Mori M. ARID1A Deficiency Is Associated With High Programmed Death Ligand 1 Expression in Hepatocellular Carcinoma. Hepatol Commun 2021; 5:675-688. [PMID: 33860125 PMCID: PMC8034578 DOI: 10.1002/hep4.1659] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 10/07/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
The clinicopathological features of carcinomas expressing AT-rich interaction domain 1a (ARID1A) and programmed death ligand 1 (PD-L1) in HCC are poorly understood. Here, we examined ARID1A and PD-L1 expression in surgically resected primary hepatocellular carcinoma (HCC) and the association of ARID1A and PD-L1 expression with clinicopathological features and patient outcomes. Their association with ARID1A expression and tumor-associated CD68-positive macrophage was further explored. Using a database of 255 patients who underwent hepatic resection for HCC, immunohistochemical staining of ARID1A, PD-L1, and CD68 was performed. We also analyzed the expression PD-L1 after ARID1A knockdown in HCC cell lines. Samples from 81 patients (31.7%) were negative for ARID1A. Negative ARID1A expression was significantly associated with male sex, high alpha-fetoprotein, high des-gamma-carboxyprothrombin, large tumor size, high rate of poor differentiation, microscopic intrahepatic metastasis, and PD-L1 expression. In addition, negative ARID1A expression was an independent predictor for recurrence-free survival, overall survival, and positive PD-L1 expression. Stratification based on ARID1A and PD-L1 expression in cancer cells was also significantly associated with unfavorable outcomes. PD-L1 protein expression levels were increased through phosphoinositide 3-kinase/AKT signaling after ARID1A knockdown in HCC cells. HCC with ARID1A-low expression was significantly correlated with high levels of tumor-associated CD68-positive macrophage. Conclusion: Our large cohort study showed that ARID1A expression in cancer cells was associated with a poor clinical outcome in patients with HCC, PD-L1 expression in cancer cells, and tumor microenvironment. Therefore, ARID1A may be a potential molecular biomarker for the selection of patients with HCC for anti-programmed death 1/PD-L1 antibody therapy.
Collapse
Affiliation(s)
- Norifumi Iseda
- Department of Surgery and ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Shinji Itoh
- Department of Surgery and ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Tomoharu Yoshizumi
- Department of Surgery and ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Kyohei Yugawa
- Department of Surgery and ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Akinari Morinaga
- Department of Surgery and ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Takahiro Tomiyama
- Department of Surgery and ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Takeo Toshima
- Department of Surgery and ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Kenichi Kohashi
- Department of Anatomic PathologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Yoshinao Oda
- Department of Anatomic PathologyGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| | - Masaki Mori
- Department of Surgery and ScienceGraduate School of Medical SciencesKyushu UniversityFukuokaJapan
| |
Collapse
|
35
|
Yang H, Huo J, Li X. Identification and validation of a five-gene prognostic signature for hepatocellular carcinoma. World J Surg Oncol 2021; 19:90. [PMID: 33771191 PMCID: PMC8004398 DOI: 10.1186/s12957-021-02202-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/18/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND ARID1A is a commonly mutated tumor suppressor gene found in all human cancer types, but its clinical significance, oncogenic functions, and relevant mechanisms in hepatocellular carcinoma (HCC) are not well understood. OBJECTIVE We aimed to improving the prognosis risk classification of HCC from the perspective of ARID1A mutations. MATERIALS AND METHODS We examined the interaction between ARID1A mutations and the overall survival via Kaplan-Meier survival analysis. We used gene set enrichment analysis (GSEA) to elucidate the influence of ARID1A mutations on signaling pathways. A prognostic model was constructed using LASSO and multivariate Cox regression analyses. A receiver operating characteristic (ROC) curve was used to estimate the performance and accuracy of the model. RESULTS HCC patients with ARID1A mutations presented poor prognosis. By GSEA, we showed that genes upregulated by reactive oxygen species (ROS) and regulated by MYC were positively correlated with ARID1A mutations. A prognostic signature consisting of 5 genes (SRXN1, LDHA, TFDP1, PPM1G, and EIF2S1) was constructed in our research. The signature showed good performance in predicting overall survival (OS) for HCC patients by internal and external validation. CONCLUSION Our research proposed a novel and robust approach for the prognostic risk classification of HCC patients, and this approach may provide new insights to improve the treatment strategy of HCC.
Collapse
Affiliation(s)
- Huibin Yang
- Qingdao University, No. 308 Ningxia Road, Qingdao, 266071 China
| | - Junyu Huo
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Qingdao Municipal Hospital of Qingdao University, No.1 Jiaozhou Road, Shibei District, Qingdao City, 266011 Shandong Province China
| | - Xin Li
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Qingdao Municipal Hospital of Qingdao University, No.1 Jiaozhou Road, Shibei District, Qingdao City, 266011 Shandong Province China
| |
Collapse
|
36
|
Zhao J, Xu W, Zhang Y, Lv X, Chen Y, Ju G, Yang F, Lin L, Rao X, Guo Z, Xing T, Li L, Liang J. Decreased expression of ARID1A invasively downregulates the expression of ribosomal proteins in hepatocellular carcinoma. Biomark Med 2021; 15:497-508. [PMID: 33769075 DOI: 10.2217/bmm-2020-0464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Background: There was increasing evidence showing that ARID1A alterations correlated with higher tumor mutational burden, but there were limited studies focusing on the adaptive mechanisms for tumor cells to survive under excessive genomic alterations. Materials & methods: To further explore the adaptive mechanisms under ARID1A alterations, we performed RNA sequencing in ARID1A knockdown hepatocellular carcinoma cell lines, and demonstrated that decreased expression of ARID1A controlled global ribosomal proteins synthesis. The results were further confirmed by quantitative reverse transcription-PCR and bioinformatic analysis in The Cancer Genome Atlas Liver Hepatocellular Carcinoma database. Conclusion: The present study was the first to demonstrate that ARID1A might be involved in the translation pathway and served as an adaptive mechanism for tumor cells to survive under stress.
Collapse
Affiliation(s)
- Jing Zhao
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China
| | - Weiran Xu
- Department of Oncology, Peking University International Hospital, Peking University, Beijing, 102206, China
| | - Yu Zhang
- Department of Medical Oncology & Radiation Sickness, Peking University Third Hospital, Peking University, Beijing, 100191, China
| | - Xiaomin Lv
- Department of Neurology, The First Hospital of Jilin University, Jilin University, Changchun, 130021, China
| | - Yiran Chen
- Department of Medical Oncology, Key Laboratory of Carcinogenesis & Translational Research (Ministry of Education/Beijing), Beijing, 102206, China
| | - Gaoda Ju
- Department of Medical Oncology, Key Laboratory of Carcinogenesis & Translational Research (Ministry of Education/Beijing), Beijing, 102206, China
| | - Fang Yang
- Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, 215000, China
| | - Li Lin
- Department of Oncology, Peking University International Hospital, Peking University, Beijing, 102206, China
| | - Xiaosong Rao
- Department of Pathology, Peking University International Hospital, Peking University, Beijing, 102206, China
| | - Ziwei Guo
- Department of Oncology, Peking University International Hospital, Peking University, Beijing, 102206, China
| | - Tao Xing
- Department of Medical Oncology, Key Laboratory of Carcinogenesis & Translational Research (Ministry of Education/Beijing), Beijing, 102206, China
| | - Li Li
- Department of Oncology, Peking University International Hospital, Peking University, Beijing, 102206, China
| | - Jun Liang
- Department of Oncology, Peking University International Hospital, Peking University, Beijing, 102206, China
| |
Collapse
|
37
|
Yoodee S, Peerapen P, Plumworasawat S, Thongboonkerd V. ARID1A knockdown in human endothelial cells directly induces angiogenesis by regulating angiopoietin-2 secretion and endothelial cell activity. Int J Biol Macromol 2021; 180:1-13. [PMID: 33675830 DOI: 10.1016/j.ijbiomac.2021.02.218] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/10/2021] [Accepted: 02/24/2021] [Indexed: 12/29/2022]
Abstract
AT-rich interactive domain 1A (ARID1A) is a novel tumor suppressor gene found in several human cells and its loss/defect is commonly observed in many cancers. However, its roles in angiogenesis, which is one of the hallmarks for tumor progression, remained unclear. Herein, we demonstrated the direct effects of ARID1A knockdown in human endothelial cells by lentivirus-based short-hairpin RNA (shRNA) (shARID1A) on angiogenesis. Functional assays revealed that shARID1A significantly enhanced cell proliferation and migration/invasion and endothelial tube formation compared with the control cells transfected with scramble shRNA (shControl). Additionally, the shARID1A-transfected cells had significantly increased podosome formation and secretion of angiopoietin-2 (ANG2), a key angiogenic factor. Moreover, neutralization of ANG2 with monoclonal anti-ANG2 antibody strongly reduced cell proliferation and migration/invasion and endothelial tube formation in the shARID1A-transfected cells. These findings indicate that down-regulation of ARID1A in human endothelial cells directly induces angiogenesis by regulating angiopoietin-2 secretion and endothelial cell activity.
Collapse
Affiliation(s)
- Sunisa Yoodee
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Paleerath Peerapen
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Sirikanya Plumworasawat
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10700, Thailand.
| |
Collapse
|
38
|
Xu S, Tang C. The Role of ARID1A in Tumors: Tumor Initiation or Tumor Suppression? Front Oncol 2021; 11:745187. [PMID: 34671561 PMCID: PMC8521028 DOI: 10.3389/fonc.2021.745187] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/08/2021] [Indexed: 01/08/2023] Open
Abstract
Genes encoding subunits of SWItch/Sucrose Non-Fermenting (SWI/SNF) chromatin remodeling complexes are collectively mutated in 20% of all human cancers, among which the AT-rich interacting domain-containing protein 1A (ARID1A, also known as BAF250a, B120, C1orf4, Osa1) that encodes protein ARID1A is the most frequently mutated, and mutations in ARID1A have been found in various types of cancer. ARID1A is thought to play a significant role both in tumor initiation and in tumor suppression, which is highly dependent upon context. Recent molecular mechanistic research has revealed that ARID1A participates in tumor progression through its effects on control of cell cycle, modulation of cellular functions such as EMT, and regulation of various signaling pathways. In this review, we synthesize a mechanistic understanding of the role of ARID1A in human tumor initiation as well as in tumor suppression and further discuss the implications of these new discoveries for potential cancer intervention. We also highlight the mechanisms by which mutations affecting the subunits in SWI/SNF complexes promote cancer.
Collapse
|
39
|
Nia A, Dhanasekaran R. Genomic Landscape of HCC. CURRENT HEPATOLOGY REPORTS 2020; 19:448-461. [PMID: 33816052 PMCID: PMC8015384 DOI: 10.1007/s11901-020-00553-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/23/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is a leading cause of cancer related mortality in the world and it has limited treatment options. Understanding the molecular drivers of HCC is important to develop novel biomarkers and therapeutics. PURPOSE OF REVIEW HCC arises in a complex background of chronic hepatitis, fibrosis and liver regeneration which lead to genomic changes. Here, we summarize studies that have expanded our understanding of the molecular landscape of HCC. RECENT FINDINGS Recent technological advances in next generation sequencing (NGS) have elucidated specific genetic and molecular programs involved in hepatocarcinogenesis. We summarize the major somatic mutations and epigenetic changes have been identified in NGS-based studies. We also describe promising molecular therapies and immunotherapies which target specific genetic and epigenetic molecular events. SUMMARY The genomic landscape of HCC is incredibly complex and heterogeneous. Promising new developments are helping us decipher the molecular drivers of HCC and leading to new therapies.
Collapse
|
40
|
Vanderborght B, Lefere S, Vlierberghe HV, Devisscher L. The Angiopoietin/Tie2 Pathway in Hepatocellular Carcinoma. Cells 2020; 9:cells9112382. [PMID: 33143149 PMCID: PMC7693961 DOI: 10.3390/cells9112382] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 10/23/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Due to the usually late diagnosis and lack of effective therapies, hepatocellular carcinoma (HCC), which poses a growing global health problem, is characterized by a poor prognosis. Angiogenesis plays an important role in HCC progression, and vascular endothelial growth factor (VEGF) and angiopoietins (Angs) are key drivers of HCC angiogenesis. VEGF-targeting strategies already represent an important component of today’s systemic treatment landscape of HCC, whereas targeting the Ang/Tie2 signaling pathway may harbor future potential in this context due to reported beneficial anticancer effects when targeting this pathway. In addition, a better understanding of the relation between Angs and HCC angiogenesis and progression may reveal their potential as predictive factors for post-treatment disease progression and prognosis. In this review, we give a comprehensive overview of the complex role of Ang/Tie2 signaling in HCC, pinpointing its potential value as biomarker and target for HCC treatments, aiding HCC diagnosis and therapy.
Collapse
Affiliation(s)
- Bart Vanderborght
- Department of Internal Medicine and Pediatrics, Department of Gastroenterology and Hepatology, Hepatology Research Unit, Ghent University, B-9000 Ghent, Belgium; (B.V.); (S.L.); (H.V.V.)
- Department of Basic and Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Ghent University, B-9000 Ghent, Belgium
| | - Sander Lefere
- Department of Internal Medicine and Pediatrics, Department of Gastroenterology and Hepatology, Hepatology Research Unit, Ghent University, B-9000 Ghent, Belgium; (B.V.); (S.L.); (H.V.V.)
- Department of Basic and Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Ghent University, B-9000 Ghent, Belgium
| | - Hans Van Vlierberghe
- Department of Internal Medicine and Pediatrics, Department of Gastroenterology and Hepatology, Hepatology Research Unit, Ghent University, B-9000 Ghent, Belgium; (B.V.); (S.L.); (H.V.V.)
| | - Lindsey Devisscher
- Department of Basic and Applied Medical Sciences, Gut-Liver Immunopharmacology Unit, Ghent University, B-9000 Ghent, Belgium
- Correspondence: ; Tel.: +32-9-332-56-65
| |
Collapse
|
41
|
Yim SY, Kang SH, Shin JH, Jeong YS, Sohn BH, Um SH, Lee JS. Low ARID1A Expression is Associated with Poor Prognosis in Hepatocellular Carcinoma. Cells 2020; 9:E2002. [PMID: 32878261 PMCID: PMC7564185 DOI: 10.3390/cells9092002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/26/2020] [Accepted: 07/29/2020] [Indexed: 01/01/2023] Open
Abstract
AT-rich interactive domain 1A (ARID1A) is one of the most frequently mutated genes in hepatocellular carcinoma (HCC), but its clinical significance is not clarified. We aimed to evaluate the clinical significance of low ARID1A expression in HCC. By analyzing the gene expression data of liver from Arid1a-knockout mice, hepatic Arid1a-specific gene expression signature was identified (p < 0.05 and 0.5-fold difference). From this signature, a prediction model was developed to identify tissues lacking Arid1a activity and was applied to gene expression data from three independent cohorts of HCC patients to stratify patients according to ARID1A activity. The molecular features associated with loss of ARID1A were analyzed using The Cancer Genome Atlas (TCGA) multi-platform data, and Ingenuity Pathway Analysis (IPA) was done to uncover potential signaling pathways associated with ARID1A loss. ARID1A inactivation was clinically associated with poor prognosis in all three independent cohorts and was consistently related to poor prognosis subtypes of previously reported gene signatures (highly proliferative, hepatic stem cell, silence of Hippo pathway, and high recurrence signatures). Immune activity, indicated by significantly lower IFNG6 and cytolytic activity scores and enrichment of regulatory T-cell composition, was lower in the ARID1A-low subtype than ARID1A-high subtype. Ingenuity pathway analysis revealed that direct upstream transcription regulators of the ARID1A signature were genes associated with cell cycle, including E2F group, CCND1, and MYC, while tumor suppressors such as TP53, SMAD3, and CTNNB1 were significantly inhibited. ARID1A plays an important role in immune activity and regulating multiple genes involved in HCC development. Low-ARID1A subtype was associated with poor clinical outcome and suggests the possibility of ARID1A as a prognostic biomarker in HCC patients.
Collapse
Affiliation(s)
- Sun Young Yim
- Department of Internal Medicine, Korea University College of Medicine, Seoul 136-701, Korea; (S.Y.Y.); (S.H.U.)
| | - Sang Hee Kang
- Department of Surgery, Korea University College of Medicine, Seoul 136-701, Korea;
| | - Ji-Hyun Shin
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.-H.S.); (Y.S.J.); (B.H.S.)
| | - Yun Seong Jeong
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.-H.S.); (Y.S.J.); (B.H.S.)
| | - Bo Hwa Sohn
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.-H.S.); (Y.S.J.); (B.H.S.)
| | - Soon Ho Um
- Department of Internal Medicine, Korea University College of Medicine, Seoul 136-701, Korea; (S.Y.Y.); (S.H.U.)
| | - Ju-Seog Lee
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (J.-H.S.); (Y.S.J.); (B.H.S.)
| |
Collapse
|
42
|
Wang L, Qu J, Zhou N, Hou H, Jiang M, Zhang X. Effect and biomarker of immune checkpoint blockade therapy for ARID1A deficiency cancers. Biomed Pharmacother 2020; 130:110626. [PMID: 32791396 DOI: 10.1016/j.biopha.2020.110626] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 07/30/2020] [Accepted: 08/05/2020] [Indexed: 12/18/2022] Open
Abstract
The AT-rich interaction domain 1A (ARID1A) are frequently mutates across a broad spectrum of cancers. The majority of ARID1A mutations are inactivating mutations and lead to loss expression of the ARID1A protein. To date, clinical applicable targeted cancer therapy based on ARID1A mutational status has not been described. With increasing number of studies reported that the ARID1A deficiency may be a novel predictive biomarker for immune checkpoint blockade (ICB) treatment. ARID1A deficiency would compromise mismatch repair pathway and increase the number of tumor-infiltrating lymphocytes, tumor mutation burden and expression of programmed cell death ligand 1 (PD-L1) in some cancers, which would suggested cooperate with ICB treatment. In this review, we summarize the relationship between ARID1A deficiency and ICB treatment including potential mechanisms, potential therapeutic combination, and the biomarker value of ARID1A deficiency.
Collapse
Affiliation(s)
- Li Wang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Jialin Qu
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Na Zhou
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Helei Hou
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Man Jiang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China
| | - Xiaochun Zhang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao 266003, China.
| |
Collapse
|
43
|
Gong J, Chuang J, Cho M, Toomey K, Hendifar A, Li D. Molecular Targets, Pathways, and Therapeutic Implications for Hepatocellular Carcinoma. Int J Mol Sci 2020; 21:ijms21155232. [PMID: 32718047 PMCID: PMC7432744 DOI: 10.3390/ijms21155232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatocellular carcinoma (HCC) represents one of the leading causes of cancer mortality worldwide. While significant advances have been made for the treatment of advanced hepatocellular carcinoma in the past few years, the prognosis remains poor and effective biomarkers to guide selection of therapies remain noticeably absent. However, several targeted therapies have been approved in the past few years that have improved the outlook for this disease. In this review, we will highlight the recent therapies approved for the treatment of advanced HCC and discuss promising therapeutic options, targets, and pathways for drug development and consideration for future clinical trials.
Collapse
Affiliation(s)
- Jun Gong
- Department of Gastrointestinal Malignancies, Cedars-Sinai Samuel Oschin Comprehensive Cancer Institute, Los Angeles, CA 90048, USA;
| | - Jeremy Chuang
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
| | - May Cho
- Department of Internal Medicine, UC Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA; (M.C.); (K.T.)
| | - Kyra Toomey
- Department of Internal Medicine, UC Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA; (M.C.); (K.T.)
| | - Andrew Hendifar
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA;
| | - Daneng Li
- Department of Medical Oncology, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA;
- Correspondence:
| |
Collapse
|
44
|
Marin JJ, Macias RI, Monte MJ, Romero MR, Asensio M, Sanchez-Martin A, Cives-Losada C, Temprano AG, Espinosa-Escudero R, Reviejo M, Bohorquez LH, Briz O. Molecular Bases of Drug Resistance in Hepatocellular Carcinoma. Cancers (Basel) 2020; 12:cancers12061663. [PMID: 32585893 PMCID: PMC7352164 DOI: 10.3390/cancers12061663] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 12/11/2022] Open
Abstract
The poor outcome of patients with non-surgically removable advanced hepatocellular carcinoma (HCC), the most frequent type of primary liver cancer, is mainly due to the high refractoriness of this aggressive tumor to classical chemotherapy. Novel pharmacological approaches based on the use of inhibitors of tyrosine kinases (TKIs), mainly sorafenib and regorafenib, have provided only a modest prolongation of the overall survival in these HCC patients. The present review is an update of the available information regarding our understanding of the molecular bases of mechanisms of chemoresistance (MOC) with a significant impact on the response of HCC to existing pharmacological tools, which include classical chemotherapeutic agents, TKIs and novel immune-sensitizing strategies. Many of the more than one hundred genes involved in seven MOC have been identified as potential biomarkers to predict the failure of treatment, as well as druggable targets to develop novel strategies aimed at increasing the sensitivity of HCC to pharmacological treatments.
Collapse
Affiliation(s)
- Jose J.G. Marin
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain
- Correspondence: (J.J.G.M.); (O.B.); Tel.: +34-663182872 (J.J.G.M.); +34-923294674 (O.B.)
| | - Rocio I.R. Macias
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain
| | - Maria J. Monte
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain
| | - Marta R. Romero
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain
| | - Maitane Asensio
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
| | - Anabel Sanchez-Martin
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
| | - Candela Cives-Losada
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
| | - Alvaro G. Temprano
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
| | - Ricardo Espinosa-Escudero
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
| | - Maria Reviejo
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
| | - Laura H. Bohorquez
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
| | - Oscar Briz
- Experimental Hepatology and Drug Targeting (HEVEFARM) Group, University of Salamanca, IBSAL, 37007 Salamanca, Spain; (R.I.R.M.); (M.J.M.); (M.R.R.); (M.A.); (A.S.-M.); (C.C.-L.); (A.G.T.); (R.E.-E.); (M.R.); (L.H.B.)
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, 28029 Madrid, Spain
- Correspondence: (J.J.G.M.); (O.B.); Tel.: +34-663182872 (J.J.G.M.); +34-923294674 (O.B.)
| |
Collapse
|
45
|
Cheng Z, Wei-Qi J, Jin D. New insights on sorafenib resistance in liver cancer with correlation of individualized therapy. Biochim Biophys Acta Rev Cancer 2020; 1874:188382. [PMID: 32522600 DOI: 10.1016/j.bbcan.2020.188382] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/11/2020] [Accepted: 05/28/2020] [Indexed: 12/19/2022]
Abstract
Liver cancer is highly malignant and insensitive to cytotoxic chemotherapy and is associated with very poor patient prognosis. In 2007, the small-molecule targeted drug sorafenib was approved for the treatment of advanced liver cancer. In the subsequent ten years, sorafenib has been the only first-line therapeutic targeted drug for advanced hepatocellular carcinoma (HCC). However, a number of clinical studies show that a considerable percentage of patients with liver cancer are insensitive to sorafenib. The number of patients who actually benefit significantly from sorafenib treatment is very limited, and the overall efficacy of sorafenib is far from satisfactory, which has attracted the attention of researchers. Based on previous studies and reports, this article reviews the potential mechanisms of sorafenib resistance (SR) and summarizes the biomarkers and clinicopathological indicators that might be used for predicting sorafenib response and developing personalized therapy.
Collapse
Affiliation(s)
- Zhang Cheng
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/Institute, Second Military Medical University, Shanghai 200433, China; National Center for Liver Cancer, Shanghai 200433, China
| | - Jiang Wei-Qi
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/Institute, Second Military Medical University, Shanghai 200433, China
| | - Ding Jin
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital/Institute, Second Military Medical University, Shanghai 200433, China; National Center for Liver Cancer, Shanghai 200433, China.
| |
Collapse
|
46
|
Zhu J, Tang B, Li J, Shi Y, Chen M, Lv X, Meng M, Weng Q, Zhang N, Fan K, Xu M, Ji J. Identification and validation of the angiogenic genes for constructing diagnostic, prognostic, and recurrence models for hepatocellular carcinoma. Aging (Albany NY) 2020; 12:7848-7873. [PMID: 32379058 PMCID: PMC7244068 DOI: 10.18632/aging.103107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Accepted: 03/09/2020] [Indexed: 12/24/2022]
Abstract
Since angiogenesis has an indispensable effect in the development and progression of tumors, in this study we aimed to identify angiogenic genes closely associated with prognosis of HCC to establish diagnostic, prognostic, and recurrence models. We analyzed 132 angiogenic genes and HCC-related RNA sequence data from the TCGA and ICGC databases by Cox and least absolute shrinkage and selection operator (LASSO) regression, and identified four angiogenic genes (ENFA3, EGF, MMP3 and AURKB) to establish prognosis, recurrence and diagnostic models and corresponding nomograms. The prognostic and recurrence models were determined to be independent predictors of prognosis and recurrence (P < 0.05). And compared with the low-risk group, patients in the high-risk group had worse overall survival (OS) rates in training cohort (P < 0.001) and validation cohort (P < 0.001), and higher recurrence rates in training cohort (P<0.001) and validation cohort (P=0.01). The diagnostic models have been validated to correctly distinguish HCC from normal samples and proliferative nodule samples. Through pharmacological analysis we identified piperlongumine as a drug for targeting angiogenesis, and it was validated to inhibit HCC cell proliferation and angiogenesis via the EGF/EGFR axis.
Collapse
Affiliation(s)
- Jinyu Zhu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui 323000, China.,Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Bufu Tang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui 323000, China.,Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Jie Li
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui 323000, China.,Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Yueli Shi
- Department of Pathology and Pathophysiology, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Minjiang Chen
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui 323000, China.,Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Xiuling Lv
- Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Miaomiao Meng
- Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Qiaoyou Weng
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui 323000, China.,Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Nannan Zhang
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui 323000, China.,Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Kai Fan
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui 323000, China.,Department of Radiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Min Xu
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui 323000, China.,Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| | - Jiansong Ji
- Key Laboratory of Imaging Diagnosis and Minimally Invasive Intervention Research, Lishui Hospital, School of Medicine, Zhejiang University, Lishui 323000, China.,Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, China
| |
Collapse
|
47
|
Hu B, Lin JZ, Yang XB, Sang XT. The roles of mutated SWI/SNF complexes in the initiation and development of hepatocellular carcinoma and its regulatory effect on the immune system: A review. Cell Prolif 2020; 53:e12791. [PMID: 32162380 PMCID: PMC7162795 DOI: 10.1111/cpr.12791] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 02/13/2020] [Accepted: 02/22/2020] [Indexed: 12/11/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a primary liver malignancy with a high global prevalence and a dismal prognosis. Studies are urgently needed to examine the molecular pathogenesis and biological characteristics of HCC. Chromatin remodelling, an integral component of the DNA damage response, protects against DNA damage‐induced genome instability and tumorigenesis by triggering the signalling events that activate the interconnected DNA repair pathways. The SWI/SNF complexes are one of the most extensively investigated adenosine triphosphate‐dependent chromatin remodelling complexes, and mutations in genes encoding SWI/SNF subunits are frequently observed in various human cancers, including HCC. The mutated SWI/SNF complex subunits exert dual functions by accelerating or inhibiting HCC initiation and progression. Furthermore, the abnormal SWI/SNF complexes influence the transcription of interferon‐stimulated genes, as well as the differentiation, activation and recruitment of several immune cell types. In addition, they exhibit synergistic effects with immune checkpoint inhibitors in the treatment of diverse tumour types. Therefore, understanding the mutations and deficiencies of the SMI/SNF complexes, together with the associated functional mechanisms, may provide a novel strategy to treat HCC through targeting the related genes or modulating the tumour microenvironment.
Collapse
Affiliation(s)
- Bo Hu
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jian-Zhen Lin
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Bo Yang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xin-Ting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
48
|
Genomic Perspective on Mouse Liver Cancer Models. Cancers (Basel) 2019; 11:cancers11111648. [PMID: 31731480 PMCID: PMC6895968 DOI: 10.3390/cancers11111648] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 02/07/2023] Open
Abstract
Selecting the most appropriate mouse model that best recapitulates human hepatocellular carcinoma (HCC) allows translation of preclinical mouse studies into clinical studies. In the era of cancer genomics, comprehensive and integrative analysis of the human HCC genome has allowed categorization of HCC according to molecular subtypes. Despite the variety of mouse models that are available for preclinical research, there is a lack of evidence for mouse models that closely resemble human HCC. Therefore, it is necessary to identify the accurate mouse models that represent human HCC based on molecular subtype as well as histologic aggressiveness. In this review, we summarize the mouse models integrated with human HCC genomic data to provide information regarding the models that recapitulates the distinct aspect of HCC biology and prognosis based on molecular subtypes.
Collapse
|
49
|
Yim SY, Lee JS. The Genomic Landscape and Its Clinical Implications in Hepatocellular Carcinoma. ACTA ACUST UNITED AC 2019. [DOI: 10.17998/jlc.19.2.97] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
50
|
Hung YH, Hsu MC, Chen LT, Hung WC, Pan MR. Alteration of Epigenetic Modifiers in Pancreatic Cancer and Its Clinical Implication. J Clin Med 2019; 8:jcm8060903. [PMID: 31238554 PMCID: PMC6617267 DOI: 10.3390/jcm8060903] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 06/15/2019] [Accepted: 06/20/2019] [Indexed: 12/12/2022] Open
Abstract
The incidence of pancreatic cancer has considerably increased in the past decade. Pancreatic cancer has the worst prognosis among the cancers of the digestive tract because the pancreas is located in the posterior abdominal cavity, and most patients do not show clinical symptoms for early detection. Approximately 55% of all patients are diagnosed with pancreatic cancer only after the tumors metastasize. Therefore, identifying useful biomarkers for early diagnosis and screening high-risk groups are important to improve pancreatic cancer therapy. Recent emerging evidence has suggested that genetic and epigenetic alterations play a crucial role in the molecular aspects of pancreatic tumorigenesis. Here, we summarize recent progress in our understanding of the epigenetic alterations in pancreatic cancer and propose potential synthetic lethal strategies to target these genetic defects to treat this deadly disease.
Collapse
Affiliation(s)
- Yu-Hsuan Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
| | - Ming-Chuan Hsu
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
| | - Li-Tzong Chen
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
- Division of Hematology/Oncology, Department of Internal Medicine, National Cheng Kung University Hospital, Tainan 704, Taiwan.
| | - Wen-Chun Hung
- National Institute of Cancer Research, National Health Research Institutes, Tainan 704, Taiwan.
- Institute of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Mei-Ren Pan
- Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan.
| |
Collapse
|