1
|
Lui VCH. Organoids in biliary atresia. WORLD JOURNAL OF PEDIATRIC SURGERY 2025; 8:e001010. [PMID: 40385243 PMCID: PMC12083310 DOI: 10.1136/wjps-2025-001010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/27/2025] [Indexed: 05/20/2025] Open
Abstract
Organoids are three-dimensional and self-organizing cell cultures of various lineages that resemble structures and functions of an organ in many ways, and they are versatile tools in disease modeling and patho-mechanistic study of human diseases affecting their tissues of origin. Biliary atresia (BA), a cholangiopathy affecting the bile ducts of the liver, is a heterogeneous and multifaceted liver disease of complex pathogenesis. Cholangiopathies refer to a category of liver diseases that affect the cholangiocytes, the epithelial cells lining the lumen of the biliary trees. Biliary organoids consist of cholangiocytes in a spherical monolayer epithelium, which favorably resembles the structures and functional properties of the bile duct cholangiocytes. Biliary tissue-derived cells, pluripotent stem cells or embryonic stem cells, and hepatic progenitor cells are capable of generating biliary organoids. In the last decade, a considerable advancement has been made in the generation of biliary organoids for modeling liver physiology and pathophysiology. Using biliary organoids, scientists have advanced our knowledge underlying the pathogenic roles of genetic susceptibility, dysregulated hepatobiliary development/structure, environmental factors, and dysregulated immune-inflammatory responses to an injury in BA. This review will summarize and discuss the derivation and the use of biliary organoids in the disease modeling and patho-mechanistic study of BA.
Collapse
|
2
|
Zhang L, Xiong Z, Chen Z, Xu M, Zhao S, Liu X, Jiang K, Hu Y, Liu S, Sun X, Wu Z, Shen J, Wang L. Periplakin Attenuates Liver Fibrosis via Reprogramming CD44 Low Cells into CD44 High Liver Progenitor Cells. Cell Mol Gastroenterol Hepatol 2025; 19:101498. [PMID: 40107450 DOI: 10.1016/j.jcmgh.2025.101498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 03/08/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
BACKGROUND & AIMS Liver progenitor cells (LPCs) contribute significantly to the restoration of injured liver parenchyma and promote liver regeneration, thereby ameliorating liver fibrosis. However, the mechanism of the derivation of LPCs remains poorly understood. METHODS We first examined the expression of periplakin (PPL) in patients and mouse models with liver fibrosis. Adenovirus overexpressing PPL was injected into the tail vein of mouse models to detect the regulatory effect of PPL on liver fibrosis. Single-cell sequencing explored how PPL influences liver fibrosis progression. Additionally, PPL+CD44Low cells and PPL+CD44High LPCs were transplanted into 3,5-diethoxycarbonyl-1,4-dihydrocollidine-induced mouse models to assess their therapeutic efficacy in treating liver fibrosis. RESULTS The expression of PPL is upregulated in fibrotic livers in human and mouse models of liver fibrosis. Functionally, we found that PPL overexpression significantly attenuated liver fibrosis. Mechanistically, PPL was specifically expressed in LPCs and promoted LPC expansion. Moreover, we observed that PPL+ cells could be categorized into PPL+CD44Low and PPL+CD44High subsets, and PPL+CD44Low cells were found to redifferentiate into PPL+CD44High LPCs during liver fibrosis. Furthermore, transplantation of PPL+CD44High LPCs notably suppressed liver fibrosis. CONCLUSIONS These findings demonstrate that PPL+CD44Low cells can be reprogrammed into PPL+CD44High LPCs, which ameliorate liver fibrosis, suggesting a potential application of PPL for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Lichao Zhang
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangdong, China
| | - Zhiyong Xiong
- Department of General Surgery, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zebin Chen
- Center of Hepato-Pancreatico-Biliary Surgery, First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Meiyining Xu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Siyu Zhao
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Xianzhi Liu
- Department of Gastroenterology, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kefeng Jiang
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Yunyi Hu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Shurui Liu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China
| | - Xi Sun
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.
| | - Zhongdao Wu
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.
| | - Jia Shen
- Department of Parasitology of Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China; Key Laboratory of Tropical Disease Control, Ministry of Education, Sun Yat-sen University, Guangzhou, China.
| | - Lifu Wang
- Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, KingMed School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
3
|
Guo XL, Wang YD, Liu YJ, Chu L, Zhu H, Hu Y, Wu RY, Xie HY, Yu J, Li SP, Xiong CY, Li RY, Ke F, Chen L, Chen GQ, Chen L, Bai F, Enver T, Li GH, Li HF, Hong DL. Fetal hepatocytes protect the HSPC genome via fetuin-A. Nature 2025; 637:402-411. [PMID: 39633051 PMCID: PMC11711094 DOI: 10.1038/s41586-024-08307-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 10/30/2024] [Indexed: 12/07/2024]
Abstract
The maintenance of genomic integrity in rapidly proliferating cells is a substantial challenge during embryonic development1-3. Although numerous cell-intrinsic mechanisms have been revealed4-7, little is known about genome-protective effects and influences of developmental tissue microenvironments on tissue-forming cells. Here we show that fetal liver hepatocytes provide protection to haematopoietic stem and progenitor cell (HSPC) genomes. Lineage tracing and depletion in mice demonstrated that delayed hepatocyte development in early fetal livers increased the chromosomal instability of newly colonizing HSPCs. In addition, HSPCs developed tolerance to genotoxins in hepatocyte-conditioned medium, suggesting that hepatocytes protect the HSPC genome in a paracrine manner. Proteomic analyses demonstrated the enrichment of fetuin-A in hepatocyte-conditioned medium but not in early fetal livers. Fetuin-A activates a Toll-like receptor pathway to prevent pathogenic R-loop accumulation in HSPCs undergoing DNA replication and gene transcription in the fetal liver. Numerous haematopoietic regulatory genes frequently involved in leukaemogenic mutations are associated with R-loop-enriched regions. In Fetua-knockout mice, HSPCs showed increased genome instability and susceptibility to malignancy induction. Moreover, low concentrations of fetuin-A correlated with the oncogenesis of childhood leukaemia. Therefore, we uncover a mechanism operating in developmental tissues that offers tissue-forming cell genome protection and is implicated in developmental-related diseases.
Collapse
Affiliation(s)
- Xiao-Lin Guo
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Institute of Haematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Ding Wang
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Institute of Haematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yan-Jun Liu
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Institute of Haematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Chu
- Department of Obstetrics and Gynecology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hua Zhu
- Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ye Hu
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Institute of Haematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ren-Yan Wu
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Institute of Haematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hong-Yu Xie
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Institute of Haematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juan Yu
- National laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shui-Ping Li
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Institute of Haematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chao-Yang Xiong
- National laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ruo-Yan Li
- Biomedical Pioneering Innovation Centre (BIOPIC) and Translational Cancer Research Centre, School of Life Sciences, First Hospital, Peking University, Beijing, China
| | - Fang Ke
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Institute of Haematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Chen
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guo-Qiang Chen
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Institute of Haematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Research Units of Stress and Tumor, Chinese Academy of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Hainan Academy of Medical Sciences, School of Basic Medicine and Life Science, Hainan Medical University, Haikou, China
| | - Liang Chen
- RNA Institute, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Fan Bai
- Biomedical Pioneering Innovation Centre (BIOPIC) and Translational Cancer Research Centre, School of Life Sciences, First Hospital, Peking University, Beijing, China
| | - Tariq Enver
- Department of Cancer Biology, UCL Cancer Institute, University College London, London, UK
| | - Guo-Hong Li
- National laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Huai-Fang Li
- Department of Obstetrics and Gynecology, Shanghai Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Deng-Li Hong
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Institute of Haematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Research Units of Stress and Tumor, Chinese Academy of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Innovative Research Team of High-level Local Universities in Shanghai, Shanghai, China.
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Frau C, Vallier L. Exploiting the plasticity of cholangiocytes to repair the biliary tree. Curr Opin Genet Dev 2024; 89:102257. [PMID: 39255689 DOI: 10.1016/j.gde.2024.102257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/13/2024] [Accepted: 08/17/2024] [Indexed: 09/12/2024]
Abstract
Cholangiocytes are the main cell type lining the epithelium of the biliary tree of the liver. This cell type has been implicated not only in diseases affecting the biliary tree but also in chronic liver diseases targeting other hepatic cells such as hepatocytes. However, the isolation and culture of cholangiocytes have been particularly arduous, thereby limiting the development of new therapies. The emergence of organoids has the potential to address in part this challenge. Indeed, cholangiocyte organoids can be established from both the intra- and extrahepatic regions of the biliary tree, providing an advantageous platform for disease modeling and mechanism investigations. Accordingly, recent studies on cholangiocyte organoids, together with the advent of single-cell -omics, have opened the field to exciting discoveries concerning the plastic nature of these cells and their capability to adapt to different environments and stimuli. This review will focus on describing how these plasticity properties could be exploited in regenerative medicine and cell-based therapy, opening new frontiers for treating disorders affecting the biliary tree and beyond.
Collapse
Affiliation(s)
- Carla Frau
- Berlin Institute of Health Centre for Regenerative Therapies, Berlin, Germany; Max Planck Institute for Molecular Genetics, Berlin, Germany; Berlin Institute of Health @Charite, Berlin, Germany.
| | - Ludovic Vallier
- Berlin Institute of Health Centre for Regenerative Therapies, Berlin, Germany; Max Planck Institute for Molecular Genetics, Berlin, Germany; Berlin Institute of Health @Charite, Berlin, Germany.
| |
Collapse
|
5
|
Luo X, Gong Y, Gong Z, Fan K, Suo T, Liu H, Ni X, Ni X, Abudureyimu M, Liu H. Liver and bile duct organoids and tumoroids. Biomed Pharmacother 2024; 178:117104. [PMID: 39024834 DOI: 10.1016/j.biopha.2024.117104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/23/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024] Open
Abstract
Organoids refer to 3D cultures established to recapitulate histology, pathology, architecture, and genetic traits of various organs and tissues in the body, thereby replacing 2D cell cultures, xenograft, and animal models. Organoids form a 3D in vitro mimic of original tissues like the liver and are derived from embryonic or adult tissue stem cells. Liver and bile duct tumor organoids, also called, tumoroids capture genetic diversity, cellular, and pathophysiological properties of original tumors. Moreover, co-culture techniques along with genetic modulation of organoids allow for using tumoroids in liver and bile duct cancer research and drug screening/testing. Therefore, tumoroids are promising platforms for studying liver and bile duct cancer, which paves the way for the new era of personalized therapies. In the current review, we aimed to discuss liver and bile duct organoids with special emphasis on tumoroids and their applications, advantages, and shortcomings.
Collapse
Affiliation(s)
- Xuanming Luo
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China; Department of General Surgery, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China
| | - Yuda Gong
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China
| | - Zijun Gong
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China
| | - Kun Fan
- Department of General Surgery, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China
| | - Tao Suo
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China
| | - Han Liu
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China
| | - Xiaoling Ni
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China
| | - Xiaojian Ni
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China
| | - Miyesaier Abudureyimu
- Cardiovascular Department, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China.
| | - Houbao Liu
- Department of Biliary Surgery, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Center of Zhongshan Hospital, Fudan University, China; Cancer Center, Zhongshan Hospital, Fudan University, China; Biliary Tract Disease Institute, Fudan University, China; Shanghai Engineering Research Center of Biliary Tract Minimal Invasive Surgery and Materials, China; Department of General Surgery, Shanghai Xuhui Central Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
6
|
Ahmadzada B, Felgendreff P, Minshew AM, Amiot BP, Nyberg SL. Producing Human Livers From Human Stem Cells Via Blastocyst Complementation. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2024; 31:100537. [PMID: 38854436 PMCID: PMC11160964 DOI: 10.1016/j.cobme.2024.100537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
The need for organ transplants exceeds donor organ availability. In the quest to solve this shortage, the most remarkable area of advancement is organ production through the use of chimeric embryos, commonly known as blastocyst complementation. This technique involves the combination of different species to generate chimeras, where the extent of donor cell contribution to the desired tissue or organ can be regulated. However, ethical concerns arise with the use of brain tissue in such chimeras. Furthermore, the ratio of contributed cells to host animal cells in the chimeric system is low in the production of chimeras associated with cell apoptosis. This review discusses the latest innovations in blastocyst complementation and highlights the progress made in creating organs for transplant.
Collapse
Affiliation(s)
- Boyukkhanim Ahmadzada
- Research Trainee in the Division of Surgery Research (Ahmadzada; limited tenure), Artificial Liver and Liver Transplantation Laboratory (Minshew, Amiot, and Nyberg), and Division of Surgery Research (Nyberg), Mayo Clinic, Rochester, Minnesota, USA; Research Fellow in the Division of Surgery Research (Felgendreff), Mayo Clinic School of Graduate Medical Education, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA. Dr Felgendreff is also affiliated with the Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Philipp Felgendreff
- Research Trainee in the Division of Surgery Research (Ahmadzada; limited tenure), Artificial Liver and Liver Transplantation Laboratory (Minshew, Amiot, and Nyberg), and Division of Surgery Research (Nyberg), Mayo Clinic, Rochester, Minnesota, USA; Research Fellow in the Division of Surgery Research (Felgendreff), Mayo Clinic School of Graduate Medical Education, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA. Dr Felgendreff is also affiliated with the Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Anna M Minshew
- Research Trainee in the Division of Surgery Research (Ahmadzada; limited tenure), Artificial Liver and Liver Transplantation Laboratory (Minshew, Amiot, and Nyberg), and Division of Surgery Research (Nyberg), Mayo Clinic, Rochester, Minnesota, USA; Research Fellow in the Division of Surgery Research (Felgendreff), Mayo Clinic School of Graduate Medical Education, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA. Dr Felgendreff is also affiliated with the Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Bruce P Amiot
- Research Trainee in the Division of Surgery Research (Ahmadzada; limited tenure), Artificial Liver and Liver Transplantation Laboratory (Minshew, Amiot, and Nyberg), and Division of Surgery Research (Nyberg), Mayo Clinic, Rochester, Minnesota, USA; Research Fellow in the Division of Surgery Research (Felgendreff), Mayo Clinic School of Graduate Medical Education, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA. Dr Felgendreff is also affiliated with the Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| | - Scott L Nyberg
- Research Trainee in the Division of Surgery Research (Ahmadzada; limited tenure), Artificial Liver and Liver Transplantation Laboratory (Minshew, Amiot, and Nyberg), and Division of Surgery Research (Nyberg), Mayo Clinic, Rochester, Minnesota, USA; Research Fellow in the Division of Surgery Research (Felgendreff), Mayo Clinic School of Graduate Medical Education, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA. Dr Felgendreff is also affiliated with the Department of General, Visceral and Transplant Surgery, Hannover Medical School, Hannover, Germany
| |
Collapse
|
7
|
Li P, Miyamoto D, Fukumoto M, Kawaguchi Y, Yamashita M, Tetsuo H, Adachi T, Hidaka M, Hara T, Soyama A, Matsushima H, Imamura H, Kanetaka K, Gu W, Eguchi S. Generation of human hepatobiliary organoids with a functional bile duct from chemically induced liver progenitor cells. Stem Cell Res Ther 2024; 15:269. [PMID: 39183353 PMCID: PMC11346037 DOI: 10.1186/s13287-024-03877-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/04/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Liver disease imposes a significant medical burden that persists due to a shortage of liver donors and an incomplete understanding of liver disease progression. Hepatobiliary organoids (HBOs) could provide an in vitro mini-organ model to increase the understanding of the liver and may benefit the development of regenerative medicine. METHODS In this study, we aimed to establish HBOs with bile duct (BD) structures and mature hepatocytes (MHs) using human chemically induced liver progenitor cells (hCLiPs). hCLiPs were induced in mature cryo-hepatocytes using a small-molecule cocktail of TGF-β inhibitor (A-83-01, A), GSK3 inhibitor (CHIR99021, C), and 10% FBS (FAC). HBOs were then formed by seeding hCLiPs into ultralow attachment plates and culturing them with a combination of small molecules of Rock-inhibitor (Y-27632) and AC (YAC). RESULTS These HBOs exhibited bile canaliculi of MHs connected to BD structures, mimicking bile secretion and transportation functions of the liver. The organoids showed gene expression patterns consistent with both MHs and BD structures, and functional assays confirmed their ability to transport the bile analogs of rhodamine-123 and CLF. Functional patient-specific HBOs were also successfully created from hCLiPs sourced from cirrhotic liver tissues. CONCLUSIONS This study demonstrated the potential of human HBOs as an efficient model for studying hepatobiliary diseases, drug discovery, and personalized medicine.
Collapse
Affiliation(s)
- Peilin Li
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8102, Japan
- Department of Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Daisuke Miyamoto
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8102, Japan
| | - Masayuki Fukumoto
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8102, Japan
| | - Yuta Kawaguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8102, Japan
| | - Mampei Yamashita
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8102, Japan
| | - Hanako Tetsuo
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8102, Japan
| | - Tomohiko Adachi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8102, Japan
| | - Masaaki Hidaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8102, Japan
| | - Takanobu Hara
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8102, Japan
| | - Akihiko Soyama
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8102, Japan
| | - Hajime Matsushima
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8102, Japan
| | - Hajime Imamura
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8102, Japan
| | - Kengo Kanetaka
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8102, Japan
| | - Weili Gu
- Department of Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Susumu Eguchi
- Department of Surgery, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki, 852-8102, Japan.
| |
Collapse
|
8
|
Zhao J, Yue P, Mi N, Li M, Fu W, Zhang X, Gao L, Bai M, Tian L, Jiang N, Lu Y, Ma H, Dong C, Zhang Y, Zhang H, Zhang J, Ren Y, Suzuki A, Wong PF, Tanaka K, Rerknimitr R, Junger HH, Cheung TT, Melloul E, Demartines N, Leung JW, Yao J, Yuan J, Lin Y, Schlitt HJ, Meng W. Biliary fibrosis is an important but neglected pathological feature in hepatobiliary disorders: from molecular mechanisms to clinical implications. MEDICAL REVIEW (2021) 2024; 4:326-365. [PMID: 39135601 PMCID: PMC11317084 DOI: 10.1515/mr-2024-0029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/06/2024] [Indexed: 08/15/2024]
Abstract
Fibrosis resulting from pathological repair secondary to recurrent or persistent tissue damage often leads to organ failure and mortality. Biliary fibrosis is a crucial but easily neglected pathological feature in hepatobiliary disorders, which may promote the development and progression of benign and malignant biliary diseases through pathological healing mechanisms secondary to biliary tract injuries. Elucidating the etiology and pathogenesis of biliary fibrosis is beneficial to the prevention and treatment of biliary diseases. In this review, we emphasized the importance of biliary fibrosis in cholangiopathies and summarized the clinical manifestations, epidemiology, and aberrant cellular composition involving the biliary ductules, cholangiocytes, immune system, fibroblasts, and the microbiome. We also focused on pivotal signaling pathways and offered insights into ongoing clinical trials and proposing a strategic approach for managing biliary fibrosis-related cholangiopathies. This review will offer a comprehensive perspective on biliary fibrosis and provide an important reference for future mechanism research and innovative therapy to prevent or reverse fibrosis.
Collapse
Affiliation(s)
- Jinyu Zhao
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ping Yue
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ningning Mi
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Matu Li
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Wenkang Fu
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xianzhuo Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Long Gao
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Mingzhen Bai
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Liang Tian
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Ningzu Jiang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yawen Lu
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Haidong Ma
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Chunlu Dong
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yong Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hengwei Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Jinduo Zhang
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yanxian Ren
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Azumi Suzuki
- Department of Gastroenterology, Hamamatsu Medical Center, Hamamatsu, Japan
| | - Peng F. Wong
- Department of Vascular Surgery, The James Cook University Hospital, Middlesbrough, UK
| | - Kiyohito Tanaka
- Department of Gastroenterology, Kyoto Second Red Cross Hospital, Kyoto, Japan
| | - Rungsun Rerknimitr
- Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn, Bangkok, Thailand
- Excellence Center for Gastrointestinal Endoscopy, King Chulalongkorn Memorial Hospital, Bangkok, Thailand
| | - Henrik H. Junger
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Tan T. Cheung
- Department of Surgery, The University of Hong Kong, Hong Kong, China
| | - Emmanuel Melloul
- Department of Visceral Surgery, Lausanne University Hospital CHUV, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Nicolas Demartines
- Department of Visceral Surgery, Lausanne University Hospital CHUV, University of Lausanne (UNIL), Lausanne, Switzerland
| | - Joseph W. Leung
- Division of Gastroenterology and Hepatology, UC Davis Medical Center and Sacramento VA Medical Center, Sacramento, CA, USA
| | - Jia Yao
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, China
| | - Jinqiu Yuan
- Clinical Research Center, Big Data Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yanyan Lin
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hans J. Schlitt
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Wenbo Meng
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
9
|
Wang L, He L, Yi W, Wang M, Xu F, Liu H, Nie J, Pan YH, Dang S, Zhang W. ADAMTS18-fibronectin interaction regulates the morphology of liver sinusoidal endothelial cells. iScience 2024; 27:110273. [PMID: 39040056 PMCID: PMC11261151 DOI: 10.1016/j.isci.2024.110273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/12/2024] [Accepted: 06/12/2024] [Indexed: 07/24/2024] Open
Abstract
Liver sinusoidal endothelial cells (LSECs) have a unique morphological structure known as "fenestra" that plays a crucial role in liver substance exchange and homeostasis maintenance. In this study, we demonstrate that ADAMTS18 protease is primarily secreted by fetal liver endothelial cells. ADAMTS18 deficiency leads to enlarged fenestrae and increased porosity of LSECs, microthrombus formation in liver vessels, and an imbalance of liver oxidative stress. These defects worsen carbon tetrachloride (CCl4)-induced liver fibrosis and diethylnitrosamine (DEN)/high-fat-induced hepatocellular carcinoma (HCC) in adult Adamts18-deficient mice. Mechanically, ADAMTS18 functions as a modifier of fibronectin (FN) to regulate the morphological acquisition of LSECs via the vascular endothelial growth factor A (VEGFA) signaling pathways. Collectively, a mechanism is proposed for LSEC morphogenesis and liver homeostasis maintenance via ADAMTS18-FN-VEGFA niches.
Collapse
Affiliation(s)
- Liya Wang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Li He
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Weijia Yi
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Min Wang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Fangmin Xu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Hanlin Liu
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Jiahui Nie
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Yi-Hsuan Pan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| | - Suying Dang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wei Zhang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), School of Life Sciences, East China Normal University, Shanghai, China
| |
Collapse
|
10
|
Vijay V, Karisani N, Shi L, Hung YH, Vu P, Kattel P, Kenney L, Merritt J, Adil R, Wu Q, Zhen Y, Morris R, Kreuzer J, Kathiresan M, Herrera Lopez XI, Ellis H, Gritti I, Lecorgne L, Farag I, Popa A, Shen W, Kato H, Xu Q, Balasooriya ER, Wu MJ, Chaturantabut S, Kelley RK, Cleary JM, Lawrence MS, Root D, Benes CH, Deshpande V, Juric D, Sellers WR, Ferrone CR, Haas W, Vazquez F, Getz G, Bardeesy N. Generation of a biliary tract cancer cell line atlas reveals molecular subtypes and therapeutic targets. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.04.601970. [PMID: 39026794 PMCID: PMC11257448 DOI: 10.1101/2024.07.04.601970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Biliary tract cancers (BTCs) are a group of deadly malignancies encompassing intrahepatic and extrahepatic cholangiocarcinoma, gallbladder carcinoma, and ampullary carcinoma. Here, we present the integrative analysis of 63 BTC cell lines via multi-omics clustering and genome- scale CRISPR screens, providing a platform to illuminate BTC biology and inform therapeutic development. We identify dependencies broadly enriched in BTC compared to other cancers as well as dependencies selective to the anatomic subtypes. Notably, cholangiocarcinoma cell lines are stratified into distinct lineage subtypes based on biliary or dual biliary/hepatocyte marker signatures, associated with dependency on specific lineage survival factors. Transcriptional analysis of patient specimens demonstrates the prognostic significance of these lineage subtypes. Additionally, we delineate strategies to enhance targeted therapies or to overcome resistance in cell lines with key driver gene mutations. Furthermore, clustering based on dependencies and proteomics data elucidates unexpected functional relationships, including a BTC subgroup with partial squamous differentiation. Thus, this cell line atlas reveals potential therapeutic targets in molecularly defined BTCs, unveils biologically distinct disease subtypes, and offers a vital resource for BTC research.
Collapse
|
11
|
Lemaigre FP. Planar cell polarity is crucial for proper morphogenesis of the bile ducts. J Hepatol 2024; 81:17-19. [PMID: 38548065 DOI: 10.1016/j.jhep.2024.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 06/23/2024]
|
12
|
Raab M, Christodoulou E, Krishnankutty R, Gradinaru A, Walker AD, Olaizola P, Younger NT, Lyons AM, Jarman EJ, Gournopanos K, von Kriegsheim A, Waddell SH, Boulter L. Van Gogh-like 2 is essential for the architectural patterning of the mammalian biliary tree. J Hepatol 2024; 81:108-119. [PMID: 38460794 DOI: 10.1016/j.jhep.2024.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/02/2024] [Accepted: 02/29/2024] [Indexed: 03/11/2024]
Abstract
BACKGROUND & AIMS In the developing liver, bipotent epithelial progenitor cells undergo lineage segregation to form hepatocytes, which constitute the bulk of the liver parenchyma, and biliary epithelial cells (cholangiocytes), which comprise the bile duct (a complex tubular network that is critical for normal liver function). Notch and TGFβ signalling promote the formation of a sheet of biliary epithelial cells, the ductal plate, that organises into discontinuous tubular structures. How these structures elongate and connect to form a continuous duct remains undefined. We aimed to define the mechanisms by which the ductal plate transitions from a simple sheet of epithelial cells into a complex and connected bile duct. METHODS By combining single-cell RNA sequencing of embryonic mouse livers with genetic tools and organoid models we functionally dissected the role of planar cell polarity in duct patterning. RESULTS We show that the planar cell polarity protein VANGL2 is expressed late in intrahepatic bile duct development and patterns the formation of cell-cell contacts between biliary cells. The patterning of these cell contacts regulates the normal polarisation of the actin cytoskeleton within biliary cells and loss of Vangl2 function results in the abnormal distribution of cortical actin remodelling, leading to the failure of bile duct formation. CONCLUSIONS Planar cell polarity is a critical step in the post-specification sculpture of the bile duct and is essential for establishing normal tissue architecture. IMPACT AND IMPLICATIONS Like other branched tissues, such as the lung and kidney, the bile ducts use planar cell polarity signalling to coordinate cell movements; however, how these biochemical signals are linked to ductular patterning remains unclear. Here we show that the core planar cell polarity protein VANGL2 patterns how cell-cell contacts form in the mammalian bile duct and how ductular cells transmit confluent mechanical changes along the length of a duct. This work sheds light on how biological tubes are patterned across mammalian tissues (including within the liver) and will be important in how we promote ductular growth in patients where the duct is mis-patterned or poorly formed.
Collapse
Affiliation(s)
- Michaela Raab
- MRC Human Genetics Unit, Institute of Genetics and Cancer, Edinburgh, EH4 2XU, UK
| | - Ersi Christodoulou
- MRC Human Genetics Unit, Institute of Genetics and Cancer, Edinburgh, EH4 2XU, UK
| | | | - Andreea Gradinaru
- MRC Human Genetics Unit, Institute of Genetics and Cancer, Edinburgh, EH4 2XU, UK
| | | | - Paula Olaizola
- MRC Human Genetics Unit, Institute of Genetics and Cancer, Edinburgh, EH4 2XU, UK
| | | | | | - Edward Joseph Jarman
- MRC Human Genetics Unit, Institute of Genetics and Cancer, Edinburgh, EH4 2XU, UK
| | | | | | | | - Luke Boulter
- MRC Human Genetics Unit, Institute of Genetics and Cancer, Edinburgh, EH4 2XU, UK; Cancer Research UK Scotland Centre, Edinburgh EH4 2XU, UK.
| |
Collapse
|
13
|
Fujisawa H, Ota N, Shiojiri N. Inversin-deficient (inv) mice do not establish a polarized duct system in the liver and pancreas. Anat Rec (Hoboken) 2024; 307:2197-2212. [PMID: 37921502 DOI: 10.1002/ar.25346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 10/16/2023] [Accepted: 10/16/2023] [Indexed: 11/04/2023]
Abstract
Inversin-deficient (inv) mice have anomalies in liver and pancreatic development in addition to an inverted left-right axis of the body. The present study was undertaken to unveil mechanisms of bile and pancreatic duct development from immunohistochemical analyses of anomalies in inv mice. Intrahepatic bile ducts having proximodistal polarity in size and the height of their epithelia, and ductules were formed in livers of wild-type neonates. By contrast, in inv mice, ductal plates, precursor structures of intrahepatic bile ducts and ductules, persisted without the proximodistal polarity. Their epithelial cells did not acquire planar cell polarity (PCP) in terms of expression of tight junction proteins although they expressed bile duct markers, HNF1β and SOX9. They had an apicobasal polarity from expression of basal laminar components. Enlargement of the hepatic artery and poor connective tissue development, including the abnormal deposition of the extracellular matrices, were also noted in inv mice, suggesting that bile duct development was coupled to that of the hepatic artery and portal vein. In pancreata of inv neonates, neither the main pancreatic duct was formed, nor dilated duct-like structures had the morphological polarity from the connecting point with the common bile duct. Lumina of acini was dilated, and centroacinar cells changed their position in the acini to their neck region. Immunohistochemical analyses of tight junction proteins suggested that epithelial cells of the duct-like structures did not have a PCP. Thus, Invs may be required for the establishment of the PCP of the whole duct system in the liver and pancreas.
Collapse
Affiliation(s)
- Hiromu Fujisawa
- Department of Biology, Faculty of Science, Shizuoka University, Shizuoka, Japan
| | - Noriaki Ota
- Department of Biology, Faculty of Science, Shizuoka University, Shizuoka, Japan
| | - Nobuyoshi Shiojiri
- Department of Biology, Faculty of Science, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
14
|
Caddeo A, Maurotti S, Kovooru L, Romeo S. 3D culture models to study pathophysiology of steatotic liver disease. Atherosclerosis 2024; 393:117544. [PMID: 38677899 DOI: 10.1016/j.atherosclerosis.2024.117544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/19/2024] [Accepted: 04/10/2024] [Indexed: 04/29/2024]
Abstract
Steatotic liver disease (SLD) refers to a spectrum of diseases caused by hepatic lipid accumulation. SLD has emerged as the leading cause of chronic liver disease worldwide. Despite this burden and many years, understanding the pathophysiology of this disease is challenging due to the inaccessibility to human liver specimens. Therefore, cell-based in vitro systems are widely used as models to investigate the pathophysiology of SLD. Culturing hepatic cells in monolayers causes the loss of their hepatocyte-specific phenotype and, consequently, tissue-specific function and architecture. Hence, three-dimensional (3D) culture models allow cells to mimic the in vivo microenvironment and spatial organization of the liver unit. The utilization of 3D in vitro models minimizes the drawbacks of two-dimensional (2D) cultures and aligns with the 3Rs principles to alleviate the number of in vivo experiments. This article provides an overview of liver 3D models highlighting advantages and limitations, and culminates by discussing their applications in pharmaceutical and biomedical research.
Collapse
Affiliation(s)
- Andrea Caddeo
- Department of Biomedical Sciences, Unit of Oncology and Molecular Pathology, University of Cagliari, Cagliari, Italy.
| | - Samantha Maurotti
- Department of Clinical and Experimental Medicine, University Magna Graecia, Catanzaro, Italy
| | - Lohitesh Kovooru
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden
| | - Stefano Romeo
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, Wallenberg Laboratory, University of Gothenburg, Gothenburg, Sweden; Department of Cardiology, Sahlgrenska University Hospital, Gothenburg, Sweden; Clinical Nutrition Unit, Department of Medical and Surgical Sciences, University Magna Graecia, Catanzaro, Italy.
| |
Collapse
|
15
|
Afonso MB, Marques V, van Mil SW, Rodrigues CM. Human liver organoids: From generation to applications. Hepatology 2024; 79:1432-1451. [PMID: 36815360 PMCID: PMC11095893 DOI: 10.1097/hep.0000000000000343] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/11/2022] [Accepted: 12/19/2022] [Indexed: 02/24/2023]
Abstract
In the last decade, research into human hepatology has been revolutionized by the development of mini human livers in a dish. These liver organoids are formed by self-organizing stem cells and resemble their native counterparts in cellular content, multicellular architecture, and functional features. Liver organoids can be derived from the liver tissue or pluripotent stem cells generated from a skin biopsy, blood cells, or renal epithelial cells present in urine. With the development of liver organoids, a large part of previous hurdles in modeling the human liver is likely to be solved, enabling possibilities to better model liver disease, improve (personalized) drug testing, and advance bioengineering options. In this review, we address strategies to generate and use organoids in human liver disease modeling, followed by a discussion of their potential application in drug development and therapeutics, as well as their strengths and limitations.
Collapse
Affiliation(s)
- Marta B. Afonso
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Vanda Marques
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| | - Saskia W.C. van Mil
- Center for Molecular Medicine, University Medical Center Utrecht and Utrecht University, The Netherlands
| | - Cecilia M.P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Portugal
| |
Collapse
|
16
|
Cao Z, Zhou J, Wei L, He HY, Li J. Effect of the extrahepatic bile duct anatomy on choledocholithiasis and its clinical significance. World J Gastrointest Surg 2024; 16:1363-1370. [PMID: 38817273 PMCID: PMC11135295 DOI: 10.4240/wjgs.v16.i5.1363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/07/2024] [Accepted: 04/03/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND A comprehensive understanding of the extrahepatic bile duct anatomy is vital to guide surgical procedures and perform endoscopic retrograde cholangiography. Anatomical irregularities within the extrahepatic bile duct may increase susceptibility to bile duct stones. AIM To investigate the anatomical risk factors associated with extrahepatic bile ducts in patients diagnosed with choledocholithiasis, with a specific focus on preventing stone recurrence after surgical intervention and endoscopic lithotomy. METHODS We retrospectively analyzed the medical records of 124 patients without choledocholithiasis and 108 with confirmed choledocholithiasis who underwent magnetic resonance cholangiopancreatography examinations at our center between January 2022 and October 2022. Logistic regression analyses were conducted to identify the anatomical risk factors influencing the incidence of common bile duct stones. RESULTS Multivariate logistic regression analysis revealed that several factors independently contributed to choledocholithiasis risk. Significant independent risk factors for choledocholithiasis were diameter of the common hepatic [adjusted odds ratio (aOR) = 1.43, 95% confidence interval (CI): 1.07-1.92, adjusted P value = 0.016] and common bile (aOR = 1.68, 95%CI: 1.27-2.23, adjusted P value < 0.001) ducts, length of the common hepatic duct (aOR = 0.92, 95%CI: 0.84-0.99, adjusted P value = 0.034), and angle of the common bile duct (aOR = 0.92, 95%CI: 0.89-0.95, adjusted P value < 0.001). CONCLUSION The anatomical features of the extrahepatic bile duct were directly associated with choledocholithiasis risk. Key risk factors include an enlarged diameter of the common hepatic and bile ducts, a shorter length of the common hepatic duct, and a reduced angle of the common bile duct.
Collapse
Affiliation(s)
- Zheng Cao
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650000, Yunnan Province, China
| | - Jia Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650000, Yunnan Province, China
| | - Li Wei
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650000, Yunnan Province, China
| | - Hai-Yu He
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650000, Yunnan Province, China
| | - Jun Li
- Department of Gastroenterology, The Second Affiliated Hospital of Kunming Medical University, Kunming 650000, Yunnan Province, China
| |
Collapse
|
17
|
Hendriks D, Artegiani B, Margaritis T, Zoutendijk I, Chuva de Sousa Lopes S, Clevers H. Mapping of mitogen and metabolic sensitivity in organoids defines requirements for human hepatocyte growth. Nat Commun 2024; 15:4034. [PMID: 38740814 DOI: 10.1038/s41467-024-48550-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 05/03/2024] [Indexed: 05/16/2024] Open
Abstract
Mechanisms underlying human hepatocyte growth in development and regeneration are incompletely understood. In vitro, human fetal hepatocytes (FH) can be robustly grown as organoids, while adult primary human hepatocyte (PHH) organoids remain difficult to expand, suggesting different growth requirements between fetal and adult hepatocytes. Here, we characterize hepatocyte organoid outgrowth using temporal transcriptomic and phenotypic approaches. FHs initiate reciprocal transcriptional programs involving increased proliferation and repressed lipid metabolism upon initiation of organoid growth. We exploit these insights to design maturation conditions for FH organoids, resulting in acquisition of mature hepatocyte morphological traits and increased expression of functional markers. During PHH organoid outgrowth in the same culture condition as for FHs, the adult transcriptomes initially mimic the fetal transcriptomic signatures, but PHHs rapidly acquire disbalanced proliferation-lipid metabolism dynamics, resulting in steatosis and halted organoid growth. IL6 supplementation, as emerged from the fetal dataset, and simultaneous activation of the metabolic regulator FXR, prevents steatosis and promotes PHH proliferation, resulting in improved expansion of the derived organoids. Single-cell RNA sequencing analyses reveal preservation of their fetal and adult hepatocyte identities in the respective organoid cultures. Our findings uncover mitogen requirements and metabolic differences determining proliferation of hepatocytes changing from development to adulthood.
Collapse
Affiliation(s)
- Delilah Hendriks
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| | - Benedetta Artegiani
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands.
| | | | - Iris Zoutendijk
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht, The Netherlands.
- Oncode Institute, Utrecht, The Netherlands.
- The Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands.
- University Medical Center Utrecht, Utrecht, The Netherlands.
- Pharma Research and Early Development (pRED) of F. Hoffmann-La Roche Ltd, Basel, Switzerland.
| |
Collapse
|
18
|
Huang S, Li Y, Wang B, Zhou Z, Li Y, Shen L, Cong J, Han L, Xiang X, Xia J, He D, Zhao Z, Zhou Y, Li Q, Dai G, Shen H, Lin T, Wu A, Jia J, Xiao D, Li J, Zhao W, Lin X. Hepatocyte-specific METTL3 ablation by Alb-iCre mice (GPT), but not by Alb-Cre mice (JAX), resulted in acute liver failure (ALF) and postnatal lethality. Aging (Albany NY) 2024; 16:7217-7248. [PMID: 38656880 PMCID: PMC11087113 DOI: 10.18632/aging.205753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/20/2024] [Indexed: 04/26/2024]
Abstract
AIM In 2019, to examine the functions of METTL3 in liver and underlying mechanisms, we generated mice with hepatocyte-specific METTL3 homozygous knockout (METTL3Δhep) by simultaneously crossing METTL3fl/fl mice with Alb-iCre mice (GPT) or Alb-Cre mice (JAX), respectively. In this study, we explored the potential reasons why hepatocyte-specific METTL3 homozygous disruption by Alb-iCre mice (GPT), but not by Alb-Cre mice (JAX), resulted in acute liver failure (ALF) and then postnatal lethality. MAIN METHODS Mice with hepatocyte-specific METTL3 knockout were generated by simultaneously crossing METTL3fl/fl mice with Alb-iCre mice (GPT; Strain No. T003814) purchased from the GemPharmatech Co., Ltd., (Nanjing, China) or with Alb-Cre mice (JAX; Strain No. 003574) obtained from The Jackson Laboratory, followed by combined-phenotype analysis. The publicly available RNA-sequencing data deposited in the NCBI Gene Expression Omnibus (GEO) database under the accession No.: GSE198512 (postnatal lethality), GSE197800 (postnatal survival) and GSE176113 (postnatal survival) were mined to explore the potential reasons why hepatocyte-specific METTL3 homozygous deletion by Alb-iCre mice (GPT), but not by Alb-Cre mice (JAX), leads to ALF and then postnatal lethality. KEY FINDINGS Firstly, we observed that hepatocyte-specific METTL3 homozygous deficiency by Alb-iCre mice (GPT) or by Alb-Cre mice (JAX) caused liver injury, abnormal lipid accumulation and apoptosis. Secondly, we are surprised to find that hepatocyte-specific METTL3 homozygous deletion by Alb-iCre mice (GPT), but not by Alb-Cre mice (JAX), led to ALF and then postnatal lethality. Our findings clearly demonstrated that METTL3Δhep mice (GPT), which are about to die, exhibited the severe destruction of liver histological structure, suggesting that METTL3Δhep mice (GPT) nearly lose normal liver function, which subsequently contributes to ALF, followed by postnatal lethality. Finally, we unexpectedly found that as the compensatory growth responses of hepatocytes to liver injury induced by METTL3Δhep (GPT), the proliferation of METTL3Δhep hepatocytes (GPT), unlike METTL3Δhep hepatocytes (JAX), was not evidenced by the significant increase of Ki67-positive hepatocytes, not accompanied by upregulation of cell-cycle-related genes. Moreover, GO analysis revealed that upregulated genes in METTL3Δhep livers (GPT), unlike METTL3Δhep livers (JAX), are not functionally enriched in terms associated with cell cycle, cell division, mitosis, microtubule cytoskeleton organization, spindle organization, chromatin segregation and organization, and nuclear division, consistent with the loss of compensatory proliferation of METTL3Δhep hepatocytes (GPT) observed in vivo. Thus, obviously, the loss of the compensatory growth capacity of METTL3Δhep hepatocytes (GPT) in response to liver injury might contribute to, at least partially, ALF and subsequently postnatal lethality of METTL3Δhep mice (GPT). SIGNIFICANCE These findings from this study and other labs provide strong evidence that these phenotypes (i.e., ALF and postnatal lethality) of METTL3Δhep mice (GPT) might be not the real functions of METTL3, and closely related with Alb-iCre mice (GPT), suggesting that we should remind researchers to use Alb-iCre mice (GPT) with caution to knockout gene in hepatocytes in vivo.
Collapse
Affiliation(s)
- Shihao Huang
- Cancer Research Institute, Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yingchun Li
- Cancer Research Institute, Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou 510315, China
| | - Bingjie Wang
- Cancer Research Institute, Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhihao Zhou
- Cancer Research Institute, Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yonglong Li
- Cancer Research Institute, Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China
| | - Lingjun Shen
- Department of Tuberculosis, Yunnan Clinical Medical Center for Infectious Diseases, The Third People's Hospital of Kunming (The Sixth Affiliated Hospital of Dali University), Kunming 650041, China
| | - Jinge Cong
- Cancer Research Institute, Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China
| | - Liuxin Han
- Yunnan Clinical Medical Center for Infectious Diseases, The Third People’s Hospital of Kunming (The Sixth Affiliated Hospital of Dali University), Kunming 650041, China
| | - Xudong Xiang
- Department of Thoracic Surgery, Peking University Cancer Hospital Yunnan (Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University), Kunming 650118, China
| | - Jiawei Xia
- Yunnan Clinical Medical Center for Infectious Diseases, The Third People’s Hospital of Kunming (The Sixth Affiliated Hospital of Dali University), Kunming 650041, China
| | - Danhua He
- Cancer Research Institute, Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhanlin Zhao
- Department of Gastrointestinal Oncology, Peking University Cancer Hospital Yunnan (Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University), Kunming 650118, China
| | - Ying Zhou
- Cancer Research Institute, Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qiwen Li
- Cancer Research Institute, Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Guanqi Dai
- Cancer Research Institute, Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hanzhang Shen
- Yunnan Clinical Medical Center for Infectious Diseases, The Third People’s Hospital of Kunming (The Sixth Affiliated Hospital of Dali University), Kunming 650041, China
| | - Taoyan Lin
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Aibing Wu
- Central People’s Hospital of Zhanjiang, Zhanjiang 524000, China
| | - Junshuang Jia
- Cancer Research Institute, Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Dong Xiao
- Cancer Research Institute, Experimental Education and Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China
| | - Jing Li
- Radiotherapy Center, the First People’s Hospital of Chenzhou, Xiangnan University, Chenzhou 423000, China
| | - Wentao Zhao
- Department of Gastrointestinal Oncology, Peking University Cancer Hospital Yunnan (Yunnan Cancer Hospital, The Third Affiliated Hospital of Kunming Medical University), Kunming 650118, China
| | - Xiaolin Lin
- Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou 510315, China
| |
Collapse
|
19
|
Utami T, Danoy M, Khadim RR, Tokito F, Arakawa H, Kato Y, Kido T, Miyajima A, Nishikawa M, Sakai Y. A highly efficient cell culture method using oxygen-permeable PDMS-based honeycomb microwells produces functional liver organoids from human induced pluripotent stem cell-derived carboxypeptidase M liver progenitor cells. Biotechnol Bioeng 2024; 121:1178-1190. [PMID: 38184815 DOI: 10.1002/bit.28640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 10/19/2023] [Accepted: 12/10/2023] [Indexed: 01/08/2024]
Abstract
Recent advancements in bioengineering have introduced potential alternatives to liver transplantation via the development of self-assembled liver organoids, derived from human-induced pluripotent stem cells (hiPSCs). However, the limited maturity of the tissue makes it challenging to implement this technology on a large scale in clinical settings. In this study, we developed a highly efficient method for generating functional liver organoids from hiPSC-derived carboxypeptidase M liver progenitor cells (CPM+ LPCs), using a microwell structure, and enhanced maturation through direct oxygenation in oxygen-permeable culture plates. We compared the morphology, gene expression profile, and function of the liver organoid with those of cells cultured under conventional conditions using either monolayer or spheroid culture systems. Our results revealed that liver organoids generated using polydimethylsiloxane-based honeycomb microwells significantly exhibited enhanced albumin secretion, hepatic marker expression, and cytochrome P450-mediated metabolism. Additionally, the oxygenated organoids consisted of both hepatocytes and cholangiocytes, which showed increased expression of bile transporter-related genes as well as enhanced bile transport function. Oxygen-permeable polydimethylsiloxane membranes may offer an efficient approach to generating highly mature liver organoids consisting of diverse cell populations.
Collapse
Affiliation(s)
- Tia Utami
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Mathieu Danoy
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Rubina Rahaman Khadim
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Fumiya Tokito
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Arakawa
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Yukio Kato
- Faculty of Pharmacy, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Taketomo Kido
- Laboratory of Stem Cell Therapy, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Atsushi Miyajima
- Laboratory of Stem Cell Therapy, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, Japan
| | - Masaki Nishikawa
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Yasuyuki Sakai
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
- Department of Chemical System Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
20
|
Zuo B, Yang F, Huang L, Han J, Li T, Ma Z, Cao L, Li Y, Bai X, Jiang M, He Y, Xia L. Endothelial Slc35a1 Deficiency Causes Loss of LSEC Identity and Exacerbates Neonatal Lipid Deposition in the Liver in Mice. Cell Mol Gastroenterol Hepatol 2024; 17:1039-1061. [PMID: 38467191 PMCID: PMC11061248 DOI: 10.1016/j.jcmgh.2024.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND & AIMS The functional maturation of the liver largely occurs after birth. In the early stages of life, the liver of a newborn encounters enormous high-fat metabolic stress caused by the consumption of breast milk. It is unclear how the maturing liver adapts to high lipid metabolism. Liver sinusoidal endothelial cells (LSECs) play a fundamental role in establishing liver vasculature and are decorated with many glycoproteins on their surface. The Slc35a1 gene encodes a cytidine-5'-monophosphate (CMP)-sialic acid transporter responsible for transporting CMP-sialic acids between the cytoplasm and the Golgi apparatus for protein sialylation. This study aimed to determine whether endothelial sialylation plays a role in hepatic vasculogenesis and functional maturation. METHODS Endothelial-specific Slc35a1 knockout mice were generated. Liver tissues were collected for histologic analysis, lipidomic profiling, RNA sequencing, confocal immunofluorescence, and immunoblot analyses. RESULTS Endothelial Slc35a1-deficient mice exhibited excessive neonatal hepatic lipid deposition, severe liver damage, and high mortality. Endothelial deletion of Slc35a1 led to sinusoidal capillarization and disrupted hepatic zonation. Mechanistically, vascular endothelial growth factor receptor 2 (VEGFR2) in LSECs was desialylated and VEGFR2 signaling was enhanced in Slc35a1-deficient mice. Inhibition of VEGFR2 signaling by SU5416 alleviated lipid deposition and restored hepatic vasculature in Slc35a1-deficient mice. CONCLUSIONS Our findings suggest that sialylation of LSECs is critical for maintaining hepatic vascular development and lipid homeostasis. Targeting VEGFR2 signaling may be a new strategy to prevent liver disorders associated with abnormal vasculature and lipid deposition.
Collapse
Affiliation(s)
- Bin Zuo
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China; Engineering Center of Hematological Disease of Ministry of Education, Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Fei Yang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lulu Huang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jingjing Han
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tianyi Li
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhenni Ma
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lijuan Cao
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yun Li
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xia Bai
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China; Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, China
| | - Miao Jiang
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yang He
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China; Engineering Center of Hematological Disease of Ministry of Education, Cyrus Tang Hematology Center, Soochow University, Suzhou, China; Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China.
| | - Lijun Xia
- Jiangsu Institute of Hematology, National Clinical Research Center for Hematologic Diseases, Key Laboratory of Thrombosis and Hemostasis of National Health Commission, The First Affiliated Hospital of Soochow University, Suzhou, China; Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China; Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma.
| |
Collapse
|
21
|
Simmons CL, Harper LK, Patel MC, Katabathina VS, Southard RN, Goncalves L, Tran E, Biyyam DR. Biliary Disorders, Anomalies, and Malignancies in Children. Radiographics 2024; 44:e230109. [PMID: 38358937 DOI: 10.1148/rg.230109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Biliary abnormalities in children are uncommon, and the spectrum of biliary disorders is broader than in adult patients. Unlike in adults, biliary disorders in children are rarely neoplastic and are more commonly rhabdomyosarcoma rather than cholangiocarcinoma. Pediatric biliary disorders may be embryologic or congenital, such as anatomic gallbladder anomalies, anomalous pancreaticobiliary tracts, various cholestatic processes, congenital cystic lesions, or genetic conditions. They may also be benign, such as biliary filling anomalies, biliary motility disorders, and biliary inflammatory and infectious disorders. Distinguishing these entities with a single imaging modality is challenging. US is the primary imaging modality for initial evaluation of biliary abnormalities in children, due to its wide availability, lack of ionizing radiation, and low cost and because it requires no sedation. Other examinations such as MRI, CT, and nuclear medicine examinations may provide anatomic and functional information to narrow the diagnosis further. Hepatobiliary-specific contrast material with MRI can provide better assessment of biliary anatomy on delayed images than can traditional MRI contrast material. MR cholangiopancreatography (MRCP) allows visualization of the intra- and extrahepatic biliary ducts, which may not be possible with endoscopic retrograde cholangiopancreatography (ERCP). Suspected biliary atresia requires multiple modalities for diagnosis and timely treatment. Determining the type of choledochal cyst calls for a combination of initial US and MRCP. Many benign and malignant biliary masses require biopsy for definitive diagnosis. Knowledge of the imaging appearances of different pediatric biliary abnormalities is necessary for appropriate imaging workup, providing a diagnosis or differential diagnosis, and guiding appropriate management. ©RSNA, 2024 Test Your Knowledge questions for this article are available in the supplemental material.
Collapse
Affiliation(s)
- Curtis L Simmons
- From the Department of Radiology, Phoenix Children's Hospital, 1919 E Thomas Rd, Main Tower, Phoenix, AZ 85016 (C.L.S., M.C.P., R.N.S., L.G., D.R.B.); Department of Radiology, Mayo Clinic, Phoenix, Ariz (L.K.H.); Department of Radiology, UT Health San Antonio, San Antonio, Tex (V.S.K.); and Baylor College of Medicine, Houston, Tex (E.T.)
| | - Laura K Harper
- From the Department of Radiology, Phoenix Children's Hospital, 1919 E Thomas Rd, Main Tower, Phoenix, AZ 85016 (C.L.S., M.C.P., R.N.S., L.G., D.R.B.); Department of Radiology, Mayo Clinic, Phoenix, Ariz (L.K.H.); Department of Radiology, UT Health San Antonio, San Antonio, Tex (V.S.K.); and Baylor College of Medicine, Houston, Tex (E.T.)
| | - Mittun C Patel
- From the Department of Radiology, Phoenix Children's Hospital, 1919 E Thomas Rd, Main Tower, Phoenix, AZ 85016 (C.L.S., M.C.P., R.N.S., L.G., D.R.B.); Department of Radiology, Mayo Clinic, Phoenix, Ariz (L.K.H.); Department of Radiology, UT Health San Antonio, San Antonio, Tex (V.S.K.); and Baylor College of Medicine, Houston, Tex (E.T.)
| | - Venkat S Katabathina
- From the Department of Radiology, Phoenix Children's Hospital, 1919 E Thomas Rd, Main Tower, Phoenix, AZ 85016 (C.L.S., M.C.P., R.N.S., L.G., D.R.B.); Department of Radiology, Mayo Clinic, Phoenix, Ariz (L.K.H.); Department of Radiology, UT Health San Antonio, San Antonio, Tex (V.S.K.); and Baylor College of Medicine, Houston, Tex (E.T.)
| | - Richard N Southard
- From the Department of Radiology, Phoenix Children's Hospital, 1919 E Thomas Rd, Main Tower, Phoenix, AZ 85016 (C.L.S., M.C.P., R.N.S., L.G., D.R.B.); Department of Radiology, Mayo Clinic, Phoenix, Ariz (L.K.H.); Department of Radiology, UT Health San Antonio, San Antonio, Tex (V.S.K.); and Baylor College of Medicine, Houston, Tex (E.T.)
| | - Luis Goncalves
- From the Department of Radiology, Phoenix Children's Hospital, 1919 E Thomas Rd, Main Tower, Phoenix, AZ 85016 (C.L.S., M.C.P., R.N.S., L.G., D.R.B.); Department of Radiology, Mayo Clinic, Phoenix, Ariz (L.K.H.); Department of Radiology, UT Health San Antonio, San Antonio, Tex (V.S.K.); and Baylor College of Medicine, Houston, Tex (E.T.)
| | - Evelyn Tran
- From the Department of Radiology, Phoenix Children's Hospital, 1919 E Thomas Rd, Main Tower, Phoenix, AZ 85016 (C.L.S., M.C.P., R.N.S., L.G., D.R.B.); Department of Radiology, Mayo Clinic, Phoenix, Ariz (L.K.H.); Department of Radiology, UT Health San Antonio, San Antonio, Tex (V.S.K.); and Baylor College of Medicine, Houston, Tex (E.T.)
| | - Deepa R Biyyam
- From the Department of Radiology, Phoenix Children's Hospital, 1919 E Thomas Rd, Main Tower, Phoenix, AZ 85016 (C.L.S., M.C.P., R.N.S., L.G., D.R.B.); Department of Radiology, Mayo Clinic, Phoenix, Ariz (L.K.H.); Department of Radiology, UT Health San Antonio, San Antonio, Tex (V.S.K.); and Baylor College of Medicine, Houston, Tex (E.T.)
| |
Collapse
|
22
|
Lv Y, Rao Z, Liu L, Jia J, Wu C, Xu J, Du Y, Liu Y, Liu B, Shi J, Li G, Zhao D, Deng H. The efficient generation of functional human hepatocytes from chemically induced pluripotent stem cells. Cell Prolif 2024; 57:e13540. [PMID: 37814474 PMCID: PMC10849784 DOI: 10.1111/cpr.13540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 10/11/2023] Open
Abstract
Derivation of human hepatocytes from pluripotent stem cells in vitro has important applications including cell therapy and drug discovery. However, the differentiation of pluripotent stem cells into hepatocytes in vitro was not well recapitulated the development of liver. Here, we developed a differentiation protocol by mimicking the two-stage development of hepatoblasts, which permits the efficient generation of hepatic progenitor cells from chemically induced pluripotent stem cells (hCiPSCs). Single-cell RNA sequencing (scRNA-seq) indicates the similarity between hepatoblasts differentiated in vitro and in vivo. Moreover, hCiPSC-derived hepatic progenitor cells can further differentiate into hepatocytes that are similar to primary human hepatocytes with respect to gene expression and key hepatic functions. Our results demonstrate the feasibility of generating hepatic progenitor cells and hepatocytes from hCiPSCs with high efficiency and set the foundation for broad translational applications of hCiPSC-derived hepatocytes.
Collapse
Affiliation(s)
- Yun Lv
- School of Basic Medical Sciences, MOE Engineering Research Center of Regenerative Medicine, State Key Laboratory of Natural and Biomimetic DrugsPeking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking‐Tsinghua Center for Life Sciences, Peking UniversityBeijingChina
| | - Ziyan Rao
- Department of Biomedical Informatics, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
- State Key Laboratory of Vascular Homeostasis and RemodelingPeking UniversityBeijingChina
| | - Lulu Liu
- Peking University‐Tsinghua University‐National Institute of Biological Science Joint Graduate Program, Academy for Advanced Interdisciplinary Studies, Peking UniversityBeijingChina
| | - Jun Jia
- Changping LaboratoryBeijingChina
| | - Chenyang Wu
- Department of Biomedical Informatics, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
- State Key Laboratory of Vascular Homeostasis and RemodelingPeking UniversityBeijingChina
| | - Jun Xu
- Department of Cell Biology, School of Basic Medical SciencesPeking University Stem Cell Research Center, Peking University Health Science Center, Peking UniversityBeijingChina
| | - Yuanyuan Du
- School of Basic Medical Sciences, MOE Engineering Research Center of Regenerative Medicine, State Key Laboratory of Natural and Biomimetic DrugsPeking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking‐Tsinghua Center for Life Sciences, Peking UniversityBeijingChina
| | - Yinan Liu
- Department of Cell Biology, School of Basic Medical SciencesPeking University Stem Cell Research Center, Peking University Health Science Center, Peking UniversityBeijingChina
| | - Bei Liu
- School of Basic Medical Sciences, MOE Engineering Research Center of Regenerative Medicine, State Key Laboratory of Natural and Biomimetic DrugsPeking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking‐Tsinghua Center for Life Sciences, Peking UniversityBeijingChina
| | - Jihang Shi
- Department of Hepatobiliary Surgery, First Medical Center of Chinese PLA General HospitalBeijingChina
| | - Guangya Li
- Ministry of Education (MOE) Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking‐Tsinghua Center for Life SciencesPeking UniversityBeijingChina
| | - Dongyu Zhao
- Department of Biomedical Informatics, School of Basic Medical SciencesPeking University Health Science CenterBeijingChina
- State Key Laboratory of Vascular Homeostasis and RemodelingPeking UniversityBeijingChina
| | - Hongkui Deng
- School of Basic Medical Sciences, MOE Engineering Research Center of Regenerative Medicine, State Key Laboratory of Natural and Biomimetic DrugsPeking University Health Science Center and the MOE Key Laboratory of Cell Proliferation and Differentiation, College of Life Sciences, Peking‐Tsinghua Center for Life Sciences, Peking UniversityBeijingChina
- Changping LaboratoryBeijingChina
| |
Collapse
|
23
|
Liu S, Li T, Yang Q, Ke X, Zhan J. Biliary atresia: the development, pathological features, and classification of the bile duct. Pediatr Surg Int 2024; 40:42. [PMID: 38289412 DOI: 10.1007/s00383-023-05627-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/26/2023] [Indexed: 02/01/2024]
Abstract
Biliary atresia is an occlusive biliary disease involving intrahepatic and extrahepatic bile ducts. Its etiology and pathogenesis are unclear. There are many manifestations of bile duct involvement in biliary atresia, but little is known about its occurrence and development. In addition, different classification methods have been proposed in different periods of biliary atresia, each with its advantages and disadvantages. The combined application of biliary atresia classification will help to improve the survival rate of patients with native liver. Therefore, this article reviews the development, pathological features, and classification of intrahepatic and extrahepatic bile ducts in biliary atresia, to provide a reference for the study of the pathogenesis and the choice of treatment methods.
Collapse
Affiliation(s)
- Shaowen Liu
- Clinical School of Paediatrics, Tianjin Medical University, Tianjin, China
- Department of General Surgery, Tianjin Children's Hospital, Tianjin, China
| | - Tengfei Li
- Clinical School of Paediatrics, Tianjin Medical University, Tianjin, China
- Department of General Surgery, Tianjin Children's Hospital, Tianjin, China
| | - Qianhui Yang
- Clinical School of Paediatrics, Tianjin Medical University, Tianjin, China
- Department of General Surgery, Tianjin Children's Hospital, Tianjin, China
| | - Xingyuan Ke
- Clinical School of Paediatrics, Tianjin Medical University, Tianjin, China
- Department of General Surgery, Tianjin Children's Hospital, Tianjin, China
| | - Jianghua Zhan
- Department of General Surgery, Tianjin Children's Hospital, Tianjin, China.
| |
Collapse
|
24
|
Crawford JM, Bioulac-Sage P, Hytiroglou P. Structure, Function and Responses to Injury. MACSWEEN'S PATHOLOGY OF THE LIVER 2024:1-95. [DOI: 10.1016/b978-0-7020-8228-3.00001-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
25
|
Jin Q, Hu Y, Gao Y, Zheng J, Chen J, Gao C, Peng J. Hhex and Prox1a synergistically dictate the hepatoblast to hepatocyte differentiation in zebrafish. Biochem Biophys Res Commun 2023; 686:149182. [PMID: 37922575 DOI: 10.1016/j.bbrc.2023.149182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 10/28/2023] [Indexed: 11/07/2023]
Abstract
The specification of endoderm cells to prospective hepatoblasts is the starting point for hepatogenesis. However, how a prospective hepatoblast gains the hepatic fate remains elusive. Previous studies have shown that loss-of-function of either hhex or prox1a alone causes a small liver phenotype but without abolishing the hepatocyte differentiation, suggesting that absence of either Hhex or Prox1a alone is not sufficient to block the hepatoblast differentiation. Here, via genetic studies of the zebrafish two single (hhex-/- and prox1a-/-) and one double (hhex-/-prox1a-/-) mutants, we show that simultaneous loss-of-function of the hhex and prox1a two genes does not block the endoderm cells to gain the hepatoblast potency but abolishes the hepatic differentiation from the prospective hepatoblast. Consequently, the hhex-/-prox1a-/- double mutant displays a liverless phenotype that cannot be rescued by the injection of bmp2a mRNA. Taken together, we provide strong evidences showing that Hhex teams with Prox1a to act as a master control of the differentiation of the prospective hepatoblasts towards hepatocytes.
Collapse
Affiliation(s)
- Qingxia Jin
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Yuqing Hu
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Yuqi Gao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Jiayi Zheng
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Jun Chen
- College of Life Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China
| | - Ce Gao
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China.
| | - Jinrong Peng
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang Province, 310058, China.
| |
Collapse
|
26
|
Glessner JT, Ningappa MB, Ngo KA, Zahid M, So J, Higgs BW, Sleiman PMA, Narayanan T, Ranganathan S, March M, Prasadan K, Vaccaro C, Reyes-Mugica M, Velazquez J, Salgado CM, Ebrahimkhani MR, Schmitt L, Rajasundaram D, Paul M, Pellegrino R, Gittes GK, Li D, Wang X, Billings J, Squires R, Ashokkumar C, Sharif K, Kelly D, Dhawan A, Horslen S, Lo CW, Shin D, Subramaniam S, Hakonarson H, Sindhi R. Biliary atresia is associated with polygenic susceptibility in ciliogenesis and planar polarity effector genes. J Hepatol 2023; 79:1385-1395. [PMID: 37572794 PMCID: PMC10729795 DOI: 10.1016/j.jhep.2023.07.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 07/07/2023] [Accepted: 07/18/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND & AIMS Biliary atresia (BA) is poorly understood and leads to liver transplantation (LT), with the requirement for and associated risks of lifelong immunosuppression, in most children. We performed a genome-wide association study (GWAS) to determine the genetic basis of BA. METHODS We performed a GWAS in 811 European BA cases treated with LT in US, Canadian and UK centers, and 4,654 genetically matched controls. Whole-genome sequencing of 100 cases evaluated synthetic association with rare variants. Functional studies included whole liver transcriptome analysis of 64 BA cases and perturbations in experimental models. RESULTS A GWAS of common single nucleotide polymorphisms (SNPs), i.e. allele frequencies >1%, identified intronic SNPs rs6446628 in AFAP1 with genome-wide significance (p = 3.93E-8) and rs34599046 in TUSC3 at sub-threshold genome-wide significance (p = 1.34E-7), both supported by credible peaks of neighboring SNPs. Like other previously reported BA-associated genes, AFAP1 and TUSC3 are ciliogenesis and planar polarity effectors (CPLANE). In gene-set-based GWAS, BA was associated with 6,005 SNPs in 102 CPLANE genes (p = 5.84E-15). Compared with non-CPLANE genes, more CPLANE genes harbored rare variants (allele frequency <1%) that were assigned Human Phenotype Ontology terms related to hepatobiliary anomalies by predictive algorithms, 87% vs. 40%, p <0.0001. Rare variants were present in multiple genes distinct from those with BA-associated common variants in most BA cases. AFAP1 and TUSC3 knockdown blocked ciliogenesis in mouse tracheal cells. Inhibition of ciliogenesis caused biliary dysgenesis in zebrafish. AFAP1 and TUSC3 were expressed in fetal liver organoids, as well as fetal and BA livers, but not in normal or disease-control livers. Integrative analysis of BA-associated variants and liver transcripts revealed abnormal vasculogenesis and epithelial tube formation, explaining portal vein anomalies that co-exist with BA. CONCLUSIONS BA is associated with polygenic susceptibility in CPLANE genes. Rare variants contribute to polygenic risk in vulnerable pathways via unique genes. IMPACT AND IMPLICATIONS Liver transplantation is needed to cure most children born with biliary atresia, a poorly understood rare disease. Transplant immunosuppression increases the likelihood of life-threatening infections and cancers. To improve care by preventing this disease and its progression to transplantation, we examined its genetic basis. We find that this disease is associated with both common and rare mutations in highly specialized genes which maintain normal communication and movement of cells, and their organization into bile ducts and blood vessels during early development of the human embryo. Because defects in these genes also cause other birth defects, our findings could lead to preventive strategies to lower the incidence of biliary atresia and potentially other birth defects.
Collapse
Affiliation(s)
- Joseph T Glessner
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mylarappa B Ningappa
- Hillman Center for Pediatric Transplantation, UPMC-Children's Hospital of Pittsburgh, and Thomas E Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kim A Ngo
- Department of Bioengineering, University of California, San Diego, San Diego, La Jolla, CA, USA
| | - Maliha Zahid
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Juhoon So
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Brandon W Higgs
- Hillman Center for Pediatric Transplantation, UPMC-Children's Hospital of Pittsburgh, and Thomas E Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Patrick M A Sleiman
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tejaswini Narayanan
- Department of Bioengineering, University of California, San Diego, San Diego, La Jolla, CA, USA
| | - Sarangarajan Ranganathan
- Division of Pathology and Laboratory Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Michael March
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Krishna Prasadan
- Rangos Research Center Animal Imaging Core, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Courtney Vaccaro
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Miguel Reyes-Mugica
- Division of Pediatric Pathology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Jeremy Velazquez
- Department of Pathology, School of Medicine, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Claudia M Salgado
- Division of Pediatric Pathology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Mo R Ebrahimkhani
- Department of Pathology, School of Medicine, Pittsburgh Liver Research Center, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lori Schmitt
- Histology Core Laboratory Manager, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Division of Health Informatics, Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Morgan Paul
- Hillman Center for Pediatric Transplantation, UPMC-Children's Hospital of Pittsburgh, and Thomas E Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Renata Pellegrino
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - George K Gittes
- Surgeon-in-Chief Emeritus, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Dong Li
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Xiang Wang
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonathan Billings
- Center for Applied Genomics (CAG), Children's Hospital of Philadelphia, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert Squires
- Pediatric Gastroenterology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Chethan Ashokkumar
- Hillman Center for Pediatric Transplantation, UPMC-Children's Hospital of Pittsburgh, and Thomas E Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, PA, USA
| | - Khalid Sharif
- Paediatric Liver Unit Including Intestinal Transplantation, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Deirdre Kelly
- Paediatric Liver Unit Including Intestinal Transplantation, Birmingham Women's and Children's NHS Foundation Trust, Birmingham, UK
| | - Anil Dhawan
- Paediatric Liver GI and Nutrition Center and MowatLabs, NHS Foundation Trust, King's College Hospital, London, UK
| | - Simon Horslen
- Pediatric Gastroenterology, UPMC Children's Hospital of Pittsburgh, Pittsburgh, PA, USA
| | - Cecilia W Lo
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Donghun Shin
- Department of Developmental Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, San Diego, La Jolla, CA, USA; Department of Computer Science and Engineering, and Nanoengineering, University of California, San Diego, San Diego, La Jolla, CA, USA.
| | - Hakon Hakonarson
- Divisions of Human Genetics and Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
| | - Rakesh Sindhi
- Hillman Center for Pediatric Transplantation, UPMC-Children's Hospital of Pittsburgh, and Thomas E Starzl Transplant Institute, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
27
|
Iqbal W, Wang Y, Sun P, Zhou X. Modeling Liver Development and Disease in a Dish. Int J Mol Sci 2023; 24:15921. [PMID: 37958904 PMCID: PMC10650907 DOI: 10.3390/ijms242115921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Historically, biological research has relied primarily on animal models. While this led to the understanding of numerous human biological processes, inherent species-specific differences make it difficult to answer certain liver-related developmental and disease-specific questions. The advent of 3D organoid models that are either derived from pluripotent stem cells or generated from healthy or diseased tissue-derived stem cells have made it possible to recapitulate the biological aspects of human organs. Organoid technology has been instrumental in understanding the disease mechanism and complements animal models. This review underscores the advances in organoid technology and specifically how liver organoids are used to better understand human-specific biological processes in development and disease. We also discuss advances made in the application of organoid models in drug screening and personalized medicine.
Collapse
Affiliation(s)
- Waqas Iqbal
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China; (W.I.); (Y.W.); (P.S.)
- Research Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Yaru Wang
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China; (W.I.); (Y.W.); (P.S.)
- Research Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Pingnan Sun
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China; (W.I.); (Y.W.); (P.S.)
- Research Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| | - Xiaoling Zhou
- Stem Cell Research Center, Shantou University Medical College, Shantou 515041, China; (W.I.); (Y.W.); (P.S.)
- Research Center for Reproductive Medicine, Shantou University Medical College, Shantou 515041, China
- Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, China
| |
Collapse
|
28
|
Kulikauskas MR, Oatley M, Yu T, Liu Z, Matsumura L, Kidder E, Ruter D, Bautch VL. Endothelial cell SMAD6 balances Alk1 function to regulate adherens junctions and hepatic vascular development. Development 2023; 150:dev201811. [PMID: 37787089 PMCID: PMC10629679 DOI: 10.1242/dev.201811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 09/21/2023] [Indexed: 10/04/2023]
Abstract
BMP signaling is crucial to blood vessel formation and function, but how pathway components regulate vascular development is not well-understood. Here, we find that inhibitory SMAD6 functions in endothelial cells to negatively regulate ALK1-mediated responses, and it is required to prevent vessel dysmorphogenesis and hemorrhage in the embryonic liver vasculature. Reduced Alk1 gene dosage rescued embryonic hepatic hemorrhage and microvascular capillarization induced by Smad6 deletion in endothelial cells in vivo. At the cellular level, co-depletion of Smad6 and Alk1 rescued the destabilized junctions and impaired barrier function of endothelial cells depleted for SMAD6 alone. Mechanistically, blockade of actomyosin contractility or increased PI3K signaling rescued endothelial junction defects induced by SMAD6 loss. Thus, SMAD6 normally modulates ALK1 function in endothelial cells to regulate PI3K signaling and contractility, and SMAD6 loss increases signaling through ALK1 that disrupts endothelial cell junctions. ALK1 loss-of-function also disrupts vascular development and function, indicating that balanced ALK1 signaling is crucial for proper vascular development and identifying ALK1 as a 'Goldilocks' pathway in vascular biology that requires a certain signaling amplitude, regulated by SMAD6, to function properly.
Collapse
Affiliation(s)
- Molly R. Kulikauskas
- Cell Biology and Physiology Curriculum, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Morgan Oatley
- Department of Biology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Tianji Yu
- Department of Biology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Ziqing Liu
- Department of Biology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Lauren Matsumura
- Department of Biology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Elise Kidder
- Department of Biology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Dana Ruter
- Department of Biology, The University of North Carolina, Chapel Hill, NC 27599, USA
| | - Victoria L. Bautch
- Cell Biology and Physiology Curriculum, The University of North Carolina, Chapel Hill, NC 27599, USA
- Department of Biology, The University of North Carolina, Chapel Hill, NC 27599, USA
- McAllister Heart Institute, The University of North Carolina, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC 27599, USA
| |
Collapse
|
29
|
Kholodenko IV, Kholodenko RV, Yarygin KN. The Crosstalk between Mesenchymal Stromal/Stem Cells and Hepatocytes in Homeostasis and under Stress. Int J Mol Sci 2023; 24:15212. [PMID: 37894893 PMCID: PMC10607347 DOI: 10.3390/ijms242015212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/07/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Liver diseases, characterized by high morbidity and mortality, represent a substantial medical problem globally. The current therapeutic approaches are mainly aimed at reducing symptoms and slowing down the progression of the diseases. Organ transplantation remains the only effective treatment method in cases of severe liver pathology. In this regard, the development of new effective approaches aimed at stimulating liver regeneration, both by activation of the organ's own resources or by different therapeutic agents that trigger regeneration, does not cease to be relevant. To date, many systematic reviews and meta-analyses have been published confirming the effectiveness of mesenchymal stromal cell (MSC) transplantation in the treatment of liver diseases of various severities and etiologies. However, despite the successful use of MSCs in clinical practice and the promising therapeutic results in animal models of liver diseases, the mechanisms of their protective and regenerative action remain poorly understood. Specifically, data about the molecular agents produced by these cells and mediating their therapeutic action are fragmentary and often contradictory. Since MSCs or MSC-like cells are found in all tissues and organs, it is likely that many key intercellular interactions within the tissue niches are dependent on MSCs. In this context, it is essential to understand the mechanisms underlying communication between MSCs and differentiated parenchymal cells of each particular tissue. This is important both from the perspective of basic science and for the development of therapeutic approaches involving the modulation of the activity of resident MSCs. With regard to the liver, the research is concentrated on the intercommunication between MSCs and hepatocytes under normal conditions and during the development of the pathological process. The goals of this review were to identify the key factors mediating the crosstalk between MSCs and hepatocytes and determine the possible mechanisms of interaction of the two cell types under normal and stressful conditions. The analysis of the hepatocyte-MSC interaction showed that MSCs carry out chaperone-like functions, including the synthesis of the supportive extracellular matrix proteins; prevention of apoptosis, pyroptosis, and ferroptosis; support of regeneration; elimination of lipotoxicity and ER stress; promotion of antioxidant effects; and donation of mitochondria. The underlying mechanisms suggest very close interdependence, including even direct cytoplasm and organelle exchange.
Collapse
Affiliation(s)
- Irina V. Kholodenko
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| | - Roman V. Kholodenko
- Laboratory of Molecular Immunology, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Konstantin N. Yarygin
- Laboratory of Cell Biology, Orekhovich Institute of Biomedical Chemistry, 119121 Moscow, Russia
| |
Collapse
|
30
|
Unterweger IA, Klepstad J, Hannezo E, Lundegaard PR, Trusina A, Ober EA. Lineage tracing identifies heterogeneous hepatoblast contribution to cell lineages and postembryonic organ growth dynamics. PLoS Biol 2023; 21:e3002315. [PMID: 37792696 PMCID: PMC10550115 DOI: 10.1371/journal.pbio.3002315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/29/2023] [Indexed: 10/06/2023] Open
Abstract
To meet the physiological demands of the body, organs need to establish a functional tissue architecture and adequate size as the embryo develops to adulthood. In the liver, uni- and bipotent progenitor differentiation into hepatocytes and biliary epithelial cells (BECs), and their relative proportions, comprise the functional architecture. Yet, the contribution of individual liver progenitors at the organ level to both fates, and their specific proportion, is unresolved. Combining mathematical modelling with organ-wide, multispectral FRaeppli-NLS lineage tracing in zebrafish, we demonstrate that a precise BEC-to-hepatocyte ratio is established (i) fast, (ii) solely by heterogeneous lineage decisions from uni- and bipotent progenitors, and (iii) independent of subsequent cell type-specific proliferation. Extending lineage tracing to adulthood determined that embryonic cells undergo spatially heterogeneous three-dimensional growth associated with distinct environments. Strikingly, giant clusters comprising almost half a ventral lobe suggest lobe-specific dominant-like growth behaviours. We show substantial hepatocyte polyploidy in juveniles representing another hallmark of postembryonic liver growth. Our findings uncover heterogeneous progenitor contributions to tissue architecture-defining cell type proportions and postembryonic organ growth as key mechanisms forming the adult liver.
Collapse
Affiliation(s)
- Iris. A. Unterweger
- University of Copenhagen, NNF Center for Stem Cell Biology (DanStem), Copenhagen N, Denmark
- University of Copenhagen, Department of Biomedical Sciences, Copenhagen N, Denmark
| | - Julie Klepstad
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
- Andalusian Center for Developmental Biology, CSIC, University Pablo de Olavide, Seville, Spain
| | - Edouard Hannezo
- Institute of Science and Technology, Klosterneuburg, Austria
| | - Pia R. Lundegaard
- University of Copenhagen, Department of Biomedical Sciences, Copenhagen N, Denmark
| | - Ala Trusina
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
| | - Elke A. Ober
- University of Copenhagen, NNF Center for Stem Cell Biology (DanStem), Copenhagen N, Denmark
- University of Copenhagen, Department of Biomedical Sciences, Copenhagen N, Denmark
| |
Collapse
|
31
|
Malečková A, Mik P, Liška V, Pálek R, Rosendorf J, Witter K, Grajciarová M, Tonar Z. Periphery of porcine hepatic lobes has the smallest length density of hepatic sinusoids and bile canaliculi: A stereological histological study with implications for liver biopsies. Ann Anat 2023; 250:152157. [PMID: 37666463 DOI: 10.1016/j.aanat.2023.152157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/12/2023] [Accepted: 08/17/2023] [Indexed: 09/06/2023]
Abstract
BACKGROUND Porcine liver is widely used in hepatologic research as a large animal model with many anatomical and physiological similarities with humans. However, only limited information on porcine liver spatial microstructure has been published, especially regarding the hepatic sinusoids and bile canaliculi. The aim of our study was to quantify the sinusoidal and bile canalicular network in healthy male and female porcine livers and to map the variability of these structures with heterogenous distribution to improve the evaluability of liver biopsy samples. METHODS Livers from 12 healthy piglets (6 females and 6 neutered males) were sampled into 36 tissue samples per organ, representing six hepatic lobes and three different regions related to the hepatic vasculature (peripheral, paracaval and paraportal region). Histological sections were processed with a random orientation of the cutting plane. The endothelium and the bile canaliculi were stained using Ricinus communis agglutinin I lectin histochemistry. The length densities of hepatic sinusoids LV(sinusoids,liver), of bile canaliculi LV(bile canaliculi,liver) and volume fraction VV(sinusoids,liver) and surface density SV(sinusoids,liver) of sinusoids were estimated using stereological methods. The newly acquired morphometric data were compared with previously published data on density of porcine hepatocytes and fractions of connective tissue. RESULTS The peripheral region had smallest LV(sinusoids,liver), smallest LV(bile canaliculi,liver) and greatest VV(sinusoids,liver). The six hepatic lobes had statistically comparable length densities of both sinusoids and bile canaliculi, but the left lateral lobe had smallest VV(sinusoids,liver). Regions with greater LV(sinusoids,liver) had also greater LV(bile canaliculi,liver) and SV(sinusoids,liver) and were accompanied by greater density of smaller hepatocytes. Regions with smaller LV(sinusoids,liver) and LV(bile canaliculi,liver) contained a greater fraction of interlobular connective tissue. CONCLUSIONS The length density of hepatic sinusoids is smaller in the peripheral regions of the porcine liver than in other regions related to the hepatic vasculature - paracaval and paraportal regions, and smaller in castrated males than in females. Greater length density of liver sinusoids was linked with greater local density of bile canaliculi, with local increase in the density of smaller hepatocytes and, simultaneously, with smaller fractions of hepatic connective tissue. The intrahepatic and inter-sexual variability of the porcine liver morphology needs to be taken into account when designing and interpreting experiments involving the histological quantification of the microvascular network. The complete primary morphometric data describing the distribution of morphometric parameters within porcine liver were made available in a form facilitating the power analysis to justify the minimal number of tissue samples or animals required when designing further histological evaluation studies. The macroscopic map of microvessels and bile canaliculi variability facilitates their assessment in liver biopsies in the pig.
Collapse
Affiliation(s)
- Anna Malečková
- Department of Histology and Embryology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic.
| | - Patrik Mik
- Department of Anatomy and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Václav Liška
- Department of Surgery and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Richard Pálek
- Department of Surgery and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Jáchym Rosendorf
- Department of Surgery and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Kirsti Witter
- Institute of Morphology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, Vienna, Austria
| | - Martina Grajciarová
- Department of Histology and Embryology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Zbyněk Tonar
- Department of Histology and Embryology and Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| |
Collapse
|
32
|
Liao T, Gan M, Qiu Y, Lei Y, Chen Q, Wang X, Yang Y, Chen L, Zhao Y, Niu L, Wang Y, Zhang S, Zhu L, Shen L. miRNAs derived from cobra venom exosomes contribute to the cobra envenomation. J Nanobiotechnology 2023; 21:356. [PMID: 37777744 PMCID: PMC10544165 DOI: 10.1186/s12951-023-02131-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023] Open
Abstract
Currently, there is an increasing amount of evidence indicating that exosomes and the miRNAs they contain are crucial players in various biological processes. However, the role of exosomes and miRNAs in snake venom during the envenomation process remains largely unknown. In this study, fresh venom from Naja atra of different ages (2-month-old, 1-year-old, and 5-year-old) was collected, and exosomes were isolated through ultracentrifugation. The study found that exosomes with inactivated proteins and enzymes can still cause symptoms similar to cobra envenomation, indicating that substances other than proteins and enzymes in exosomes may also play an essential role in cobra envenomation. Furthermore, the expression profiles of isolated exosome miRNAs were analyzed. The study showed that a large number of miRNAs were co-expressed and abundant in cobra venom exosomes (CV-exosomes) of different ages, including miR-2904, which had high expression abundance and specific sequences. The specific miR-2094 derived from CV-exosomes (CV-exo-miR-2904) was overexpressed both in vitro and in vivo. As a result, CV-exo-miR-2904 induced symptoms similar to cobra envenomation in mice and caused liver damage, demonstrating that it plays a crucial role in cobra envenomation. These results reveal that CV-exosomes and the miRNAs they contain play a significant regulatory role in cobra envenomation. Our findings provide new insights for the treatment of cobra bites and the development of snake venom-based medicines.
Collapse
Affiliation(s)
- Tianci Liao
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Mailin Gan
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yanhao Qiu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yuhang Lei
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Qiuyang Chen
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Xingyu Wang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yiting Yang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Lei Chen
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Ye Zhao
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Lili Niu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Yan Wang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Shunhua Zhang
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Li Zhu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| | - Linyuan Shen
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130 China
- Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, College of Animal and Technology, Sichuan Agricultural University, Chengdu, 611130 China
| |
Collapse
|
33
|
Gannoun L, De Schrevel C, Belle M, Dauguet N, Achouri Y, Loriot A, Vanderaa C, Cordi S, Dili A, Heremans Y, Rooman I, Leclercq IA, Jacquemin P, Gatto L, Lemaigre FP. Axon guidance genes control hepatic artery development. Development 2023; 150:dev201642. [PMID: 37497580 DOI: 10.1242/dev.201642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
Earlier data on liver development demonstrated that morphogenesis of the bile duct, portal mesenchyme and hepatic artery is interdependent, yet how this interdependency is orchestrated remains unknown. Here, using 2D and 3D imaging, we first describe how portal mesenchymal cells become organised to form hepatic arteries. Next, we examined intercellular signalling active during portal area development and found that axon guidance genes are dynamically expressed in developing bile ducts and portal mesenchyme. Using tissue-specific gene inactivation in mice, we show that the repulsive guidance molecule BMP co-receptor A (RGMA)/neogenin (NEO1) receptor/ligand pair is dispensable for portal area development, but that deficient roundabout 2 (ROBO2)/SLIT2 signalling in the portal mesenchyme causes reduced maturation of the vascular smooth muscle cells that form the tunica media of the hepatic artery. This arterial anomaly does not impact liver function in homeostatic conditions, but is associated with significant tissular damage following partial hepatectomy. In conclusion, our work identifies new players in development of the liver vasculature in health and liver regeneration.
Collapse
Affiliation(s)
- Lila Gannoun
- de Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, Brussels 1200, Belgium
| | - Catalina De Schrevel
- de Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, Brussels 1200, Belgium
| | - Morgane Belle
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Department of Development, Rue Moreau 17, Paris 75012, France
| | - Nicolas Dauguet
- Flow cytometry CYTF platform, Université Catholique de Louvain, Brussels 1200, Belgium
| | - Younes Achouri
- Transgene Technology Platform TRSG, Université Catholique de Louvain, Brussels, Avenue Hippocrate 75, Belgium 1200
| | - Axelle Loriot
- de Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, Brussels 1200, Belgium
| | - Christophe Vanderaa
- de Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, Brussels 1200, Belgium
| | - Sabine Cordi
- de Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, Brussels 1200, Belgium
| | - Alexandra Dili
- HPB Surgery Unit, Centre Hospitalier Universitaire UCL Namur, Site Mont-Godinne, Avenue du Dr. Thérasse 1, Yvoir 5530, Belgium
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Avenue Mounier 53, Brussels 1200, Belgium
| | - Yves Heremans
- Visual & Spatial Tissue Analysis (VSTA) core facility, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium
| | - Ilse Rooman
- Laboratory of Medical and Molecular Oncology, Vrije Universiteit Brussel, Laarbeeklaan 103, Brussels 1090, Belgium
| | - Isabelle A Leclercq
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, Université Catholique de Louvain, Avenue Mounier 53, Brussels 1200, Belgium
| | - Patrick Jacquemin
- de Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, Brussels 1200, Belgium
| | - Laurent Gatto
- de Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, Brussels 1200, Belgium
| | - Frédéric P Lemaigre
- de Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, Brussels 1200, Belgium
| |
Collapse
|
34
|
Luo Q, Wang N, Que H, Mai E, Hu Y, Tan R, Gu J, Gong P. Pluripotent Stem Cell-Derived Hepatocyte-like Cells: Induction Methods and Applications. Int J Mol Sci 2023; 24:11592. [PMID: 37511351 PMCID: PMC10380504 DOI: 10.3390/ijms241411592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/09/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
The development of regenerative medicine provides new options for the treatment of end-stage liver diseases. Stem cells, such as bone marrow mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells (iPSCs), are effective tools for tissue repair in regenerative medicine. iPSCs are an appropriate source of hepatocytes for the treatment of liver disease due to their unlimited multiplication capacity, their coverage of the entire range of genetics required to simulate human disease, and their evasion of ethical implications. iPSCs have the ability to gradually produce hepatocyte-like cells (HLCs) with homologous phenotypes and physiological functions. However, how to induce iPSCs to differentiate into HLCs efficiently and accurately is still a hot topic. This review describes the existing approaches for inducing the differentiation of iPSCs into HLCs, as well as some challenges faced, and summarizes various parameters for determining the quality and functionality of HLCs. Furthermore, the application of iPSCs for in vitro hepatoprotective drug screening and modeling of liver disease is discussed. In conclusion, iPSCs will be a dependable source of cells for stem-cell therapy to treat end-stage liver disease and are anticipated to facilitate individualized treatment for liver disease in the future.
Collapse
Affiliation(s)
- Qiulin Luo
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Nan Wang
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Hanyun Que
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Erziya Mai
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Yanting Hu
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Rui Tan
- College of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610032, China
| | - Jian Gu
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| | - Puyang Gong
- College of Pharmacy, Southwest Minzu University, Chengdu 610225, China
| |
Collapse
|
35
|
Bai J, Lin Y, Zhang J, Chen Z, Wang Y, Li M, Li J. Profiling of Chromatin Accessibility in Pigs across Multiple Tissues and Developmental Stages. Int J Mol Sci 2023; 24:11076. [PMID: 37446255 DOI: 10.3390/ijms241311076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
The study of chromatin accessibility across tissues and developmental stages is essential for elucidating the transcriptional regulation of various phenotypes and biological processes. However, the chromatin accessibility profiles of multiple tissues in newborn pigs and across porcine liver development remain poorly investigated. Here, we used ATAC-seq and rRNA-depleted RNA-seq to profile open chromatin maps and transcriptional features of heart, kidney, liver, lung, skeletal muscle, and spleen in newborn pigs and porcine liver tissue in the suckling and adult stages, respectively. Specifically, by analyzing a union set of protein-coding genes (PCGs) and two types of transcripts (lncRNAs and TUCPs), we obtained a comprehensive annotation of consensus ATAC-seq peaks for each tissue and developmental stage. As expected, the PCGs with tissue-specific accessible promoters had active transcription and were relevant to tissue-specific functions. In addition, other non-coding tissue-specific peaks were involved in both physical activity and the morphogenesis of neonatal tissues. We also characterized stage-specific peaks and observed a close association between dynamic chromatin accessibility and hepatic function transition during liver postnatal development. Overall, this study expands our current understanding of epigenetic regulation in mammalian tissues and organ development, which can benefit both economic trait improvement and improve the biomedical usage of pigs.
Collapse
Affiliation(s)
- Jingyi Bai
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yu Lin
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiaman Zhang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Ziyu Chen
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Yujie Wang
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Mingzhou Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| | - Jing Li
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China
| |
Collapse
|
36
|
Dai G, Huang S, Li Y, Tu X, Xia J, Zhou Z, Chen W, Zhang A, Lin J, Li Y, He D, Lin T, Cong J, Lei Y, Han L, Yao Z, Liu W, Zhou Y, Li Q, Li J, Zhang Y, Wu A, Xiao D, Wang W, Zhao W, Jia J, Lin X. Mettl3-mediated m 6A modification plays a role in lipid metabolism disorders and progressive liver damage in mice by regulating lipid metabolism-related gene expression. Aging (Albany NY) 2023; 15:5550-5568. [PMID: 37335109 PMCID: PMC10333091 DOI: 10.18632/aging.204810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/23/2023] [Indexed: 06/21/2023]
Abstract
AIMS N6-methyladenosine (m6A), the most abundant and conserved epigenetic modification of mRNA, participates in various physiological and pathological processes. However, the roles of m6A modification in liver lipid metabolism have yet to be understood entirely. We aimed to investigate the roles of the m6A "writer" protein methyltransferase-like 3 (Mettl3) in liver lipid metabolism and the underlying mechanisms. MAIN METHODS We assessed the expression of Mettl3 in liver tissues of diabetes (db/db) mice, obese (ob/ob) mice, high saturated fat-, cholesterol-, and fructose-induced non-alcoholic fatty liver disease (NAFLD) mice, and alcohol abuse and alcoholism (NIAAA) mice by quantitative reverse-transcriptase PCR (qRT-PCR). Hepatocyte-specific Mettl3 knockout mice were used to evaluate the effects of Mettl3 deficiency in mouse liver. The molecular mechanisms underlying the roles of Mettl3 deletion in liver lipid metabolism were explored by multi-omics joint analysis of public data from the Gene Expression Omnibus database and further validated by qRT-PCR and Western blot. KEY FINDINGS Significantly decreased Mettl3 expression was associated with NAFLD progression. Hepatocyte-specific knockout of Mettl3 resulted in significant lipid accumulation in the liver, increased serum total cholesterol levels, and progressive liver damage in mice. Mechanistically, loss of Mettl3 significantly downregulated the expression levels of multiple m6A-modified mRNAs related to lipid metabolism, including Adh7, Cpt1a, and Cyp7a1, further promoting lipid metabolism disorders and liver injury in mice. SIGNIFICANCE In summary, our findings demonstrate that the expression alteration of genes related to lipid metabolism by Mettl3-mediated m6A modification contributes to the development of NAFLD.
Collapse
Affiliation(s)
- Guanqi Dai
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Shihao Huang
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yonglong Li
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China
| | - Xueyi Tu
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jiawei Xia
- The Third People’s Hospital of Kunming (The Sixth Affiliated Hospital of Dali University), Kunming 650041, China
| | - Zhihao Zhou
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wanyi Chen
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ao Zhang
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jintao Lin
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yingchun Li
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Danhua He
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Taoyan Lin
- Department of Pharmacy, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jinge Cong
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China
| | - Ye Lei
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China
| | - Liuxin Han
- The Third People’s Hospital of Kunming (The Sixth Affiliated Hospital of Dali University), Kunming 650041, China
| | - Zhenxia Yao
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Weiwei Liu
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ying Zhou
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qiwen Li
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jing Li
- Radiotherapy Center, The First People's Hospital of Chenzhou, Xiangnan University, Chenzhou 423000, China
| | - Yuqin Zhang
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Aibing Wu
- Department of Oncology, The Central People's Hospital of Zhanjiang, Zhanjiang 524000, China
| | - Dong Xiao
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China
| | - Wanshan Wang
- Laboratory Animal Management Center, Southern Medical University, Guangzhou 510515, China
| | - Wentao Zhao
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Department of Gastrointestinal Oncology, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital, Yunnan Cancer Center), Kunming 650118, China
| | - Junshuang Jia
- Cancer Research Institute, Experimental Education/Administration Center, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaolin Lin
- Cancer Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510315, China
| |
Collapse
|
37
|
Yang S, Hu H, Kung H, Zou R, Dai Y, Hu Y, Wang T, Lv T, Yu J, Li F. Organoids: The current status and biomedical applications. MedComm (Beijing) 2023; 4:e274. [PMID: 37215622 PMCID: PMC10192887 DOI: 10.1002/mco2.274] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/22/2023] [Accepted: 04/27/2023] [Indexed: 05/24/2023] Open
Abstract
Organoids are three-dimensional (3D) miniaturized versions of organs or tissues that are derived from cells with stem potential and can self-organize and differentiate into 3D cell masses, recapitulating the morphology and functions of their in vivo counterparts. Organoid culture is an emerging 3D culture technology, and organoids derived from various organs and tissues, such as the brain, lung, heart, liver, and kidney, have been generated. Compared with traditional bidimensional culture, organoid culture systems have the unique advantage of conserving parental gene expression and mutation characteristics, as well as long-term maintenance of the function and biological characteristics of the parental cells in vitro. All these features of organoids open up new opportunities for drug discovery, large-scale drug screening, and precision medicine. Another major application of organoids is disease modeling, and especially various hereditary diseases that are difficult to model in vitro have been modeled with organoids by combining genome editing technologies. Herein, we introduce the development and current advances in the organoid technology field. We focus on the applications of organoids in basic biology and clinical research, and also highlight their limitations and future perspectives. We hope that this review can provide a valuable reference for the developments and applications of organoids.
Collapse
Affiliation(s)
- Siqi Yang
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Haijie Hu
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Hengchung Kung
- Krieger School of Arts and SciencesJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Ruiqi Zou
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Yushi Dai
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Yafei Hu
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Tiantian Wang
- Key Laboratory of Rehabilitation Medicine in Sichuan ProvinceWest China HospitalSichuan UniversityChengduSichuanChina
| | - Tianrun Lv
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| | - Jun Yu
- Departments of MedicineJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Departments of OncologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Fuyu Li
- Division of Biliary Tract SurgeryDepartment of General SurgeryWest China HospitalSichuan UniversityChengduSichuan ProvinceChina
| |
Collapse
|
38
|
Fu YT, Zhang J, Liu WB, Zhang YF, Zhang S, Tan LL, Lin Q, Ou-Yang KW, Xiong YW, Chang W, Li H, Yu JY, Zhang C, Xu DX, Zhu HL, Wang H. Gestational cadmium exposure disrupts fetal liver development via repressing estrogen biosynthesis in placental trophoblasts. Food Chem Toxicol 2023; 176:113807. [PMID: 37121429 DOI: 10.1016/j.fct.2023.113807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/23/2023] [Accepted: 04/27/2023] [Indexed: 05/02/2023]
Abstract
Cadmium (Cd), commonly found in diet and drinking water, is known to be harmful to the human liver. Nevertheless, the effects and mechanisms of gestational Cd exposure on fetal liver development remain unclear. Here, we reported that gestational Cd (150 mg/L) exposure obviously downregulated the expression of critical proteins including PCNA, Ki67 and VEGF-A in proliferation and angiogenesis in fetal livers, and lowered the estradiol concentration in fetal livers and placentae. Maternal estradiol supplement alleviated aforesaid impairments in fetal livers. Our data showed that the levels of pivotal estrogen synthases, such as CYP17A1 and 17β-HSD, was markedly decreased in Cd-stimulated placentae but not fetal livers. Ground on ovariectomy (OVX), we found that maternal ovarian-derived estradiol had no major effects on Cd-impaired development in fetal liver. In addition, Cd exposure activated placental PERK signaling, and inhibited PERK activity could up-regulated the expressions of CYP17A1 and 17β-HSD in placental trophoblasts. Collectively, gestational Cd exposure inhibited placenta-derived estrogen synthesis via activating PERK signaling, and therefore impaired fetal liver development. This study suggests a protective role for placenta-derived estradiol in fetal liver dysplasia shaped by toxicants, and provides a theoretical basis for toxicants to impede fetal liver development by disrupting the placenta-fetal-liver axis.
Collapse
Affiliation(s)
- Yi-Ting Fu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Jin Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Wei-Bo Liu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yu-Feng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Shuang Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Lu-Lu Tan
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Qing Lin
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Kong-Wen Ou-Yang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yong-Wei Xiong
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Wei Chang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hao Li
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Jun-Ying Yu
- Department of Toxicology, School of Public Health, Anhui Medical University, China
| | - Cheng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, China.
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Ministry of Education of the People's Republic of China, China.
| |
Collapse
|
39
|
Kulikauskas MR, Oatley M, Yu T, Liu Z, Matsumura L, Kidder E, Ruter D, Bautch VL. Endothelial Cell SMAD6 Balances ACVRL1/Alk1 Function to Regulate Adherens Junctions and Hepatic Vascular Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.23.534007. [PMID: 36993438 PMCID: PMC10055411 DOI: 10.1101/2023.03.23.534007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
BMP signaling is critical to blood vessel formation and function, but how pathway components regulate vascular development is not well-understood. Here we find that inhibitory SMAD6 functions in endothelial cells to negatively regulate ALK1/ACVRL1-mediated responses, and it is required to prevent vessel dysmorphogenesis and hemorrhage in the embryonic liver vasculature. Reduced Alk1 gene dosage rescued embryonic hepatic hemorrhage and microvascular capillarization induced by Smad6 deletion in endothelial cells in vivo . At the cellular level, co-depletion of Smad6 and Alk1 rescued the destabilized junctions and impaired barrier function of endothelial cells depleted for SMAD6 alone. At the mechanistic level, blockade of actomyosin contractility or increased PI3K signaling rescued endothelial junction defects induced by SMAD6 loss. Thus, SMAD6 normally modulates ALK1 function in endothelial cells to regulate PI3K signaling and contractility, and SMAD6 loss increases signaling through ALK1 that disrupts endothelial junctions. ALK1 loss-of-function also disrupts vascular development and function, indicating that balanced ALK1 signaling is crucial for proper vascular development and identifying ALK1 as a "Goldilocks" pathway in vascular biology regulated by SMAD6.
Collapse
Affiliation(s)
- Molly R Kulikauskas
- Cell Biology and Physiology Curriculum, The University of North Carolina, Chapel Hill, NC USA
| | - Morgan Oatley
- Department of Biology, The University of North Carolina, Chapel Hill, NC USA
| | - Tianji Yu
- Department of Biology, The University of North Carolina, Chapel Hill, NC USA
| | - Ziqing Liu
- Department of Biology, The University of North Carolina, Chapel Hill, NC USA
| | - Lauren Matsumura
- Department of Biology, The University of North Carolina, Chapel Hill, NC USA
| | - Elise Kidder
- Department of Biology, The University of North Carolina, Chapel Hill, NC USA
| | - Dana Ruter
- Department of Biology, The University of North Carolina, Chapel Hill, NC USA
| | - Victoria L Bautch
- Cell Biology and Physiology Curriculum, The University of North Carolina, Chapel Hill, NC USA
- Department of Biology, The University of North Carolina, Chapel Hill, NC USA
- McAllister Heart Institute, The University of North Carolina, Chapel Hill, NC USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina, Chapel Hill, NC USA
| |
Collapse
|
40
|
Feng R, Liebe R, Weng HL. Transcription networks in liver development and acute liver failure. LIVER RESEARCH 2023; 7:47-55. [PMID: 39959701 PMCID: PMC11791834 DOI: 10.1016/j.livres.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/10/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022]
Abstract
Acute liver failure (ALF) is a medical emergency due to massive hepatocyte loss. In such a harsh condition, maintaining transcriptional regulation in the remaining hepatocytes while activating similar transcription factor networks in liver progenitor cells (LPCs) to ensure essential liver functions are two critical processes to rescue patients from liver failure and death. In this review, we discuss the formation and functions of transcription networks in ALF and liver development. We focus on a hierarchical network of transcription factors that responds to different pathophysiological circumstances: (1) Under normal circumstances, pioneer factor forkhead box protein A2 (FOXA2) coordinates several constitutive hepatic transcription factors, such as hepatic nuclear factor 4 alpha (HNF4α) and CCAAT-enhancer binding protein α (C/EBPα), which ensure normal liver function; (2) When the expression of both HNF4α and C/EBPα in hepatocytes are disrupted by severe inflammation, retinoic acid receptor (RAR) is the alternative transcription factor that compensates for their absence; (3) When massive hepatic necrosis occurs, a similar transcription network including FOXA2 and HNF4α, is activated as a "rescue network" in LPCs to maintain vital liver functions when hepatocytes fail, and thus ensures survival. Expression of these master transcription factors in hepatocytes and LPCs is tightly regulated by hormone signals and inflammation. The performance of this hierarchical transcription network, in particularly the "rescue network" described above, significantly affects the clinical outcome of ALF.
Collapse
Affiliation(s)
- Rilu Feng
- Department of Medicine II, Section Molecular Hepatology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Roman Liebe
- Clinic of Gastroenterology, Hepatology and Infectious Diseases, Heinrich Heine University, Düsseldorf, Germany
- Department of Medicine II, Saarland University Medical Centre, Saarland University, Homburg, Germany
| | - Hong-Lei Weng
- Department of Medicine II, Section Molecular Hepatology, University Medical Center Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
41
|
Bove KE, Finegold MJ, Harpavat S. Biliary Atresia Remnants Revisited: Myogenesis, Hepatic Duct-Like Structures, and Fate of Peribiliary Glands. Pediatr Dev Pathol 2023:10935266221146042. [PMID: 36843487 DOI: 10.1177/10935266221146042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
PURPOSE AND CONTEXT Proximal levels of excised remnants from youngest infants may reveal early features of biliary atresia (BA). METHOD A targeted IHC survey was applied to 34 most proximal 2 levels in 17 BA remnants excised at age 10-74 days including 7 = <30 days old and 6 control hepatic ducts (HD). KEY RESULTS Severity of inflammation and extent of active fibroplasia do not distinguish proximal remnants in younger (n = 7) and older (n = 10) infants. In 27/34 levels of 14/17 remnants, reactive stroma is focally SM-MHC-2 (+), marking smooth muscle myosin, termed reactive myogenesis (RM), that is absent in controls. RM facilitates identification of 3 novel hepatic duct remnants (HDR): an HD-like collagen collar lined by degenerating cholangiocytes (n = 5); erosion defects in loose reactive stroma (n = 14); solitary foci of hyperplastic squamoid epithelium (n = 4). Peribiliary glands are either hyperplastic or atretic and typically lack RM. CONCLUSION Minimally inflammed end-stage lesions in BA remnants occur at youngest ages favoring prenatal onset. Three novel HDR are defined. RM, a useful surrogate for HDR, is a prevalent inappropriate stromal reaction in proximal remnants of uncertain biological significance. RM is the source of mature smooth muscle in BA remnants.
Collapse
Affiliation(s)
- Kevin E Bove
- Department of Pathology, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Milton J Finegold
- Department of Pathology-Immunology, Baylor College of Medicine, Houston, TX, USA
| | - Sanjiv Harpavat
- Department of Pediatrics-Gastroenterology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
42
|
Progressive development of melanoma-induced cachexia differentially impacts organ systems in mice. Cell Rep 2023; 42:111934. [PMID: 36640353 PMCID: PMC9983329 DOI: 10.1016/j.celrep.2022.111934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/12/2022] [Accepted: 12/15/2022] [Indexed: 12/30/2022] Open
Abstract
Cachexia is a systemic wasting syndrome that increases cancer-associated mortality. How cachexia progressively and differentially impacts distinct tissues is largely unknown. Here, we find that the heart and skeletal muscle undergo wasting at early stages and are the tissues transcriptionally most impacted by cachexia. We also identify general and organ-specific transcriptional changes that indicate functional derangement by cachexia even in tissues that do not undergo wasting, such as the brain. Secreted factors constitute a top category of cancer-regulated genes in host tissues, and these changes include upregulation of the angiotensin-converting enzyme (ACE). ACE inhibition with the drug lisinopril improves muscle force and partially impedes cachexia-induced transcriptional changes, although wasting is not prevented, suggesting that cancer-induced host-secreted factors can regulate tissue function during cachexia. Altogether, by defining prevalent and temporal and tissue-specific responses to cachexia, this resource highlights biomarkers and possible targets for general and tissue-tailored anti-cachexia therapies.
Collapse
|
43
|
Comerford SA, Hinnant EA, Chen Y, Hammer RE. Hepatic ribosomal protein S6 (Rps6) insufficiency results in failed bile duct development and loss of hepatocyte viability; a ribosomopathy-like phenotype that is partially p53-dependent. PLoS Genet 2023; 19:e1010595. [PMID: 36656901 PMCID: PMC9888725 DOI: 10.1371/journal.pgen.1010595] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 01/31/2023] [Accepted: 12/26/2022] [Indexed: 01/20/2023] Open
Abstract
Defective ribosome biogenesis (RiBi) underlies a group of clinically diverse human diseases collectively known as the ribosomopathies, core manifestations of which include cytopenias and developmental abnormalities that are believed to stem primarily from an inability to synthesize adequate numbers of ribosomes and concomitant activation of p53. The importance of a correctly functioning RiBi machinery for maintaining tissue homeostasis is illustrated by the observation that, despite having a paucity of certain cell types in early life, ribosomopathy patients have an increased risk for developing cancer later in life. This suggests that hypoproliferative states trigger adaptive responses that can, over time, become maladaptive and inadvertently drive unchecked hyperproliferation and predispose to cancer. Here we describe an experimentally induced ribosomopathy in the mouse and show that a normal level of hepatic ribosomal protein S6 (Rps6) is required for proper bile duct development and preservation of hepatocyte viability and that its insufficiency later promotes overgrowth and predisposes to liver cancer which is accelerated in the absence of the tumor-suppressor PTEN. We also show that the overexpression of c-Myc in the liver ameliorates, while expression of a mutant hyperstable form of p53 partially recapitulates specific aspects of the hepatopathies induced by Rps6 deletion. Surprisingly, co-deletion of p53 in the Rps6-deficient background fails to restore biliary development or significantly improve hepatic function. This study not only reveals a previously unappreciated dependence of the developing liver on adequate levels of Rps6 and exquisitely controlled p53 signaling, but suggests that the increased cancer risk in ribosomopathy patients may, in part, stem from an inability to preserve normal tissue homeostasis in the face of chronic injury and regeneration.
Collapse
Affiliation(s)
- Sarah A. Comerford
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Elizabeth A. Hinnant
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Yidong Chen
- Department of Population Health Sciences, University of Texas Health San Antonio, San Antonio, Texas, United States of America
- Greehey Children’s Cancer Research Institute, University of Texas Health San Antonio, San Antonio, Texas. United States of America
| | - Robert E. Hammer
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
44
|
Chen H, Li LL, Du Y. Krüppel-like factor 15 in liver diseases: Insights into metabolic reprogramming. Front Pharmacol 2023; 14:1115226. [PMID: 36937859 PMCID: PMC10017497 DOI: 10.3389/fphar.2023.1115226] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
Liver diseases, characterized by metabolic disorder, have become a global public health problem with high morbidity and mortality. Krüppel-like factor 15 (KLF15) is a zinc-finger transcription factor mainly enriched in liver. Increasing evidence suggests that hepatic KLF15 is activated rapidly during fasting, and contributes to the regulation of gluconeogenesis, lipid, amino acid catabolism, bile acids, endobiotic and xenobiotic metabolism. This review summarizes the latest advances of KLF15 in metabolic reprogramming, and explore the function of KLF15 in acute liver injury, hepatitis B virus, and autoimmune hepatitis. which aims to evaluate the potential of KLF15 as a therapeutic target and prognostic biomarker for liver diseases.
Collapse
Affiliation(s)
- Hao Chen
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Lan-Lan Li
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, China
| | - Yan Du
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- The Grade 3 Pharmaceutical Chemistry Laboratory of State Administration of Traditional Chinese Medicine, Hefei, Anhui, China
- *Correspondence: Yan Du,
| |
Collapse
|
45
|
Xiang K, Zhuang H. Liver Organoid Potential Application for Hepatitis E Virus Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1417:133-139. [PMID: 37223863 DOI: 10.1007/978-981-99-1304-6_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Despite the advances in hepatitis E virus (HEV) cell infection models' development, HEV infection efficacy in these cell models is still low, which hampers the further study of molecular mechanism of HEV infection and replication and even the interaction between HEV and host. Along with the advances in the technology for liver organoids generation, major efforts will be made to develop liver organoids for HEV infection. Here, we summarize the entire new and impressive cell culture system of liver organoids and discuss their potential application in HEV infection and pathogenesis. Liver organoids can be generated from tissue-resident cells isolated from biopsies of adult tissues or from iPSCs/ESCs differentiation, which can expand the large-scale experiments such as antiviral drug screening. Different types of liver cells working together can recapitulate the liver organ maintaining the physiological and biochemical microenvironments to support cell morphogenesis, migration, and response to viral infections. Efforts to optimize the protocols for liver organoids generation will speed up the research for HEV infection and pathogenesis and even the antiviral drug identification and evaluation.
Collapse
Affiliation(s)
- Kuanhui Xiang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
| | - Hui Zhuang
- Department of Microbiology and Infectious Disease Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
46
|
Jalan-Sakrikar N, Brevini T, Huebert RC, Sampaziotis F. Organoids and regenerative hepatology. Hepatology 2023; 77:305-322. [PMID: 35596930 PMCID: PMC9676408 DOI: 10.1002/hep.32583] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 02/03/2023]
Abstract
The burden of liver diseases is increasing worldwide, with liver transplantation remaining the only treatment option for end-stage liver disease. Regenerative medicine holds great potential as a therapeutic alternative, aiming to repair or replace damaged liver tissue with healthy functional cells. The properties of the cells used are critical for the efficacy of this approach. The advent of liver organoids has not only offered new insights into human physiology and pathophysiology, but also provided an optimal source of cells for regenerative medicine and translational applications. Here, we discuss various historical aspects of 3D organoid culture, how it has been applied to the hepatobiliary system, and how organoid technology intersects with the emerging global field of liver regenerative medicine. We outline the hepatocyte, cholangiocyte, and nonparenchymal organoids systems available and discuss their advantages and limitations for regenerative medicine as well as future directions.
Collapse
Affiliation(s)
- Nidhi Jalan-Sakrikar
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota, USA
- Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, Minnesota, USA
| | - Teresa Brevini
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
| | - Robert C. Huebert
- Division of Gastroenterology and Hepatology, Mayo Clinic and Foundation, Rochester, Minnesota, USA
- Gastroenterology Research Unit, Mayo Clinic and Foundation, Rochester, Minnesota, USA
| | - Fotios Sampaziotis
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
- Cambridge Liver Unit, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
47
|
Muntean A, Davenport M. Biliary atresia & choledochal malformation--Embryological and anatomical considerations. Semin Pediatr Surg 2022; 31:151235. [PMID: 36442454 DOI: 10.1016/j.sempedsurg.2022.151235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The two main biliary pathologies in paediatric practice, biliary atresia and choledochal malformations (CM), have their origins within prenatal life. Nevertheless, the actual mechanisms remain elusive with many unanswered questions. The extrahepatic bile duct develops as a funnel-like structure emerging from the foregut from about 3-4 weeks of gestation into the mesenchyme of the septum transversum. The cranial elements of this contain hepatoblasts - the precursors to the two key cell lines that will become hepatocytes and biliary epithelial cells. The intrahepatic bile ducts develop separately and emerge from a complex process involving the ductal plate surrounding the in-growing portal venous system from about the 7-8th week of gestation. A developmental defect at some point(s) in this process may be the cause of at least some variants of BA - the Biliary Atresia Splenic Malformation syndrome particularly - though evidence in the more common isolated BA is much more circumstantial. Similarly, some types of choledochal malformation, specifically the cystic type of CM, are invariably present during prenatal life although again an actual aetiological mechanism remains elusive.
Collapse
Affiliation(s)
- Ancuta Muntean
- Deptartment of Paediatric Surgery, Kings College Hospital, London
| | - Mark Davenport
- Deptartment of Paediatric Surgery, Kings College Hospital, London.
| |
Collapse
|
48
|
Abstract
Metabolic diseases, including obesity, diabetes mellitus and cardiovascular disease, are a major threat to health in the modern world, but efforts to understand the underlying mechanisms and develop rational treatments are limited by the lack of appropriate human model systems. Notably, advances in stem cell and organoid technology allow the generation of cellular models that replicate the histological, molecular and physiological properties of human organs. Combined with marked improvements in gene editing tools, human stem cells and organoids provide unprecedented systems for studying mechanisms of metabolic diseases. Here, we review progress made over the past decade in the generation and use of stem cell-derived metabolic cell types and organoids in metabolic disease research, especially obesity and liver diseases. In particular, we discuss the limitations of animal models and the advantages of stem cells and organoids, including their application to metabolic diseases. We also discuss mechanisms of drug action, understanding the efficacy and toxicity of existing therapies, screening for new treatments and pursuing personalized therapies. We highlight the potential of combining stem cell-derived organoids with gene editing and functional genomics to revolutionize the approach to finding treatments for metabolic diseases.
Collapse
Affiliation(s)
- Wenxiang Hu
- Department of Basic Research, Guangzhou Laboratory, Guangdong, China.
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| | - Mitchell A Lazar
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
49
|
Paternal Nicotine/Ethanol/Caffeine Mixed Exposure Induces Offspring Rat Dysplasia and Its Potential "GC-IGF1" Programming Mechanism. Int J Mol Sci 2022; 23:ijms232315081. [PMID: 36499404 PMCID: PMC9737622 DOI: 10.3390/ijms232315081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Clinical and animal studies suggest that paternal exposure to adverse environments (bad living habits and chronic stress, etc.) has profound impacts on offspring development; however, the mechanism of paternal disease has not been clarified. In this study, a meta-analysis was first performed to suggest that paternal exposure to nicotine, ethanol, or caffeine is a high-risk factor for adverse pregnancy outcomes. Next, we created a rat model of paternal nicotine/ethanol/caffeine mixed exposure (PME), whereby male Wistar rats were exposed to nicotine (0.1 mg/kg/d), ethanol (0.5 g/kg/d), and caffeine (7.5 mg/kg/d) for 8 weeks continuously, then mated with normal female rats to obtain a fetus (n = 12 for control group, n = 10 for PME group). Then, we analyzed the changes in paternal hypothalamic-pituitary-adrenal (HPA) axis activity, testicular function, pregnancy outcomes, fetal serum metabolic indicators, and multiple organ functions to explore the mechanism from the perspective of chronic stress. Our results demonstrated that PME led to enhanced paternal HPA axis activity, decreased sperm quality, and adverse pregnancy outcomes (stillbirth and absorption, decreased fetal weight and body length, and intrauterine growth retardation), abnormal fetal serum metabolic indicators (corticosterone, glucolipid metabolism, and sex hormones), and fetal multi-organ dysfunction (including hippocampus, adrenal, liver, ossification, and gonads). Furthermore, correlation analysis showed that the increased paternal corticosterone level was closely related to decreased sperm quality, adverse pregnancy outcomes, and abnormal offspring multi-organ function development. Among them, the decreased activity of the glucocorticoid-insulin-like growth factor 1 (GC-IGF1) axis may be the main mechanism of offspring development and multi-organ dysfunction caused by PME. This study explored the impact of common paternal lifestyle in daily life on offspring development, and proposed the GC-IGF1 programming mechanisms of paternal chronic stress-induced offspring dysplasia, which provides a novel insight for exploring the important role of paternal chronic stress in offspring development and guiding a healthy lifestyle for men.
Collapse
|
50
|
Ishihara K, Mukherjee A, Gromberg E, Brugués J, Tanaka EM, Jülicher F. Topological morphogenesis of neuroepithelial organoids. NATURE PHYSICS 2022; 19:177-183. [PMID: 36815964 PMCID: PMC9928582 DOI: 10.1038/s41567-022-01822-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 10/05/2022] [Indexed: 06/18/2023]
Abstract
Animal organs exhibit complex topologies involving cavities and tubular networks, which underlie their form and function1-3. However, how topology emerges during the development of organ shape, or morphogenesis, remains elusive. Here we combine tissue reconstitution and quantitative microscopy to show that tissue topology and shape is governed by two distinct modes of topological transitions4,5. One mode involves the fusion of two separate epithelia and the other involves the fusion of two ends of the same epithelium. The morphological space is captured by a single control parameter that can be traced back to the relative rates of the two epithelial fusion modes. Finally, we identify a pharmacologically accessible pathway that regulates the frequency of two modes of epithelial fusion, and demonstrate the control of organoid topology and shape. The physical principles uncovered here provide fundamental insights into the self-organization of complex tissues6.
Collapse
Affiliation(s)
- Keisuke Ishihara
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems (MPI-PKS), Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
- Present Address: Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, PA USA
| | - Arghyadip Mukherjee
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems (MPI-PKS), Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
- Present Address: Laboratoire de physique de l’École Normale Supérieure, Paris, France
| | - Elena Gromberg
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - Jan Brugués
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Dresden, Germany
- Max Planck Institute for the Physics of Complex Systems (MPI-PKS), Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| | - Elly M. Tanaka
- Research Institute of Molecular Pathology (IMP), Vienna, Austria
| | - Frank Jülicher
- Max Planck Institute for the Physics of Complex Systems (MPI-PKS), Dresden, Germany
- Center for Systems Biology Dresden, Dresden, Germany
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| |
Collapse
|