1
|
Yin B, Qian B, Yu H, Ke S, Li Z, Hua Y, Lu S, Wang C, Li M, Guo S, Li Z, Zhou Y, Meng Z, Li X, Xu Y, Feng Z, Bai M, Fu Y, Tang W, Hong S, Ma Y. NNMT/1-MNA protects against hepatic ischemia-reperfusion injury through the AKT/FOXO1/ANGPT2/JNK axis. Nat Commun 2025; 16:4779. [PMID: 40404636 PMCID: PMC12098763 DOI: 10.1038/s41467-025-59968-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 05/05/2025] [Indexed: 05/24/2025] Open
Abstract
Hepatic ischemia‒reperfusion injury (HIRI) occurs during liver surgery, contributing to postoperative complications such as liver failure, prolonged hospital stays, and increased morbidity and mortality rates. Yet, the mechanism underlying HIRI remains unclear. Nicotinamide N-methyltransferase (NNMT) facilitates the conversion of nicotinamide into N1-methylnicotinamide (1-MNA) and plays crucial roles in various pathophysiological processes. In this study, we find a decrease in hepatic NNMT expression and serum 1-MNA levels during HIRI. Both NNMT overexpression and exogenous 1-MNA treatment alleviate HIRI in male mice HIRI models and primary hepatocytes H/R models. Mechanistically, NNMT/1-MNA plays key roles in inflammation, apoptosis, and vascular injury during HIRI through the AKT/FOXO1/ANGPT2/JNK axis. Hepatic-specific depletion of NNMT leads to increased ANGPT2 expression and exacerbates HIRI, effects that can be mitigated by ANGPT2 knockdown. Our findings suggest that NNMT/1-MNA/ANGPT2 may regulate HIRI via the JNK signaling pathway. In summary, we present the function of NNMT and its underlying mechanism in liver injury, providing potential new therapeutical strategies for addressing HIRI.
Collapse
Affiliation(s)
- Bing Yin
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Baolin Qian
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Hongjun Yu
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Shanjia Ke
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Zihao Li
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Yongliang Hua
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
- Department of Pediatric Surgery, the Sixth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Shounan Lu
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Chaoqun Wang
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Mengxin Li
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Sixun Guo
- Department of Pharmacy, The First affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhongyu Li
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Yongzhi Zhou
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Zhanzhi Meng
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Xinglong Li
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Yanan Xu
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
- Department of Hepatopancreatobiliary Surgery, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhigang Feng
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
- The First Department of General Surgery, The Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Miaoyu Bai
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Yao Fu
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei Tang
- International Health Care Center, National Center for Global Health and Medicine, Tokyo, Japan
- Hepato-Biliary-Pancreatic Surgery Division, Department of Surgery, The University of Tokyo Hospital, Tokyo, Japan
| | - Shangyu Hong
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
| | - Yong Ma
- Department of Minimally Invasive Hepatic Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China.
| |
Collapse
|
2
|
Ding Q, Cao W, Ge X, Cao F, Song Q, Jin Y, Sun T, Fang H, Li J, Li S. SMPD3 Inhibition Contributes to Nicotinamide-Ameliorated Hepatic Steatosis in Chronic Alcohol-Fed Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40404566 DOI: 10.1021/acs.jafc.5c01450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
Alcohol-associated liver disease (ALD) is characterized by the reduction of hepatic nicotinamide adenine dinucleotide (NAD+), which exacerbates hepatic steatosis. The present study was conducted to investigate the protective role of nicotinamide (NAM), a foodborne precursor of NAD+ biosynthesis, in ALD. C57BL/6N mice were employed to establish the ALD model and were administered NAM by gavage. Our results showed that NAM supplementation significantly ameliorated alcohol-induced NAD+ reduction and lipid accumulation in both mice liver and cultured AML-12 hepatocytes and improved lipid metabolism-associated gene disorders. Alcohol-induced liver injury and oxidative stress were also blocked by NAM administration. Further transcriptomics analysis and validation revealed that alcohol-stimulated sphingomyelin phosphodiesterase 3 (SMPD3) was significantly reversed by NAM, along with the reduction of hepatic ceramide levels. Importantly, SMPD3 was upregulated in the livers of ALD patients. Genetically silencing SMPD3 alleviated alcohol-induced lipid accumulation in hepatocytes. ChIP assay identified SMPD3 as a direct downstream target of hypoxia-inducible factor 1 alpha (HIF-1α). Liver-specific Hif1α knockdown reduced the level of hepatic SMPD3 expression in mice. Activation of HIF-1α abolished the prevention of intrahepatic liver lipid deposition by NAM, while SMPD3 knockdown reversed HIF-1α activation-stimulated lipid accumulation, indicating that a HIF-1α-regulated SMPD3 pathway was involved in the beneficial role of NAM. NAM improved liver oxidative stress, while antioxidant MitoQ administration rescued HIF-1α/SMPD3 activation in ALD mice, implying that the antioxidant effect of NAM contributed to its inhibitory role on the HIF-1α/SMPD3 pathway. In conclusion, NAM ameliorates chronic alcohol intake-induced hepatic steatosis by inhibiting SMPD3. This study provides new insights into the mechanistic understanding of ALD and highlights NAM as a therapeutic choice for ALD treatment.
Collapse
Affiliation(s)
- Qinchao Ding
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| | - Wenjing Cao
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| | - Xinxuan Ge
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| | - Feiwei Cao
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| | - Qing Song
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| | - Yue Jin
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| | - Tianchi Sun
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| | - Haoyi Fang
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| | - Jiaxin Li
- Division of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Songtao Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P. R. China
| |
Collapse
|
3
|
Zhang Y, Chen H, You S, Chi X, Chen Y, Wu Z, Zheng J, Cheng X, Liu J, Li J. Preliminary investigation of nicotinamide N-methyltransferase as an HBV-specific biomarker for hepatocellular carcinoma diagnosis. Int J Biol Markers 2025:3936155251330664. [PMID: 40329575 DOI: 10.1177/03936155251330664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
BackgroundNicotinamide N-methyltransferase (NNMT), a metabolic enzyme in the liver, has been implicated in various biological processes, and its high expression in hepatocellular carcinoma has been linked to tumor metastasis and poor prognosis. However, its potential as a serum biomarker for hepatocellular carcinoma diagnosis remains unexplored.MethodsA total of 172 subjects were included in this study, consisting of 71 hepatocellular carcinoma patients (64 with hepatitis B virus (HBV)-associated hepatocellular carcinoma and 7 with non-HBV-associated hepatocellular carcinoma), as well as 70 healthy controls and 31 HBV-infected individuals. Serum NNMT levels were measured, and clinical-pathological correlations were analyzed. The diagnostic efficacy of serum NNMT for HBV-related hepatocellular carcinoma was evaluated using receiver operating characteristic (ROC) curve analysis.ResultsSerum NNMT levels were significantly elevated in HBV-infected individuals and correlated with poorer prognosis, including reduced overall survival and shorter disease-free survival. Kaplan-Meier analysis revealed that low NNMT expression was associated with longer overall survival (75 vs. 12 months, P < 0.0001) and disease-free survival (21.5 vs. 5 months, P < 0.01). In HBV-related hepatocellular carcinoma patients, NNMT levels correlated with biochemical markers including alfa-fetoprotein, aspartate transaminase, triglycerides, total cholesterol, low-density lipoprotein, apolipoprotein B, TB, and albumin, with decreased albumin, and high-density lipoprotein levels promoting NNMT expression. ROC analysis showed that NNMT outperformed alfa-fetoprotein (area under the curve (AUC) 0.869 vs. 0.775), with a sensitivity of 95.2%, specificity of 87.9%, and a combined AUC of 0.947, demonstrating its superior diagnostic value for HBV-related hepatocellular carcinoma.ConclusionsSerum NNMT is a promising biomarker for predicting the risk of hepatocellular carcinoma in HBV-infected individuals and may serve as an indicator for the prognosis of hepatocellular carcinoma patients.
Collapse
Affiliation(s)
- Yi Zhang
- Vascular Surgery Department, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, Fujian Province, China
| | - Huayang Chen
- Department of Colorectal Surgery, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, Fujian Province, China
| | - Song You
- Department of Hepatobiliary Surgery, Meng Chao Hepatobiliary Hospital Affiliated to Fujian Medical University, Fuzhou, Fujian Province, China
| | - Xiaoqin Chi
- Department of Hepatobiliary Surgery, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Zhongshan Hospital of Xiamen University, Fujian Province, China
| | - Yongxi Chen
- Vascular Surgery Department, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, Fujian Province, China
| | - Zhiyong Wu
- Vascular Surgery Department, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, Fujian Province, China
| | - Jiepeng Zheng
- Vascular Surgery Department, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, Fujian Province, China
| | - Xin Cheng
- Vascular Surgery Department, Xiamen Hospital of Traditional Chinese Medicine, Xiamen, Fujian Province, China
| | - Jianming Liu
- Department of Hepatobiliary Surgery, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Zhongshan Hospital of Xiamen University, Fujian Province, China
| | - Jie Li
- Department of Hepatobiliary Surgery, Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen Translational Medical Key Laboratory of Digestive System Tumor, Zhongshan Hospital of Xiamen University, Fujian Province, China
| |
Collapse
|
4
|
Wu B, Weng X, Pan Y, Tian Z, Wu P, Shao J, Liu Y, Huang R, Xu T, Zhou K. Genetic inhibition of nicotinamide N-methyltransferase and prevention of alcohol-associated fatty liver in humans. J Hum Genet 2025; 70:141-146. [PMID: 39695269 DOI: 10.1038/s10038-024-01313-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/20/2024] [Accepted: 12/11/2024] [Indexed: 12/20/2024]
Abstract
Recent studies of animal models reported Nicotinamide N-methyltransferase (NNMT) as a potential therapeutic target for preventing alcohol-associated fatty liver (AFL), yet its efficacy and safety in humans remain unknown. We aim to estimate the effectiveness and safety of inhibiting NNMT in humans. We leveraged Electronic Medical Records (EMRs) data coupled with genetic information to perform a retrospective drug target validation study. We examined longitudinal clinical data from 612 individuals with excessive alcohol consumption. Two variants lowering NNMT protein levels were combined to calculate a weighted NNMT genetic score that could mimic mild inhibition of NNMT. Participants with an NNMT score above the median were classified as genetically inhibited, while others were considered non-inhibited. We then evaluated whether genetic inhibition of NNMT would affect the incidence of AFL or the risk of liver injury, to illuminate the effectiveness and safety of genetic inhibition of NNMT respectively. NNMT genetic inhibition correlated with a reduced AFL risk (hazard ratio [HR] 0.67, 95% confidence interval [CI] 0.49-0.90, P = 0.009) without a significant increase in serum aminotransferase levels (P > 0.10). Notably, elevated ALT and AST levels were observed (P < 0.05) in the genetically inhibited group prior to alcohol exposure. These findings suggest NNMT inhibition is a promising avenue for AFL prevention among individuals with excessive alcohol intake. They also underscore the need for precise target population identification to mitigate potential adverse effects.
Collapse
Affiliation(s)
- Benrui Wu
- National Laboratory of Biomacromolecules, Institute of Biophysics Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiong Weng
- Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, Edinburgh, Scotland
| | - Ying Pan
- Department of general practice, Kunshan Hospital Affiliated to Jiangsu University, Kunshan, Jiangsu, China
| | - Zijian Tian
- National Laboratory of Biomacromolecules, Institute of Biophysics Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Peng Wu
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Jian Shao
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, China
| | - Yiying Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Rong Huang
- Medical Science and Technology Innovation Center, Jinan Central Hospital, Shandong First Medical University, Jinan, Shandong, China
| | - Tao Xu
- National Laboratory of Biomacromolecules, Institute of Biophysics Chinese Academy of Sciences, Beijing, China.
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, China.
| | - Kaixin Zhou
- Guangzhou Laboratory, Guangzhou International Bio Island, Guangzhou, China.
- College of Public Health, Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
5
|
Yang Y, Li F, Li Y, Li X, Zhao Z, Zhang N, Li H. Nicotinamide n-methyltransferase inhibitor synergizes with sodium-glucose cotransporter 2 inhibitor to protect renal tubular epithelium in experimental models of type 2 diabetes mellitus. J Diabetes Complications 2025; 39:108952. [PMID: 39848127 DOI: 10.1016/j.jdiacomp.2025.108952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/18/2024] [Accepted: 01/12/2025] [Indexed: 01/25/2025]
Abstract
AIMS We aim to explore the potential of nicotinamide n-methyltransferase (NNMT) as a sensitive marker of renal tubular injury and the possibility of an NNMT inhibitor to combine with sodium-glucose cotransporter 2 (SGLT2) inhibitor to protect proximal tubular epithelium in vivo and in vitro model of Type 2 diabetes mellitus (T2DM), respectively. METHODS In vivo, immunohistochemical staining, Masson's trichrome staining and Sirius red staining were used to observe the changes of NNMT expression, renal tubular injury and interstitial fibrosis in renal tissue from the db/db mice. Bioinformatic analysis was also conducted to broaden the range of data validation. In vitro, Western Blot and quantitative RT-PCR were used to measure the degree of damage of HK-2 cells. RESULTS Our in vivo data showed upregulation of NNMT expression paralleled renal tubular damage and interstitial fibrosis. Our in vitro data revealed both NNMT inhibitors and SGLT2 inhibitors can protect against the injury as assessed by extracellular matrix (ECM) synthesis and profibrotic phenotype transition of HK-2 cells, and the combination of these two agents can further reduce these injuries. CONCLUSIONS The present study is the first to show that NNMT is a promising marker of renal tubular injury in diabetic nephropathy (DN) and NNMT inhibitors can synergize with SGLT2 inhibitors to protect HK-2 better. Our findings will provide the insight and pave the way of developing novel therapeutic strategies for chronic renal tubular injury associated with T2DM.
Collapse
MESH Headings
- Animals
- Nicotinamide N-Methyltransferase/antagonists & inhibitors
- Nicotinamide N-Methyltransferase/metabolism
- Nicotinamide N-Methyltransferase/genetics
- Sodium-Glucose Transporter 2 Inhibitors/pharmacology
- Sodium-Glucose Transporter 2 Inhibitors/therapeutic use
- Diabetes Mellitus, Type 2/drug therapy
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/pathology
- Diabetes Mellitus, Type 2/metabolism
- Mice
- Diabetic Nephropathies/prevention & control
- Diabetic Nephropathies/pathology
- Humans
- Male
- Kidney Tubules/drug effects
- Kidney Tubules/pathology
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/pathology
- Drug Synergism
- Cell Line
- Disease Models, Animal
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/pathology
- Mice, Inbred C57BL
- Epithelium/drug effects
- Epithelium/pathology
- Sodium-Glucose Transporter 2/metabolism
- Enzyme Inhibitors/pharmacology
- Enzyme Inhibitors/therapeutic use
- Fibrosis
Collapse
Affiliation(s)
- Yuling Yang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Fengxia Li
- Jiaxing University, No. 899 Guangqiong Road, Nanhu District, Jiaxing 314001, China
| | - Yankun Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Xue Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Zhonghua Zhao
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Nong Zhang
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China
| | - Hui Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China.
| |
Collapse
|
6
|
Park J, Shin EJ, Kim TH, Yang JH, Ki SH, Kang KW, Kim KM. Exploring NNMT: from metabolic pathways to therapeutic targets. Arch Pharm Res 2024; 47:893-913. [PMID: 39604638 DOI: 10.1007/s12272-024-01519-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
Cellular metabolism-related epigenetic modulation plays a pivotal role in the maintenance of cellular homeostasis. Nicotinamide N-methyltransferase (NNMT) serves as a crucial link between cellular metabolism and epigenetics by catalyzing nicotinamide methylation using the universal methyl donor S-adenosyl-L-methionine. This direct connection bridges the methylation-mediated one-carbon metabolism with nicotinamide adenine dinucleotide levels. Numerous studies have revealed tissue-specific differences in NNMT expression and activity, indicating that its varied physiological and pathological roles depend on its distribution. In this review, we provide an overview of the NNMT involvement in various pathological conditions, including cancer, liver disease, obesity, diabetes, brain disease, pulmonary disease, cardiovascular disease, and kidney disease. By synthesizing this information, our article aims to enhance our understanding of the cellular mechanisms underlying NNMT biology related to diverse diseases and lay the molecular groundwork for developing therapeutic strategies for pharmacological interventions.
Collapse
Affiliation(s)
- Jeongwoo Park
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452, Republic of Korea
- Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju, 61452, Republic of Korea
| | - Eun Jin Shin
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452, Republic of Korea
- Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju, 61452, Republic of Korea
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju, 61452, Republic of Korea
| | - Tae Hyun Kim
- Drug Information Research Institute, Muscle Physiome Research Center, College of Pharmacy, Sookmyung Women's University, Seoul, 04310, South Korea
| | - Ji Hye Yang
- College of Korean Medicine, Dongshin University, Naju, Jeollanam-Do, 58245, Republic of Korea
| | - Sung Hwan Ki
- College of Pharmacy, Chosun University, Gwangju, 61452, Republic of Korea
| | - Keon Wook Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyu Min Kim
- Department of Biomedical Science, College of Natural Science, Chosun University, Gwangju, 61452, Republic of Korea.
- Institute of Well-Aging Medicare & Chosun University G-LAMP Project Group, Chosun University, Gwangju, 61452, Republic of Korea.
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Age-Associated Disorder Control Technology, Chosun University, Gwangju, 61452, Republic of Korea.
| |
Collapse
|
7
|
Zhang J, Wang H, Tian Y, Li T, Zhang W, Ma L, Chen X, Wei Y. Discovery of a novel lipid metabolism-related gene signature to predict outcomes and the tumor immune microenvironment in gastric cancer by integrated analysis of single-cell and bulk RNA sequencing. Lipids Health Dis 2023; 22:212. [PMID: 38042786 PMCID: PMC10693080 DOI: 10.1186/s12944-023-01977-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 11/21/2023] [Indexed: 12/04/2023] Open
Abstract
Gastric cancer (GC) is a pressing global clinical issue, with few treatment options and a poor prognosis. The onset and spread of stomach cancer are significantly influenced by changes in lipid metabolism-related pathways. This study aimed to discover a predictive signature for GC using lipid metabolism-related genes (LMRGs) and examine its correlation with the tumor immune microenvironment (TIME). Transcriptome data and clinical information from patients with GC were collected from the TCGA and GEO databases. Data from GC samples were analyzed using both bulk RNA-seq and single-cell sequencing of RNA (scRNA-seq). To identify survival-related differentially expressed LMRGs (DE-LMRGs), differential expression and prognosis studies were carried out. We built a predictive signature using LASSO regression and tested it on the TCGA and GSE84437 datasets. In addition, the correlation of the prognostic signature with the TIME was comprehensively analyzed. In this study, we identified 258 DE-LMRGs in GC and further screened seven survival-related DE-LMRGs. The results of scRNA-seq identified 688 differentially expressed genes (DEGs) between the three branches. Two critical genes (GPX3 and NNMT) were identified using the above two gene groups. In addition, a predictive risk score that relies on GPX3 and NNMT was developed. Survival studies in both the TCGA and GEO datasets revealed that patients categorized to be at low danger had a significantly greater prognosis than those identified to be at high danger. Additionally, by employing calibration plots based on TCGA data, the study demonstrated the substantial predictive capacity of a prognostic nomogram, which incorporated a risk score along with various clinical factors. Within the high-risk group, there was a noticeable abundance of active natural killer (NK) cells, quiescent monocytes, macrophages, mast cells, and activated CD4 + T cells. In summary, a two-gene signature and a predictive nomogram have been developed, offering accurate prognostic predictions for general survival in GC patients. These findings have the potential to assist healthcare professionals in making informed medical decisions and providing personalized treatment approaches.
Collapse
Affiliation(s)
- Jinze Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Dalian Medical University, Dalian, China
- Department of Scientific Research, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - He Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Dalian Medical University, Dalian, China
| | - Yu Tian
- Department of Epidemiology and Health Statistics, School of Public Health, Dalian Medical University, Dalian, China
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Tianfeng Li
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
- Affiliated Shenzhen Maternity and Child Healthcare Hospital, Southern Medical University, Shenzhen, China
| | - Wei Zhang
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China
| | - Li Ma
- Department of Epidemiology and Health Statistics, School of Public Health, Dalian Medical University, Dalian, China
| | - Xiangjuan Chen
- Department of Obstetrics, Shenzhen University General Hospital, Shenzhen University, Shenzhen, China.
| | - Yushan Wei
- Department of Scientific Research, First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
8
|
Allameh A, Niayesh-Mehr R, Aliarab A, Sebastiani G, Pantopoulos K. Oxidative Stress in Liver Pathophysiology and Disease. Antioxidants (Basel) 2023; 12:1653. [PMID: 37759956 PMCID: PMC10525124 DOI: 10.3390/antiox12091653] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/15/2023] [Accepted: 08/20/2023] [Indexed: 09/29/2023] Open
Abstract
The liver is an organ that is particularly exposed to reactive oxygen species (ROS), which not only arise during metabolic functions but also during the biotransformation of xenobiotics. The disruption of redox balance causes oxidative stress, which affects liver function, modulates inflammatory pathways and contributes to disease. Thus, oxidative stress is implicated in acute liver injury and in the pathogenesis of prevalent infectious or metabolic chronic liver diseases such as viral hepatitis B or C, alcoholic fatty liver disease, non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). Moreover, oxidative stress plays a crucial role in liver disease progression to liver fibrosis, cirrhosis and hepatocellular carcinoma (HCC). Herein, we provide an overview on the effects of oxidative stress on liver pathophysiology and the mechanisms by which oxidative stress promotes liver disease.
Collapse
Affiliation(s)
- Abdolamir Allameh
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran; (A.A.); (R.N.-M.); (A.A.)
| | - Reyhaneh Niayesh-Mehr
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran; (A.A.); (R.N.-M.); (A.A.)
| | - Azadeh Aliarab
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 1411713116, Iran; (A.A.); (R.N.-M.); (A.A.)
| | - Giada Sebastiani
- Chronic Viral Illness Services, McGill University Health Center, Montreal, QC H4A 3J1, Canada;
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Kostas Pantopoulos
- Department of Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Lady Davis Institute for Medical Research, Montreal, QC H3T 1E2, Canada
| |
Collapse
|
9
|
Salete-Granado D, Carbonell C, Puertas-Miranda D, Vega-Rodríguez VJ, García-Macia M, Herrero AB, Marcos M. Autophagy, Oxidative Stress, and Alcoholic Liver Disease: A Systematic Review and Potential Clinical Applications. Antioxidants (Basel) 2023; 12:1425. [PMID: 37507963 PMCID: PMC10376811 DOI: 10.3390/antiox12071425] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Ethanol consumption triggers oxidative stress by generating reactive oxygen species (ROS) through its metabolites. This process leads to steatosis and liver inflammation, which are critical for the development of alcoholic liver disease (ALD). Autophagy is a regulated dynamic process that sequesters damaged and excess cytoplasmic organelles for lysosomal degradation and may counteract the harmful effects of ROS-induced oxidative stress. These effects include hepatotoxicity, mitochondrial damage, steatosis, endoplasmic reticulum stress, inflammation, and iron overload. In liver diseases, particularly ALD, macroautophagy has been implicated as a protective mechanism in hepatocytes, although it does not appear to play the same role in stellate cells. Beyond the liver, autophagy may also mitigate the harmful effects of alcohol on other organs, thereby providing an additional layer of protection against ALD. This protective potential is further supported by studies showing that drugs that interact with autophagy, such as rapamycin, can prevent ALD development in animal models. This systematic review presents a comprehensive analysis of the literature, focusing on the role of autophagy in oxidative stress regulation, its involvement in organ-organ crosstalk relevant to ALD, and the potential of autophagy-targeting therapeutic strategies.
Collapse
Affiliation(s)
- Daniel Salete-Granado
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
| | - Cristina Carbonell
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
- Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - David Puertas-Miranda
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
- Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Víctor-José Vega-Rodríguez
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
- Hospital Universitario de Salamanca, 37007 Salamanca, Spain
| | - Marina García-Macia
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
- Instituto de Biología Funcional y Genómica (IBFG), Universidad de Salamanca, 37007 Salamanca, Spain
| | - Ana Belén Herrero
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| | - Miguel Marcos
- Instituto de Investigación Biomédica de Salamanca (IBSAL), 37007 Salamanca, Spain; (D.S.-G.); (C.C.); (D.P.-M.); (V.-J.V.-R.); (M.G.-M.); (A.B.H.)
- Hospital Universitario de Salamanca, 37007 Salamanca, Spain
- Unidad de Medicina Molecular, Departamento de Medicina, Universidad de Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
10
|
Zhang CJ, Meyer SR, O’Meara MJ, Huang S, Capeling MM, Ferrer-Torres D, Childs CJ, Spence JR, Fontana RJ, Sexton JZ. A human liver organoid screening platform for DILI risk prediction. J Hepatol 2023; 78:998-1006. [PMID: 36738840 PMCID: PMC11268729 DOI: 10.1016/j.jhep.2023.01.019] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Drug-induced liver injury (DILI), both intrinsic and idiosyncratic, causes frequent morbidity, mortality, clinical trial failures and post-approval withdrawal. This suggests an unmet need for improved in vitro models for DILI risk prediction that can account for diverse host genetics and other clinical factors. In this study, we evaluated the utility of human liver organoids (HLOs) for high-throughput DILI risk prediction and in an organ-on-chip system. METHODS HLOs were derived from three separate iPSC lines and benchmarked on two platforms for their ability to model in vitro liver function and identify hepatotoxic compounds using biochemical assays for albumin, ALT, AST, microscopy-based morphological profiling, and single-cell transcriptomics: i) HLOs dispersed in 384-well-formatted plates and exposed to a library of compounds; ii) HLOs adapted to a liver-on-chip system. RESULTS Dispersed HLOs derived from the three iPSC lines had similar DILI predictive capacity as intact HLOs in a high-throughput screening format, allowing for measurable IC50 values of compound cytotoxicity. Distinct morphological differences were observed in cells treated with drugs exerting differing mechanisms of toxicity. On-chip HLOs significantly increased albumin production, CYP450 expression, and ALT/AST release when treated with known hepatoxic drugs compared to dispersed HLOs and primary human hepatocytes. On-chip HLOs were able to predict the synergistic hepatotoxicity of tenofovir-inarigivir and displayed steatosis and mitochondrial perturbation, via phenotypic and transcriptomic analysis, on exposure to fialuridine and acetaminophen, respectively. CONCLUSIONS The high-throughput and liver-on-chip systems exhibit enhanced in vivo-like functions and demonstrate the potential utility of these platforms for DILI risk assessment. Tenofovir-inarigivr-associated hepatotoxicity was observed and correlates with the clinical manifestation of DILI observed in patients. IMPACT AND IMPLICATIONS Idiosyncratic (spontaneous, patient-specific) drug-induced liver injury (DILI) is difficult to study due to the lack of liver models that function as human liver tissue and are adaptable for large-scale drug screening. Human liver organoids grown from patient stem cells respond to known DILI-causing drugs in both a high-throughput and on a physiological "chip" culture system. These platforms show promise for researchers in their use as predictive models for novel drugs before entering clinical trials and as a potential in vitro diagnostic tool. Our findings support further development of patient-derived liver organoid lines and their use in the context of DILI research.
Collapse
Affiliation(s)
- Charles J. Zhang
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sophia R. Meyer
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Matthew J. O’Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Sha Huang
- Department of Internal Medicine, Gastroenterology and Hepatology, Michigan Medicine at the University of Michigan, Ann Arbor, MI, 48109, USA
| | - Meghan M. Capeling
- Department of Internal Medicine, Gastroenterology and Hepatology, Michigan Medicine at the University of Michigan, Ann Arbor, MI, 48109, USA
| | - Daysha Ferrer-Torres
- Department of Internal Medicine, Gastroenterology and Hepatology, Michigan Medicine at the University of Michigan, Ann Arbor, MI, 48109, USA
| | - Charlie J. Childs
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jason R. Spence
- Department of Internal Medicine, Gastroenterology and Hepatology, Michigan Medicine at the University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Robert J. Fontana
- Department of Internal Medicine, Gastroenterology and Hepatology, Michigan Medicine at the University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jonathan Z. Sexton
- Department of Medicinal Chemistry, College of Pharmacy, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, Gastroenterology and Hepatology, Michigan Medicine at the University of Michigan, Ann Arbor, MI, 48109, USA
- U-M Center for Drug Repurposing, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
11
|
Lai S, Ma Y, Hao L, Ding Q, Chang K, Zhuge H, Qiu J, Xu T, Dou X, Li S. 1-Methylnicotinamide promotes hepatic steatosis in mice: A potential mechanism in chronic alcohol-induced fatty liver disease. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159286. [PMID: 36690322 DOI: 10.1016/j.bbalip.2023.159286] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/16/2022] [Accepted: 01/16/2023] [Indexed: 01/22/2023]
Abstract
Alcohol abuse and its related diseases are the major risk factors for human health. Alcohol-related liver disease (ALD) is a leading cause of morbidity and mortality worldwide. Although the mechanism of ALD has been widely investigated, liver metabolites associated with long-term alcohol intake-induced hepatic steatosis have not been well explored. In this study, we aimed to investigate the role and mechanisms of 1-methylnicotinamide (1-MNA), a metabolite during nicotinamide adenine dinucleotide (NAD+) metabolism, in the pathogenesis of ALD. C57BL/6 wild-type mice were subjected to chronic alcohol feeding with or without 1-MNA (50 mg/kg/day). Our data showed that 1-MNA administration significantly enhanced chronic alcohol consumption-induced hepatic steatosis. Mechanistic studies revealed that alcohol-increased hepatic protein levels of sterol regulatory element-binding transcription factor (SREBP-1c), a key enzyme that regulates lipid lipogenesis, were enhanced in mice administered with 1-MNA, regardless of alcohol feeding. Consistently, alcohol-increased mRNA and protein levels of hepatic diacylglycerol o-acyltransferase 2 (DGAT2) and very low-density lipoprotein receptor (VLDLR) were also exacerbated by 1-MNA administration. Alcohol-induced hepatic endoplasmic reticulum (ER) stress was enhanced by 1-MNA administration, which was evidenced by increased protein levels of binding immunoglobulin protein (BIP), phosphorylated- protein kinase r-like ER kinase (PERK), activating transcription factor 4 (ATF4), and C/EBP-homologous protein (CHOP) in the mouse liver. Overall, this study demonstrated that 1-MNA serves as a pathogenic factor in the development of ALD. Targeting liver 1-MNA levels may serve as a promising therapeutic approach for improving hepatic steatosis in ALD.
Collapse
Affiliation(s)
- Shanglei Lai
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China; School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Yue Ma
- Zhejiang Provincial Key Laboratory of Laboratory Animals and Safety Research, Hangzhou Medical College, Hangzhou, PR China
| | - Liuyi Hao
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Qinchao Ding
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China; Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Kaixin Chang
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Hui Zhuge
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Jiannan Qiu
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Tiantian Xu
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China
| | - Xiaobing Dou
- School of Life Science, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China.
| | - Songtao Li
- School of Public Health, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, PR China; Department of Clinical Nutrition, Affiliated Zhejiang Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
12
|
Du Y, Yang C, Ren D, Shao H, Zhao Y, Yang X. Fu brick tea alleviates alcoholic liver injury by modulating the gut microbiota-liver axis and inhibiting the hepatic TLR4/NF-κB signaling pathway. Food Funct 2022; 13:9391-9406. [PMID: 35959866 DOI: 10.1039/d2fo01547a] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study first evaluated the protective effects of Fu brick tea water extracts (FTE) on alcoholic liver injury and its underlying mechanism in C57BL/6J mice. Oral administration of FTE by oral gavage (400 mg per kg bw) for 12 weeks significantly alleviated lipid metabolism disorder, reduced the activities of serum ALT and AST, decreased the expression of the liver CYP2E1 gene, and enhanced the antioxidant capacities of the livers in alcohol-fed mice (p < 0.05). FTE also relieved alcohol-induced gut microbiota dysbiosis by promoting the proliferation of probiotics such as Muribaculaceae and Lactobacillus, and subsequently increased the cecal levels of short-chain fatty acids (SCFAs) and decreased the tryptophan content of alcohol-fed mice (p < 0.05). Importantly, FTE was found to improve the alcohol-impaired gut barrier function by up-regulating the expression of the epithelial tight junction protein. Accordingly, FTE decreased the circulating lipopolysaccharide (LPS) and thus inhibited the hepatic TLR4/NF-κB signaling pathway to ameliorate alcoholic liver injury. Cumulatively, these findings shed light on the important role of the gut microbiota-liver axis behind the protective efficacy of FTE on alcoholic liver injury.
Collapse
Affiliation(s)
- Yao Du
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Chengcheng Yang
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Daoyuan Ren
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Hongjun Shao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| | - Yan Zhao
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
13
|
Song Q, Wang J, Griffiths A, Song Z. Reply to: "NNMT aggravates hepatic steatosis but alleviates liver injury in alcoholic liver disease" and "Two sides of NNMT in alcoholic and non-alcoholic fatty liver development". J Hepatol 2021; 74:1253-1254. [PMID: 33529671 DOI: 10.1016/j.jhep.2021.01.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/04/2022]
Affiliation(s)
- Qing Song
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
| | - Jun Wang
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
| | - Alexandra Griffiths
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
| | - Zhenyuan Song
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|