1
|
Singh SP, Kumar K, Kulkarni A, Arora V, Choudhury A, Chaubal A, Rathi S, Shah S, Taneja S, Kumar A, Duseja A, Kumar G, Nagaraja Rao P, Saraswat V, Sarin SK. Predictors of Non-response to Atezolizumab Plus Bevacizumab in Patients With Unresectable Hepatocellular Carcinoma: A Multicentre Real World Study (HCC-AB Study). J Clin Exp Hepatol 2025; 15:102513. [PMID: 40129631 PMCID: PMC11930068 DOI: 10.1016/j.jceh.2025.102513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 02/04/2025] [Indexed: 03/26/2025] Open
Abstract
Background The approved immunotherapies for patients with advanced HCC are Atezolizumab and Bevacizumab. However, patients in India present late and healthcare is often available through self-financing. To rationalise the therapy, we conducted a large multicentre study to identify the baseline predictors of non-response to atezolizumab and bevacizumab in advanced unresectable HCC. Methods A dose of atezolizumab 1200 mg and bevacizumab 15 mg/kg was used every 3 weeks from 6 centres across India. A total of 278 patients were screened, and 160 were included in the study. The study included patients with locally advanced metastatic or inoperable hepatocellular carcinoma who were at least 18 years of age and those who received <3 injections were excluded. Fifty-four percent of the included patients were BCLC-B and 46% were BCLC-C. The primary objective was to study overall survival and progression-free survival. While identifying radiological response, objective response rate and adverse effects were secondary objectives. Results The mean age was 61.9 ± 11.7 years, 88% were male, 55% had NASH, 16.3% had hepatitis C, 18.8% had hepatitis B and the rest were alcohol. The mean Model for End-Stage Liver Disease (MELD) is 12.05 ± 4.46, Albumin-Bilirubin Score (ALBI) is -2.04 ± 0.57. Fifty-five percent received first-line and 45% as second/other line therapy. The median overall survival was 10 (95% confidence interval [CI]: 6.1-15.6) months. Progression-free survival was found to be 8 (95%CI: 5.1-14.7) months overall. Eleven (6.9%) achieved complete response, 28 (17.5%) partial response, 33 (20.6%) had stable disease and 88 (55%) had progressive disease. On multivariate analysis, CRP>1 mg/dl (P-0.007), PIVKA-II>400 mAU/mL (P-0.019), AFP>100 ng/ml (P-0.009), presence of diabetes (P-0.042) were associated with non-response to atezolizumab and bevacizumab injection. Fifty-three percent of patients developed any grade of adverse effect, and 20% developed grade 3/4 adverse events amounting to the stoppage of therapy. Conclusion Non-response to atezolizumab and bevacizumab immunotherapy was predicted by CRP>1 mg/dl, PIVKA-II>400mAU/ml, AFP>100 ng/ml and the presence of diabetes.
Collapse
Affiliation(s)
- Satender P. Singh
- Department of Hepatology, Institute of Liver and Biliary Sciences, Vasant Kunj, New Delhi, India
| | - Karan Kumar
- Department of Hepatology and Liver Transplant, Mahatma Gandhi Hospital, Jaipur, India
| | - Anand Kulkarni
- Department of Hepatology and Liver Transplant, Asian Institute of Gastroenterology, Hyderabad, India
| | - Vinod Arora
- Department of Hepatology, Institute of Liver and Biliary Sciences, Vasant Kunj, New Delhi, India
| | - Ashok Choudhury
- Department of Hepatology, Institute of Liver and Biliary Sciences, Vasant Kunj, New Delhi, India
| | - Alisha Chaubal
- Department of Hepatology and Liver Intensive Care, Global Hospitals, Mumbai, India
| | - Sahaj Rathi
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Samir Shah
- Department of Hepatology and Liver Intensive Care, Global Hospitals, Mumbai, India
| | - Sunil Taneja
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashish Kumar
- Department of Gastroenterology and Hepatology, Sir Ganga Ram Hospital, New Delhi, India
| | - Ajay Duseja
- Department of Hepatology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Guresh Kumar
- Department of Hepatology, Institute of Liver and Biliary Sciences, Vasant Kunj, New Delhi, India
| | - P. Nagaraja Rao
- Department of Hepatology and Liver Transplant, Asian Institute of Gastroenterology, Hyderabad, India
| | - Vivek Saraswat
- Department of Hepatology and Liver Transplant, Mahatma Gandhi Hospital, Jaipur, India
| | - Shiv K. Sarin
- Department of Hepatology, Institute of Liver and Biliary Sciences, Vasant Kunj, New Delhi, India
| |
Collapse
|
2
|
Xu P, Hong C, Liu L, Xiao L. PD-1/PD-L1 blockade therapy in hepatocellular carcinoma: Current status and potential biomarkers. Biochim Biophys Acta Rev Cancer 2025; 1880:189334. [PMID: 40280499 DOI: 10.1016/j.bbcan.2025.189334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 04/21/2025] [Accepted: 04/21/2025] [Indexed: 04/29/2025]
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of cancer-related death and the sixth most prevalent cancer worldwide. However, most patients with HCC are at an advanced stage at the time of clinical diagnosis, making surgery impossible. In the past, targeted therapeutic drugs such as sorafenib and lenvatinib were the main treatments. With recent breakthroughs in medicine, immunotherapy, particularly immune checkpoint inhibitors (ICIs), has garnered interest and has been extensively studied for clinical treatment. In addition to single-agent therapies, combination regimens involving ICIs have also been developed. Despite this progress, not all patients with HCC benefit from immunotherapy. Therefore, to improve the treatment response rates, it is crucial to identify patients with HCC who are suitable for immunotherapy. The exploration and validation of markers to predict the outcomes of immunotherapeutic treatments in patients with HCC are of clinical importance. In this article, we provide a comprehensive review of research progress in immunotherapy, particularly ICIs and combination therapies, for HCC. Furthermore, we summarize the clinical indicators and tumor markers discovered in recent years to forecast immunotherapy outcomes in patients with HCC. We also outline predictive markers for the occurrence of immune-related adverse events in patients with HCC receiving immunotherapy and discuss future research directions in the immunotherapeutic treatment landscape.
Collapse
Affiliation(s)
- Peishuang Xu
- Department of Health Management, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Chang Hong
- Department of Health Management, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Li Liu
- Department of Health Management, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Lushan Xiao
- Department of Health Management, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China; Guangdong Provincial Key Laboratory of Viral Hepatitis Research, Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
3
|
Cui X, Ruan M, Li Y, Yang C, Zhang J, Jin R, Wu D, Sun W, Wang R. Characteristics and outcomes of primary and secondary resistance to immune checkpoint inhibitors in hepatocellular carcinoma. Cancer Immunol Immunother 2025; 74:239. [PMID: 40481877 PMCID: PMC12145340 DOI: 10.1007/s00262-025-04089-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Accepted: 05/12/2025] [Indexed: 06/11/2025]
Abstract
Resistance limits the efficacy and durability of immune checkpoint inhibitors (ICIs) in hepatocellular carcinoma (HCC). Therefore, we conducted a retrospective cohort study to investigate the outcomes and characteristics of HCC patients with resistance to immunotherapy. Patients with HCC who have received ICIs at Eastern Hepatobiliary Surgery Hospital between 2016 and 2021 were retrospectively screened and divided into primary resistance, secondary resistance, and durable response group. Time to progression (TTP), overall survival (OS), subsequent management and post-progression survival (PPS) were analyzed. Of 496 patients included, 229 (46.2%) and 141 (28.4%) patients developed primary and secondary resistance, and 126 (25.4%) patients achieved a durable response, the median TTP was 2.83 [2.56-3.09] months, 11.93 [10.45-13.40] months, and not reached, respectively, whereas the median OS was 12.83 [10.36-15.30] months, 31.53 [28.09-34.97] and not reached, respectively. Multivariate logistic regression revealed that Child-Pugh score, BCLC stage, and combined systemic therapies (ICI plus bevacizumab or lenvatinib versus ICI monotherapy) were independently associated with primary resistance, and only combined systemic therapies (ICI plus bevacizumab versus ICI monotherapy) were independently associated with secondary resistance. AFP levels were independently associated with PPS in patients with primary resistance, while post-progression therapies (ICI-based therapies versus others) were independently associated with PPS in patients with resistance. The risk of resistance was notably lower in patients receiving the combination of ICI plus bevacizumab. High AFP levels were associated with the survival of patients with primary resistance. ICI-based maintenance therapy after resistance may provide a significant survival advantage for HCC patients.
Collapse
Affiliation(s)
- Xiaowen Cui
- Department of Oncology, Eastern Hepatobiliary Surgery Hospital, The Naval Medical University, Shanghai, China
| | - Minghao Ruan
- The First Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, The Naval Medical University, 225 Changhai Road, Shanghai, 200438, China
| | - Yao Li
- The First Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, The Naval Medical University, 225 Changhai Road, Shanghai, 200438, China
| | - Cheng Yang
- Department of Special Treatment I and Liver Transplantation, Eastern Hepatobiliary Surgery Hospital, The Naval Medical University, Shanghai, China
| | - Jin Zhang
- The First Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, The Naval Medical University, 225 Changhai Road, Shanghai, 200438, China
| | - Riming Jin
- The First Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, The Naval Medical University, 225 Changhai Road, Shanghai, 200438, China
| | - Dong Wu
- The First Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, The Naval Medical University, 225 Changhai Road, Shanghai, 200438, China
| | - Wen Sun
- National Center for Liver Cancer, The Naval Medical University, 800 Xiangyin Road, Shanghai, 200433, China.
| | - Ruoyu Wang
- The First Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, The Naval Medical University, 225 Changhai Road, Shanghai, 200438, China.
| |
Collapse
|
4
|
Ding Y, Chen Y, Zhang J, Wang Q, Zhu S, Jiang J, He C, Wang J, Tou L, Zheng J, Chen B, Hu S, Yu X, Wang H, Lu Y, Kong M, Chen Y, Wang H, Zhang H, Xu H, Teng F, Shen X, Xu N, Ruan J, Zhou Z, Lu J, Teng L. Blood Biomarker-Based Predictive Indicator for Liver Metastasis in Alpha-Fetoprotein-Producing Gastric Cancer and Multi-Omics Tumor Microenvironment Insights. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e03499. [PMID: 40433893 DOI: 10.1002/advs.202503499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/22/2025] [Indexed: 05/29/2025]
Abstract
Alpha-fetoprotein-producing gastric cancer (AFPGC) is a rare but highly aggressive subtype of gastric cancer. Patients with AFPGC are at high risk of liver metastasis, and the tumor microenvironment (TME) is complex. A multicenter retrospective study is conducted from January 2011 to December 2021 and included 317 AFPGC patients. Using a multivariable logistic regression model, a nomogram for predicting liver metastasis is built. By combining AFP and the neutrophil-lymphocyte ratio (NLR), we developed a novel and easily applicable predictive indicator, termed ANLiM score, for liver metastasis in AFPGC. An integrated multi-omics analysis, including whole-exome sequencing and proteomic analysis, is conducted and revealed an immunosuppressive TME in AFPGC with liver metastasis. Single-cell RNA sequencing and multiplex immunofluorescence identified the potential roles of tumor-associated neutrophils and tertiary lymphoid structures in shaping the immune microenvironment. These findings are validated in a real-world cohort receiving anti-programmed cell death 1 (anti-PD-1) therapy, which showed concordant effectiveness. In addition, the ANLiM score is also identified as a promising biomarker for predicting immunotherapy efficacy. Overall, a blood biomarker-based predictive indicator is developed for liver metastasis and immunotherapy response in AFPGC. The findings on immune microenvironmental alterations for AFPGC with liver metastasis provide new insights for optimizing immunotherapy strategies.
Collapse
Affiliation(s)
- Yongfeng Ding
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Yiran Chen
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Jing Zhang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Qingrui Wang
- State Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310000, China
| | - Songting Zhu
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Junjie Jiang
- Department of Gastroenterology, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, 310000, China
| | - Chao He
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Jincheng Wang
- Department of Radiology, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Laizhen Tou
- Department of Gastrointestinal Surgery, Lishui Central Hospital, the Fifth Hospital Affiliated to Wenzhou Medical University, Lishui, 323000, China
| | - Jingwei Zheng
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Bicheng Chen
- Department of General Surgery, Jinyun People's Hospital, Lishui, 323000, China
| | - Sizhe Hu
- Department of Gastrointestinal Surgery, Dongyang Hospital Affiliated to Wenzhou Medical University, Dongyang People's Hospital, Jinhua, 321000, China
| | - Xiongfei Yu
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Haohao Wang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Yimin Lu
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Mei Kong
- Department of Pathology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Yanyan Chen
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Haiyong Wang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Haibin Zhang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Hongxia Xu
- Innovation Institute for Artificial Intelligence in Medicine and Liangzhu Laboratory, School of medicine, Zhejiang University, Hangzhou, 310000, China
| | - Fei Teng
- Department of Cell Biology, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Xian Shen
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, 325000, China
| | - Nong Xu
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Jian Ruan
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Zhan Zhou
- State Key Laboratory of Advanced Drug Delivery and Release Systems & Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310000, China
| | - Jun Lu
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| |
Collapse
|
5
|
Xu H, Zhang H, Liu Y, Wu H, Li B, Chen K, Wei Y. Prognostic Impact of the Pathologic Response of Patients with Hepatocellular Carcinoma After Preoperative Treatments. Ann Surg Oncol 2025:10.1245/s10434-025-17453-z. [PMID: 40382454 DOI: 10.1245/s10434-025-17453-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Accepted: 04/23/2025] [Indexed: 05/20/2025]
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) exhibits varying degrees of tumor regression after preoperative treatments. However, the relationship between a tumor residual and its impact on recurrence-free survival (RFS) remains poorly defined. This study aimed to assess the effect of pathologic response on RFS in HCC patients undergoing preoperative treatments. METHODS Data from 400 patients with HCC who received preoperative treatments were retrospectively analyzed. The correlation between tumor residual and RFS was assessed using the "surv_cutpoint" function in R software and further validated through Cox proportional hazards regression models, with the objective of identifying a cutoff value that was significantly associated with RFS. RESULTS The overall analysis showed that pathologic response significantly influenced postoperative recurrence when tumor residual of 15% or less was detected. Multivariate regression analysis found that the independent risk factors for RFS were pathologic satellite nodules (hazard ratio [HR], 1.56; 95% confidence interval [CI] 1.05-2.25; P = 0.047), microvascular invasion (HR, 1.72; 95% CI 1.16-2.55; P = 0007), and advanced tumor stage (HR, 1.60; 95% CI 1.05-2.44; P = 0.031). In contrast, an independent protective factor affecting RFS was found to be residual of 15% or less (HR 0.41; 95% CI 0.26-0.63; P < 0.001). Subgroup analyses showed that RFS was significantly associated with a tumor residual cutoff value of 15% in Barcelona Clinic Liver Cancer (BCLC) stage A, 20% in stage BCLC stage B, and 26% in stage BCLC stage C. CONCLUSIONS This study demonstrated that achieving tumor residual of 15% or less after liver resection significantly reduces postoperative recurrence rates for HCC patients treated with preoperative therapies. The effect of tumor regression on RFS varied according to tumor stages.
Collapse
Affiliation(s)
- Hongwei Xu
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Haili Zhang
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yani Liu
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
- Department of General Surgery, West China Second Hospital, Sichuan University, Chengdu, China
| | - Haojun Wu
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Bo Li
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Kefei Chen
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yonggang Wei
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Tu HB, Feng SY, Chen LH, Huang YJ, Zhang JZ, Peng SY, Lin DL, Ye XJ. Integrating ultrasound and serum indicators for evaluating outcomes of targeted immunotherapy in advanced liver cancer. World J Gastrointest Oncol 2025; 17:105872. [DOI: 10.4251/wjgo.v17.i5.105872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/27/2025] [Accepted: 04/17/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a major global contributor to cancer-related mortality, with advanced stages presenting substantial therapeutic challenges. Although targeted immunotherapy shows potential, many patients exhibit poor responses, underscoring the need for predictive tools to optimize treatment strategies. Emerging data indicate that ultrasound features (e.g., tumor stiffness) and serum biomarkers may serve as predictors of treatment outcomes. However, an integrated model for these predictors remains unavailable. This paper introduces a machine learning-based approach that combines ultrasound and serological data to forecast immunotherapy efficacy in patients with advanced HCC.
AIM To develop a non-invasive predictive model for targeted immunotherapy in advanced HCC, incorporating both internal and external validation.
METHODS Patients with advanced HCC who received targeted immunotherapy at two medical centers were enrolled and divided into internal training, internal validation, and external validation cohorts. Comprehensive clinical data were gathered. Initially, 13 machine learning algorithms were tested using the internal training cohort. The algorithm yielding the highest area under the curve (AUC) in the internal validation cohort was selected to construct a predictive model, termed the Target Immunotherapy Predictive Model (TIPM). TIPM performance was then compared with that of traditional tumor staging systems (tumor-node-metastasis, Barcelona Clinic Liver Cancer, China Liver Cancer, Hong Kong Liver Cancer, and C-reactive protein and alpha-fetoprotein in immunotherapy).
RESULTS A total of 306 patients participated in the study, with 143 in the internal training cohort, 62 in the internal validation cohort, and 101 in the external validation cohort. In the internal validation cohort, the random forest model achieved the highest AUC (0.975, 95% confidence interval: 0.924-0.998). The key predictors for TIPM were tumor size, platelet count, tumor stiffness change, and white blood cell count. During external validation, TIPM outperformed conventional models, reaching an AUC of 0.899 (95% confidence interval: 0.840-0.957). Calibration curves demonstrated strong concordance with observed outcomes, while decision curve analysis confirmed TIPM’s enhanced clinical value. Additional metrics, such as the net reclassification index and integrated discrimination improvement, further supported TIPM’s superior predictive accuracy.
CONCLUSION TIPM provides a robust tool for predicting targeted immunotherapy efficacy in advanced HCC, facilitating personalized treatment planning.
Collapse
Affiliation(s)
- Hai-Bin Tu
- Department of Ultrasound, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, Fujian Province, China
| | - Si-Yi Feng
- Department of Ultrasound, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, Fujian Province, China
| | - Li-Hong Chen
- Department of Ultrasound, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, Fujian Province, China
| | - Yu-Jie Huang
- Department of Ultrasound, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, Fujian Province, China
| | - Ju-Zhen Zhang
- Department of Ultrasound, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, Fujian Province, China
| | - Su-Yu Peng
- Department of Ultrasound, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, Fujian Province, China
| | - Ding-Luan Lin
- Department of Positron Emission Tomography, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350025, Fujian Province, China
| | - Xiao-Jian Ye
- Department of Ultrasound, The First Affiliated Hospital of Fujian Medical University, Fuzhou 350001, Fujian Province, China
- Department of Ultrasound, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350001, Fujian Province, China
| |
Collapse
|
7
|
Lin Z, Wang W, Yan Y, Ma Z, Xiao Z, Mao K. A deep learning-based clinical-radiomics model predicting the treatment response of immune checkpoint inhibitors (ICIs)-based conversion therapy in potentially convertible hepatocelluar carcinoma patients: a tumor marker prognostic study. Int J Surg 2025; 111:3342-3355. [PMID: 40085751 PMCID: PMC12165573 DOI: 10.1097/js9.0000000000002322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Accepted: 03/02/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND The majority of patients with hepatocellular carcinoma (HCC) miss the opportunity of radical resection, making immune check-point inhibitors (ICIs)-based conversion therapy a primary option. However, challenges persist in predicting response and identifying the optimal patient subset. The objective is to develop a CT-based clinical-radiomics model to predict durable clinical benefit (DCB) of ICIs-based treatment in potentially convertible HCC patients. METHODS The radiomics features were extracted by pyradiomics in training set, and machine learning models was generated based on the selected radiomics features. Deep learning models were created using two different protocols. Integrated models were constructed by incorporating radiomics scores, deep learning scores, and clinical variables selected through multivariate analysis. Furthermore, we analyzed the relationship between integrated model scores and clinical outcomes related to conversion therapy in the entire cohort. Finally, radiogenomic analysis was conducted on bulk RNA and DNA sequencing data. RESULTS The top-performing integrated model demonstrated excellent predictive accuracy with an area under the curve (AUC) of 0.96 (95% CI: 0.94-0.99) in the training set and 0.88 (95% CI: 0.77-0.99) in the test set, effectively stratifying survival risk across the entire cohort and revealing significant disparity in overall survival (OS), as evidenced by Kaplan-Meier survival curves ( P < 0.0001). Moreover, integrated model scores exhibited associations with sequential resection among patients who achieved DCB and pathological complete response (pCR) among those who underwent sequential resection procedures. Notably, higher radiomics model was correlated with MHC I expression, angiogenesis-related processes, CD8 T cell-related gene sets, as well as a higher frequency of TP53 mutations along with increased levels of mutation burden and neoantigen. CONCLUSION The deep learning-based clinical-radiomics model exhibited satisfactory predictive capability in forecasting the DCB derived from ICIs-based conversion therapy in potentially convertible HCC, and was associated with a diverse range of immune-related mechanisms.
Collapse
Affiliation(s)
- Zijian Lin
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
| | - Weidong Wang
- Department of Interventional Radiography, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
| | - Yongcong Yan
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zifeng Ma
- Shanghai Public Health Clinical Center, Shanghai, China
| | - Zhiyu Xiao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Kai Mao
- Department of Hepatobiliary Surgery, Sun Yat-Sen Memorial Hospital, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
Pantzios S, Sidiropoulos O, Syriha A, Stathopoulou I, Rellou S, Nychas E, Barla G, Ptohis N, Elefsiniotis I. Impact of neutrophil-to-lymphocyte ratio on survival outcomes among cirrhotic and non-cirrhotic patients with advanced hepatocellular carcinoma under atezolizumab-bevacizumab combination therapy. Ann Gastroenterol 2025; 38:319-327. [PMID: 40371202 PMCID: PMC12070338 DOI: 10.20524/aog.2025.0963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 03/19/2025] [Indexed: 05/16/2025] Open
Abstract
Background The efficacy of atezolizumab-bevacizumab in patients with hepatocellular carcinoma (HCC) has not been studied separately in cirrhotic and non-cirrhotic patients. Our aim was to evaluate the efficacy of atezolizumab-bevacizumab in these patients, in relation to baseline values of the neutrophil-to-lymphocyte ratio (NLR). Methods We divided 57 atezolizumab-bevacizumab-treated HCC patients according to baseline NLR (>3: NLR-H, ≤3: NLR-L) and studied overall survival (OS) and progression-free survival (PFS) in 4 groups: group A, non-cirrhotic/NLR-L; group B, non-cirrhotic/NLR-H; group C, cirrhotic/NLR-L; and group D, cirrhotic/NLR-H. Results The 4 groups were comparable except for etiology, ALBI grade, macrovascular invasion, Barcelona Clinic Liver Cancer stage and prior therapy. Median OS and PFS were 30, 10, 12 and 5 months, and 14, 4, 8 and 2 months, for groups A, B, C, D, respectively (P<0.001). By Cox regression, cirrhotic/NLR-H patients showed significantly worse OS and PFS. Cirrhotic/NLR-L patients had better OS (12 vs. 5 months, P=0.002) and PFS (8 vs. 2 months, P=0.028) compared to cirrhotic/NLR-H. NLR was significantly correlated with OS (P=0.015). Non-cirrhotic/NLR-L patients had better OS (30 vs. 10 months, P=0.006) and PFS (15 vs. 4 months, P=0.01) compared to non-cirrhotic/NLR-H patients. Prior therapy was significantly correlated with better OS (30 vs. 8 months, P<0.001) and PFS (24 vs. 4 months, P<0.001) in non-cirrhotic patients. Conclusions Cirrhotic/NLR-H HCC patients presented the worst survival. NLR is an independent risk factor for worse survival in cirrhotic patients. Prior therapy is the only factor significantly correlated with OS and PFS in non-cirrhotic patients.
Collapse
Affiliation(s)
- Spyridon Pantzios
- Academic Department of Internal Medicine, Hepatogastroenterology Unit, “Agioi Anargyroi” General and Oncology Hospital of Kifisia, National and Kapodistrian University of Athens, Greece (Spyridon Pantzios, Orestis Sidiropoulos, Antonia Syriha, Ioanna Stathopoulou, Sofia Rellou, Emmanouil Nychas, Georgia Barla, Nikolaos Ptohis, Ioannis Elefsiniotis)
| | - Orestis Sidiropoulos
- Academic Department of Internal Medicine, Hepatogastroenterology Unit, “Agioi Anargyroi” General and Oncology Hospital of Kifisia, National and Kapodistrian University of Athens, Greece (Spyridon Pantzios, Orestis Sidiropoulos, Antonia Syriha, Ioanna Stathopoulou, Sofia Rellou, Emmanouil Nychas, Georgia Barla, Nikolaos Ptohis, Ioannis Elefsiniotis)
| | - Antonia Syriha
- Academic Department of Internal Medicine, Hepatogastroenterology Unit, “Agioi Anargyroi” General and Oncology Hospital of Kifisia, National and Kapodistrian University of Athens, Greece (Spyridon Pantzios, Orestis Sidiropoulos, Antonia Syriha, Ioanna Stathopoulou, Sofia Rellou, Emmanouil Nychas, Georgia Barla, Nikolaos Ptohis, Ioannis Elefsiniotis)
| | - Ioanna Stathopoulou
- Academic Department of Internal Medicine, Hepatogastroenterology Unit, “Agioi Anargyroi” General and Oncology Hospital of Kifisia, National and Kapodistrian University of Athens, Greece (Spyridon Pantzios, Orestis Sidiropoulos, Antonia Syriha, Ioanna Stathopoulou, Sofia Rellou, Emmanouil Nychas, Georgia Barla, Nikolaos Ptohis, Ioannis Elefsiniotis)
| | - Sofia Rellou
- Academic Department of Internal Medicine, Hepatogastroenterology Unit, “Agioi Anargyroi” General and Oncology Hospital of Kifisia, National and Kapodistrian University of Athens, Greece (Spyridon Pantzios, Orestis Sidiropoulos, Antonia Syriha, Ioanna Stathopoulou, Sofia Rellou, Emmanouil Nychas, Georgia Barla, Nikolaos Ptohis, Ioannis Elefsiniotis)
| | - Emmanouil Nychas
- Academic Department of Internal Medicine, Hepatogastroenterology Unit, “Agioi Anargyroi” General and Oncology Hospital of Kifisia, National and Kapodistrian University of Athens, Greece (Spyridon Pantzios, Orestis Sidiropoulos, Antonia Syriha, Ioanna Stathopoulou, Sofia Rellou, Emmanouil Nychas, Georgia Barla, Nikolaos Ptohis, Ioannis Elefsiniotis)
| | - Georgia Barla
- Academic Department of Internal Medicine, Hepatogastroenterology Unit, “Agioi Anargyroi” General and Oncology Hospital of Kifisia, National and Kapodistrian University of Athens, Greece (Spyridon Pantzios, Orestis Sidiropoulos, Antonia Syriha, Ioanna Stathopoulou, Sofia Rellou, Emmanouil Nychas, Georgia Barla, Nikolaos Ptohis, Ioannis Elefsiniotis)
| | - Nikolaos Ptohis
- Academic Department of Internal Medicine, Hepatogastroenterology Unit, “Agioi Anargyroi” General and Oncology Hospital of Kifisia, National and Kapodistrian University of Athens, Greece (Spyridon Pantzios, Orestis Sidiropoulos, Antonia Syriha, Ioanna Stathopoulou, Sofia Rellou, Emmanouil Nychas, Georgia Barla, Nikolaos Ptohis, Ioannis Elefsiniotis)
| | - Ioannis Elefsiniotis
- Academic Department of Internal Medicine, Hepatogastroenterology Unit, “Agioi Anargyroi” General and Oncology Hospital of Kifisia, National and Kapodistrian University of Athens, Greece (Spyridon Pantzios, Orestis Sidiropoulos, Antonia Syriha, Ioanna Stathopoulou, Sofia Rellou, Emmanouil Nychas, Georgia Barla, Nikolaos Ptohis, Ioannis Elefsiniotis)
| |
Collapse
|
9
|
Zhao C, Qin G, Ling C, Zhao Y, Huang Y, Jiang Z, Zhou N, Liu J, Su D, Jiang J. MSNs-loaded HMME and Erastin-mediated ferroptosis combined with sonodynamic therapy for HCC treatment. J Cancer Res Ther 2025; 21:465-476. [PMID: 40317153 DOI: 10.4103/jcrt.jcrt_1531_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 02/24/2025] [Indexed: 05/07/2025]
Abstract
BACKGROUND Ferroptosis can have a major impact on the development and advancement of hepatocellular carcinoma (HCC) due to its clear association with heightened vulnerability to the disease. This study aimed to develop a novel nanoplatform to evaluate its effectiveness in in vivo and in vitro models of HCC. METHODS Erastin, a compound that induces iron-dependent cell death, and HMME, a sonosensitizer, were enclosed within mesoporous silica nanoparticles (MSNs). The nanoparticles were engineered to exhibit a responsive assembly-disassembly mechanism. Hydrophilic hyaluronic acid (HA) was utilized for conjugation modification to synthesize Erastin/HMME@MSNs-HA. In vivo and in vitro experiments were conducted to elucidate the antitumor mechanisms of this nanomaterial. RESULTS In the in vitro cellular experiments, Erastin/HMME@MSNs-HA was rapidly degraded by hyaluronidase, leading to increased endocytosis of the cancer cells. Cellular breakdown led to the generation of harmful reactive oxygen species (ROS), decreased glutathione levels, and increased lipid peroxidation, resulting in a decrease in mitochondrial membrane potential, dysfunctional mitochondria, reduced cell growth, and increased cell death. Additionally, the Erastin/HMME@MSNs-HA nanotherapy platform, when combined with ultrasound (US) treatment, exhibited significant therapeutic effectiveness against tumors in vivo. It induced significant cell death in cancerous tissues, decreased tumor growth, worsened tissue oxygen deprivation, and exhibited good compatibility with the body. CONCLUSION These findings indicate that the nanoplatform can effectively alleviate tumor hypoxia while inducing apoptosis and ferroptosis, laying the foundation for enhancing the efficacy of ROS-mediated HCC therapy.
Collapse
Affiliation(s)
- Chang Zhao
- Department of Interventional Therapy, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Guchun Qin
- Department of Interventional Therapy, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Caixia Ling
- Department of Radiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yang Zhao
- Department of Radiology, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Yunxi Huang
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital, Nanning, China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China
| | - Zelong Jiang
- Department of Interventional Therapy, Guangxi Medical University Cancer Hospital, Nanning, China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China
| | - Niqiang Zhou
- Department of Interventional Therapy, Guangxi Medical University Cancer Hospital, Nanning, China
- Guangxi Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor, Nanning, China
| | - Junjie Liu
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Danke Su
- Department of Imaging Center, Guangxi Medical University Cancer Hospital, Nanning, China
| | - Jinghang Jiang
- Department of Medical Ultrasound, Guangxi Medical University Cancer Hospital, Nanning, China
| |
Collapse
|
10
|
Naganuma A, Kakizaki S, Hatanaka T, Hiraoka A, Tada T, Hirooka M, Kariyama K, Tani J, Atsukawa M, Takaguchi K, Itobayashi E, Fukunishi S, Tsuji K, Ishikawa T, Tajiri K, Toyoda H, Koshiyama Y, Ogawa C, Nishikawa H, Nishimura T, Kawata K, Kosaka H, Matsui K, Yata Y, Tanaka H, Ohama H, Kuroda H, Matono T, Aoki T, Ochi H, Imai M, Nakamura S, Kanayama Y, Tanaka K, Tada F, Yoshida O, Nouso K, Morishita A, Tsutsui A, Nagano T, Itokawa N, Okubo T, Arai T, Enomoto H, Kaibori M, Hiasa Y, Kudo M, Kumada T. Impact of time-of-day atezolizumab plus bevacizumab combination therapy infusion for unresectable hepatocellular carcinoma: A retrospective multicenter study. Hepatol Res 2025; 55:741-751. [PMID: 40317628 DOI: 10.1111/hepr.14171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/21/2025] [Accepted: 01/27/2025] [Indexed: 03/02/2025]
Abstract
AIM This study aimed to evaluate the impact of infusion timing of time-of-day on clinical outcomes in patients with unresectable hepatocellular carcinoma (HCC) treated with atezolizumab plus bevacizumab combination therapy. METHODS A retrospective analysis was conducted using data from 751 unresectable HCC patients treated with atezolizumab plus bevacizumab between September 2020 and April 2024. Patients were categorized into morning (AM; n = 351) and afternoon (PM; n = 400) groups based on infusion timing of time-of-day. Outcomes, including progression-free survival (PFS), overall survival, objective response rate, and disease control rate, were assessed using Kaplan-Meier survival analysis and Cox regression analysis. RESULTS The PFS was significantly longer in the AM group (8.6 months, 95% CI 7.6-10.5) compared with the PM group (6.0 months, 95% CI 5.4-7.0; p = 0.006). In contrast, overall survival was similar between the groups (AM: 24.7 months vs. PM: 21.4 months; p = 0.99). Cox regression analysis revealed that morning infusion was an independent favorable predictor of PFS (HR 1.23, 95% CI 1.04-1.45). Additionally, the AM group demonstrated superior objective response rate and disease control rate compared with the PM group, suggesting better tumor control. CONCLUSION Morning infusion of atezolizumab plus bevacizumab is associated with improved PFS and response rates in unresectable HCC patients, highlighting the potential for optimizing treatment outcomes through circadian timing.
Collapse
Affiliation(s)
- Atsushi Naganuma
- Department of Gastroenterology, NHO Takasaki General Medical Center, Takasaki, Japan
| | - Satoru Kakizaki
- Department of Clinical Research, NHO Takasaki General Medical Center, Takasaki, Japan
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takeshi Hatanaka
- Department of Gastroenterology, Gunma Saiseikai Maebashi Hospital, Maebashi, Japan
| | - Atsushi Hiraoka
- Gastroenterology Center, Ehime Prefectural Central Hospital, Matsuyama, Japan
| | - Toshifumi Tada
- Division of Gastroenterology, Department of Internal Medicine, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masashi Hirooka
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Touon, Japan
| | - Kazuya Kariyama
- Department of Gastroenterology, Okayama City Hospital, Okayama, Japan
| | - Joji Tani
- Department of Gastroenterology and Neurology, Kagawa University, Kita-gun, Japan
| | - Masanori Atsukawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | - Koichi Takaguchi
- Department of Hepatology, Kagawa Prefectural Central Hospital, Takamatsu, Japan
| | - Ei Itobayashi
- Department of Gastroenterology, Asahi General Hospital, Asahi, Japan
| | - Shinya Fukunishi
- Division of Gastroenterology, Department of Hepatobiliary and Pancreatic Diseases, Hyogo Medical University, Nishinomiya, Japan
| | - Kunihiko Tsuji
- Center of Gastroenterology, Teine Keijinkai Hospital, Sapporo, Japan
| | - Toru Ishikawa
- Department of Gastroenterology, Saiseikai Niigata Hospital, Niigata, Japan
| | - Kazuto Tajiri
- Department of Gastroenterology, Toyama University Hospital, Toyama, Japan
| | - Hidenori Toyoda
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Yuichi Koshiyama
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Chikara Ogawa
- Department of Gastroenterology, Japanese Red Cross Takamatsu Hospital, Takamatsu, Japan
| | - Hiroki Nishikawa
- Department of Gastroenterology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Takashi Nishimura
- Division of Gastroenterology, Department of Hepatobiliary and Pancreatic Diseases, Hyogo Medical University, Nishinomiya, Japan
| | - Kazuhito Kawata
- Hepatology Division, Department of Internal Medicine II, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hisashi Kosaka
- Department of Hepatobiliary Surgery, Kansai Medical University, Hirakata, Japan
| | - Kosuke Matsui
- Department of Hepatobiliary Surgery, Kansai Medical University, Hirakata, Japan
| | - Yutaka Yata
- Department of Gastroenterology, Hanwa Memorial Hospital, Osaka, Japan
| | - Hironori Tanaka
- Department of Gastroenterology, Takarazuka City Hospital, Takarazuka, Japan
| | - Hideko Ohama
- Gastroenterology Center, Ehime Prefectural Central Hospital, Matsuyama, Japan
| | - Hidekatsu Kuroda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University, Morioka, Iwate, Japan
| | - Tomomitsu Matono
- Department of Gastroenterology, Hyogo Prefectural Harima-Himeji General Medical Center, Himeji, Japan
| | - Tomoko Aoki
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Hironori Ochi
- Center for Liver-Biliary-Pancreatic Disease, Matsuyama Red Cross Hospital, Matsuyama, Japan
| | - Michitaka Imai
- Department of Gastroenterology, Niigata Prefectural Cancer Center, Niigata, Japan
| | - Shinichiro Nakamura
- Department of Internal Medicine, Japanese Red Cross Himeji Hospital, Himeji, Japan
| | - Yuki Kanayama
- Department of Gastroenterology, Gunma Saiseikai Maebashi Hospital, Maebashi, Japan
| | - Kazunari Tanaka
- Center of Gastroenterology, Teine Keijinkai Hospital, Sapporo, Japan
| | - Fujimasa Tada
- Gastroenterology Center, Ehime Prefectural Central Hospital, Matsuyama, Japan
| | - Osamu Yoshida
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Touon, Japan
| | - Kazuhiro Nouso
- Department of Gastroenterology, Okayama City Hospital, Okayama, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Kagawa University, Kita-gun, Japan
| | - Akemi Tsutsui
- Department of Hepatology, Kagawa Prefectural Central Hospital, Takamatsu, Japan
| | - Takuya Nagano
- Department of Hepatology, Kagawa Prefectural Central Hospital, Takamatsu, Japan
| | - Norio Itokawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | - Tomomi Okubo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | - Taeang Arai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | - Hirayuki Enomoto
- Division of Gastroenterology, Department of Hepatobiliary and Pancreatic Diseases, Hyogo Medical University, Nishinomiya, Japan
| | - Masaki Kaibori
- Department of Hepatobiliary Surgery, Kansai Medical University, Hirakata, Japan
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Touon, Japan
| | - Masatoshi Kudo
- Department of Gastroenterology and Hepatology, Kindai University Faculty of Medicine, Osaka, Japan
| | | |
Collapse
|
11
|
Toyoda H, Hiraoka A, Ochi H, Tsuji K, Tajiri K, Tani J, Tada T, Okubo T, Atsukawa M, Hirooka M, Itobayashi E, Hatanaka T, Kariyama K, Ishikawa T, Kuroda H, Takaguchi K, Kosaka H, Kawada K, Kakizaki S, Yada Y, Ogawa C, Nishimura T, Yasuda S, Deguchi A, Morishita A, Itokawa N, Arai T, Tsutsui A, Naganuma A, Enomoto H, Kaibori M, Nouso K, Hiasa Y, Kumada T, Akita T, Tanaka J, Johnson PJ. Prognostic Significance of the BALAD Serological Model in Systemic Therapies for Hepatocellular Carcinoma: A Personalized Approach to the Prediction of Survival Benefit. JCO Clin Cancer Inform 2025; 9:e2400175. [PMID: 40354590 DOI: 10.1200/cci-24-00175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 01/27/2025] [Accepted: 03/05/2025] [Indexed: 05/14/2025] Open
Abstract
PURPOSE The BALAD model, a scoring system for staging hepatocellular carcinoma (HCC), is based on five serum markers: bilirubin, albumin, lens culinaris agglutinin-reactive alpha-fetoprotein [AFP], AFP, and des-gamma-carboxy prothrombin. It has shown good ability to predict survival in patients with HCC irrespective of stage and treatment, a high BALAD value being associated with a poor prognosis. However, its prognostic significance is unclear in patients with advanced unresectable HCC (uHCC) who undergo systemic therapies. We assessed the prognostic ability of BALAD in this subpopulation. METHODS In a multicenter cohort of 1,510 patients with advanced uHCC treated with first-line systemic therapies, the baseline BALAD score was calculated on the basis of pretreatment serum levels. Overall survival (OS), progression-free survival (PFS), overall response rate (ORR), and disease control rate (DCR) were calculated and related to the BALAD score. RESULTS In all, 502 patients were treated with sorafenib, 435 with lenvatinib, and 573 with atezolizumab plus bevacizumab. Irrespective of treatment regimen, OS, PFS, ORR, and DCR were all independently negatively correlated with the BALAD score. The beneficial effects of specific systemic therapy regimens differed according to the BALAD score. CONCLUSION The BALAD score had good prognostic ability for predicting OS and PFS in patients with advanced uHCC who underwent systemic therapies and was associated with treatment response. Application of the BALAD score offers increased precision in the prediction of outcome both for individual patients and for specific subgroups of patients with HCC.
Collapse
Affiliation(s)
- Hidenori Toyoda
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Atsushi Hiraoka
- Gastroenterology Center, Ehime Prefectural Central Hospital, Matsuyama, Japan
| | - Hironori Ochi
- Hepato-biliary Center, Japanese Red Cross Matsuyama Hospital, Matsuyama, Japan
| | - Kunihiko Tsuji
- Center of Gastroenterology, Teine Keijinkai Hospital, Sapporo, Japan
| | - Kazuto Tajiri
- Department of Gastroenterology, Toyama University Hospital, Toyama, Japan
| | - Joji Tani
- Department of Gastroenterology and Hepatology, Kagawa University, Kagawa, Japan
| | - Toshifumi Tada
- Department of Internal Medicine, Japanese Red Cross Himeji Hospital, Himeji, Japan
| | - Tomomi Okubo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nippon Medical School Chiba Hokuso Hospital, Inzai, Japan
| | - Masanori Atsukawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | - Masashi Hirooka
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Ei Itobayashi
- Department of Gastroenterology, Asahi General Hospital, Asahi, Japan
| | - Takeshi Hatanaka
- Department of Gastroenterology, Gunma Saiseikai Maebashi Hospital, Maebashi, Japan
| | - Kazuya Kariyama
- Department of Hepatology, Okayama City Hospital, Okayama, Japan
| | - Toru Ishikawa
- Department of Hepatology, Saiseikai Niigata Hospital, Niigata, Japan
| | - Hidekatsu Kuroda
- Division of Hepatology, Department of Internal Medicine, Iwate Medical University, School of Medicine, Morioka, Japan
| | - Koichi Takaguchi
- Department of Hepatology, Kagawa Prefectural Central Hospital, Takamatsu, Japan
| | - Hisashi Kosaka
- Department of Surgery, Kansai Medical University, Hirakata, Japan
| | - Kazuhito Kawada
- Hepatology Division, Department of Internal Medicine II, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Satoru Kakizaki
- Department of Gastroenterology, National Hospital Organization Takasaki General Medical Center, Takasaki, Japan
| | - Yutaka Yada
- Department of Gastroenterology, Hanwa Memorial Hospital, Osaka, Japan
| | - Chikara Ogawa
- Department of Gastroenterology, Japanese Red Cross Takamatsu Hospital, Takamatsu, Japan
| | - Takashi Nishimura
- Department of Gastroenterology and Hepatology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Satoshi Yasuda
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Akihiro Deguchi
- Department of Gastroenterology and Hepatology, Kagawa University, Kagawa, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Hepatology, Kagawa University, Kagawa, Japan
| | - Norio Itokawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | - Taeang Arai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | - Akemi Tsutsui
- Department of Hepatology, Kagawa Prefectural Central Hospital, Takamatsu, Japan
| | - Atsushi Naganuma
- Department of Gastroenterology, National Hospital Organization Takasaki General Medical Center, Takasaki, Japan
| | - Hirayuki Enomoto
- Department of Gastroenterology and Hepatology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Masaki Kaibori
- Department of Surgery, Kansai Medical University, Hirakata, Japan
| | - Kazuhiro Nouso
- Department of Hepatology, Okayama City Hospital, Okayama, Japan
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Toon, Japan
| | - Takashi Kumada
- Department of Nursing, Gifu Kyoritsu University, Ogaki, Japan
| | - Tomoyuki Akita
- Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Junko Tanaka
- Department of Epidemiology, Infectious Disease Control, and Prevention, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - Philip J Johnson
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
12
|
Guo X, Zhao Z, Zhu L, Liu S, Zhou L, Wu F, Fang S, Chen M, Zheng L, Ji J. The evolving landscape of biomarkers for systemic therapy in advanced hepatocellular carcinoma. Biomark Res 2025; 13:60. [PMID: 40221793 PMCID: PMC11993949 DOI: 10.1186/s40364-025-00774-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/29/2025] [Indexed: 04/14/2025] Open
Abstract
Hepatocellular carcinoma (HCC) remains one of the most prevalent and deadliest cancers. With the approval of multiple first- and second-line agents, especially the combination therapies based on immune checkpoint inhibitor (ICI) regimens, the landscape of systemic therapy for advanced HCC (aHCC) is more diverse than ever before. The efficacy of current systemic therapies shows great heterogeneity in patients with aHCC, thereby identifying biomarkers for response prediction and patient stratification has become an urgent need. The main biomarkers for systemic therapy in hepatocellular carcinoma are derived from peripheral blood, tissues, and imaging. Currently, the understanding of the clinical response to systemic therapy indicates unequivocally that a single biomarker cannot be used to identify patients who are likely to benefit from these treatments. In this review, we provide an integrated landscape of the recent development in molecular targeted therapies and ICIs-based therapies, especially focusing on the role of clinically applicable predictive biomarkers. Additionally, we further highlight the latest advancements in biomarker-driven therapies, including targeted treatments, adoptive cell therapies, and bispecific antibodies.
Collapse
Affiliation(s)
- Xinyu Guo
- Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, School of Medicine, Lishui Hospital, Zhejiaing University, Lishui, 323000, China
- Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, 323000, China
| | - Zhongwei Zhao
- Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, School of Medicine, Lishui Hospital, Zhejiaing University, Lishui, 323000, China
- Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, 323000, China
| | - Lingyi Zhu
- The 2nd Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, 310000, China
| | - Shuang Liu
- Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, 323000, China
| | - Lingling Zhou
- Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, School of Medicine, Lishui Hospital, Zhejiaing University, Lishui, 323000, China
- Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, 323000, China
| | - Fazong Wu
- Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, School of Medicine, Lishui Hospital, Zhejiaing University, Lishui, 323000, China
- Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, 323000, China
| | - Shiji Fang
- Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, School of Medicine, Lishui Hospital, Zhejiaing University, Lishui, 323000, China
- Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, 323000, China
| | - Minjiang Chen
- Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, School of Medicine, Lishui Hospital, Zhejiaing University, Lishui, 323000, China
- Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, 323000, China
| | - Liyun Zheng
- Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, School of Medicine, Lishui Hospital, Zhejiaing University, Lishui, 323000, China.
- Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, 323000, China.
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China.
| | - Jiansong Ji
- Zhejiang Engineering Research Center of Interventional Medicine Engineering and Biotechnology, School of Medicine, Lishui Hospital, Zhejiaing University, Lishui, 323000, China.
- Department of Radiology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Central Hospital, Lishui, 323000, China.
- Zhejiang Key Laboratory of Imaging and Interventional Medicine, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui, Zhejiang, 323000, China.
| |
Collapse
|
13
|
Su P, Han Y, Yi J, Hou Y, Xiao Y. Research status and frontiers in liver cancer immunotherapy: a bibliometric perspective on highly cited literature. Front Oncol 2025; 15:1587252. [PMID: 40276056 PMCID: PMC12018336 DOI: 10.3389/fonc.2025.1587252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Accepted: 03/14/2025] [Indexed: 04/26/2025] Open
Abstract
Background Liver cancer is one of the major causes of cancer-related death in the world. As a breakthrough therapy, immunotherapy had significantly improved the prognosis of patients. However, the current research status and research hotspots in the field of liver cancer immunotherapy still lack systematic review. Based on the bibliometric analysis of highly cited papers, this study intended to reveal the current research status, research hotspots and future research trends in this field. Objective The purpose of this study was to analyze the national/regional contributions, authors and institutions cooperation network, keywords clustering and keywords burst analysis of highly cited papers on liver cancer immunotherapy through bibliometrics, so as to clarify the research frontier and development direction, and provide objective data support for future research direction and clinical practice. Methods The highly cited papers on liver cancer immunotherapy from the Web of Science core collection up to February 23, 2025 were retrieved, and 232 studies were included. CiteSpace was used to build a knowledge map, analyze the distribution of years, countries, authors, institutions and cooperation networks, and identify research hotspots and emerging trends through keyword clustering and burst detection. Results The number of highly cited papers continued to increase from 2014 and reached a peak in 2022. China and the United States had the highest number of publications and the centrality of cooperation networks. The author with the highest number of papers was Llovet, Josep M, whose research direction mainly focused on immune checkpoint inhibitor combination therapy and molecular typing. The author with the highest cooperation network centrality was Duda, Dan G, whose research team focused on tumor microenvironment regulation. Harvard University and the University of Barcelona played an important central role in the institutional collaboration. Keywords analysis showed that immune checkpoint inhibitors, tumor microenvironment and combination therapy were the core of liver cancer immunotherapy. Burst keywords such as cell lung cancer, pembrolizumab, advanced melanoma, blockade, lymphocytes, etc. had revealed the research frontier of liver cancer immunotherapy research. Conclusion The research on liver cancer immunotherapy had made multi-dimensional progress, with China and the United States leading the global cooperation. The main research directions were the combination strategy of immunization, the regulation of tumor microenvironment and the exploration of novel targets. In the future, it is necessary to optimize treatment resistance solutions, integrate interdisciplinary resources, and promote the development of precision and personalized treatment.
Collapse
Affiliation(s)
- Pan Su
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital, Central South University, Changsha, China
| | - Yeqiong Han
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital, Central South University, Changsha, China
| | - Jindong Yi
- Teaching and Research Section of Clinical Nursing, Xiangya Hospital, Central South University, Changsha, China
| | - Yu Hou
- Department of Pulmonology, Children’s Hospital, National Clinical Research Center For Child Health, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Xiao
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, China
- International Joint Research Center of Minimally Invasive Endoscopic Technology Equipment & Standards, Xiangya Hospital, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
Sun P, Xu H, Guo C, Yang L, Zhang X, Lu B, Chen L, Huang J. TMEM115 as an Oncogenic and Immunological Biomarker in Hepatocellular Carcinoma. Liver Int 2025; 45:e70048. [PMID: 40052693 DOI: 10.1111/liv.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 02/11/2025] [Accepted: 02/18/2025] [Indexed: 05/13/2025]
Abstract
BACKGROUND Transmembrane (TMEM) proteins are involved in fundamental biological processes such as material transport and signal transduction. TMEM115 is a member of the TMEM protein family, but its significance in hepatocellular carcinoma (HCC) remains unclear. In this study, we investigate the clinical predictive significance and potential functions of TMEM115 in HCC. METHODS Bioinformatics was used to investigate TMEM115 mRNA expression and immune infiltration score. Through multiplex immunohistochemistry analysis, we assessed its protein expression and association with HCC patient clinical features, prognosis and immune cell infiltration in HCC. Through in vitro and in vivo experiments, we evaluated the biological functions of TMEM115 in HCC cells and its impact on the immune microenvironment. RESULTS TMEM115 mRNA and protein levels were significantly higher in HCC tissues compared to paracancerous liver tissues. Its protein expression correlated with clinical characteristics and overall survival in HCC patients. In HCC tissues, higher TMEM115 protein expression corresponded to lower proportions of CD66b+ neutrophils and CD8+ T cells and a higher proportion of CD4+ T cells. Furthermore, patients with low TMEM115 expression displayed higher programmed cell death ligand-1 and lower lymphocyte activation gene 3 protein expression. Functionally, TMEM115 knockdown inhibited the proliferation, migration and invasion of HCC cells. In orthotopic models, TMEM115 knockdown inhibited the growth of HCC and affected the infiltration of immune cells. CONCLUSIONS Our findings show TMEM115 as a promising prognostic indicator for HCC and hold promise in predicting responses to immune therapy, emphasising its potential clinical relevance and intricate involvement in the immune microenvironment of HCC.
Collapse
Affiliation(s)
- Pingping Sun
- Department of Clinical and Translational Research Center, Affiliated Hospital of Nantong University & Medical School of Nantong University, Nantong, China
| | - Haiyan Xu
- Department of Clinical and Translational Research Center, Affiliated Hospital of Nantong University & Medical School of Nantong University, Nantong, China
| | - Chengfeng Guo
- Department of Clinical and Translational Research Center, Affiliated Hospital of Nantong University & Medical School of Nantong University, Nantong, China
| | - Lei Yang
- Department of Clinical and Translational Research Center, Affiliated Hospital of Nantong University & Medical School of Nantong University, Nantong, China
| | - Xiaojing Zhang
- Department of Clinical and Translational Research Center, Affiliated Hospital of Nantong University & Medical School of Nantong University, Nantong, China
| | - Bing Lu
- Department of Clinical and Translational Research Center, Affiliated Hospital of Nantong University & Medical School of Nantong University, Nantong, China
| | - Lei Chen
- Department of Oncology & Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
- Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, People's Republic of China
| | - Jianfei Huang
- Department of Clinical and Translational Research Center, Affiliated Hospital of Nantong University & Medical School of Nantong University, Nantong, China
- Institute of Oncology, Affiliated Hospital of Nantong University, Nantong, China
| |
Collapse
|
15
|
Hatanaka T, Kakizaki S, Hiraoka A, Tada T, Hirooka M, Kariyama K, Tani J, Atsukawa M, Takaguchi K, Itobayashi E, Fukunishi S, Tsuji K, Ishikawa T, Tajiri K, Toyoda H, Ogawa C, Nishikawa H, Nishimura T, Kawata K, Kosaka H, Naganuma A, Yata Y, Ohama H, Kuroda H, Matono T, Tanaka K, Tada F, Nouso K, Morishita A, Tsutsui A, Nagano T, Itokawa N, Okubo T, Arai T, Imai M, Koizumi Y, Nakamura S, Kaibori M, Iijima H, Hiasa Y, Kumada T, Real‐life Practice Experts for HCC (RELPEC) Study Group, and HCC 48 Group (hepatocellular carcinoma experts from 48 clinics in Japan). Reliable Performance of mALBI Grade-Based Risk Models for Predicting the Prognosis of Patients With Hepatocellular Carcinoma Receiving Atezolizumab Plus Bevacizumab as First-Line Treatment: Comparative Analysis of 13 Risk Models. J Gastroenterol Hepatol 2025; 40:930-939. [PMID: 39762722 DOI: 10.1111/jgh.16871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/19/2024] [Accepted: 12/26/2024] [Indexed: 01/17/2025]
Abstract
AIM This study aimed to compare the prognostic performance of the risk models for patients with hepatocellular carcinoma (HCC) receiving atezolizumab and bevacizumab (Atez/Bev) as first-line treatment. METHODS Among 449 patients included in this retrospective multicenter study, we compared the prognostic performance of 13 risk models for the 12-month and 18-month survival status using area under the curve (AUC), net reclassification improvement (NRI), and relative integrated discrimination improvement (IDI) analysis. We also constructed a calibration plot to assess the fitness of each model. RESULTS Regarding the analysis of the 12-month survival status, none of the risk models demonstrated AUC values higher than the modified albumin-bilirubin (mALBI) grade. In the NRI analysis, only the IMmunotherapy with AFP, BCLC staging, mALBI, and DCP evaluation (IMABALI-De score) exhibited a statistically significant improvement compared with the mALBI grade (p = 0.009). While the modified albumin-bilirubin grade (mALF) score and prognostic nutritional index (PNI) did not exhibit significant differences compared to the mALBI grade (p = 0.3 and 0.2, respectively), the remaining risk models were inferior to the mALBI grade. In the relative IDI analysis, none of the risk models showed a significant improvement compared with the mALBI grade. The calibration plot of the PNI was unsatisfactory. The results for the 18-month survival status were consistent with those for the 12-month survival status. A time-dependent ROC analysis demonstrated that both the mALBI grade and the mALBI-based model showed consistent performance over time. CONCLUSIONS The mALBI grade, as well as the IMABALI-De and mALF scores (both of which are risk models based on mALBI grade), exhibited reliable performance in predicting the prognosis of patients with HCC.
Collapse
Affiliation(s)
- Takeshi Hatanaka
- Department of Gastroenterology, Gunma Saiseikai Maebashi Hospital, Maebashi, Japan
| | - Satoru Kakizaki
- Department of Clinical Research, NHO Takasaki General Medical Center, Takasaki, Japan
- Department of Gastroenterology and Hepatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Atsushi Hiraoka
- Gastroenterology Center, Ehime Prefectural Central Hospital, Matsuyama, Japan
| | - Toshifumi Tada
- Department of Internal Medicine, Japanese Red Cross Himeji Hospital, Himeji, Japan
| | - Masashi Hirooka
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Matsuyama, Japan
| | - Kazuya Kariyama
- Department of Gastroenterology, Okayama City Hospital, Okayama, Japan
| | - Joji Tani
- Department of Gastroenterology and Neurology, Kagawa University, Kita-gun, Japan
| | - Masanori Atsukawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | - Koichi Takaguchi
- Department of Hepatology, Kagawa Prefectural Central Hospital, Takamatsu, Japan
| | - Ei Itobayashi
- Department of Gastroenterology, Asahi General Hospital, Asahi, Japan
| | - Shinya Fukunishi
- Department of Gastroenterology, Division of Hepatobiliary and Pancreatic Diseases, Hyogo Medical University, Nishinomiya, Japan
| | - Kunihiko Tsuji
- Center of Gastroenterology, Teine Keijinkai Hospital, Sapporo, Japan
| | - Toru Ishikawa
- Department of Gastroenterology, Saiseikai Niigata Hospital, Niigata, Japan
| | - Kazuto Tajiri
- Department of Gastroenterology, Toyama University Hospital, Toyama, Japan
| | - Hidenori Toyoda
- Department of Gastroenterology and Hepatology, Ogaki Municipal Hospital, Ogaki, Japan
| | - Chikara Ogawa
- Department of Gastroenterology, Japanese Red Cross Takamatsu Hospital, Takamatsu, Japan
| | - Hiroki Nishikawa
- Department of Gastroenterology, Osaka Medical and Pharmaceutical University, Osaka, Japan
| | - Takashi Nishimura
- Department of Gastroenterology, Division of Hepatobiliary and Pancreatic Diseases, Hyogo Medical University, Nishinomiya, Japan
| | - Kazuhito Kawata
- Hepatology Division, Department of Internal Medicine II, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hisashi Kosaka
- Department of Surgery, Kansai Medical University, Hirakata, Japan
| | - Atsushi Naganuma
- Department of Gastroenterology, NHO Takasaki General Medical Center, Takasaki, Japan
| | - Yutaka Yata
- Department of Gastroenterology, Hanwa Memorial Hospital, Osaka, Japan
| | - Hideko Ohama
- Department of Gastroenterology, Takarazuka City Hospital, Takarazuka, Japan
| | - Hidekatsu Kuroda
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Iwate Medical University, Iwate, Japan
| | - Tomomitsu Matono
- Department of Gastroenterology, Hyogo Prefectural Harima-Himeji General Medical Center, Himeji, Japan
| | - Kazunari Tanaka
- Center of Gastroenterology, Teine Keijinkai Hospital, Sapporo, Japan
| | - Fujimasa Tada
- Gastroenterology Center, Ehime Prefectural Central Hospital, Matsuyama, Japan
| | - Kazuhiro Nouso
- Department of Gastroenterology, Okayama City Hospital, Okayama, Japan
| | - Asahiro Morishita
- Department of Gastroenterology and Neurology, Kagawa University, Kita-gun, Japan
| | - Akemi Tsutsui
- Department of Hepatology, Kagawa Prefectural Central Hospital, Takamatsu, Japan
| | - Takuya Nagano
- Department of Hepatology, Kagawa Prefectural Central Hospital, Takamatsu, Japan
| | - Norio Itokawa
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | - Tomomi Okubo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | - Taeang Arai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Nippon Medical School, Tokyo, Japan
| | - Michitaka Imai
- Department of Gastroenterology, Saiseikai Niigata Hospital, Niigata, Japan
| | - Yohei Koizumi
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Matsuyama, Japan
| | - Shinichiro Nakamura
- Department of Internal Medicine, Japanese Red Cross Himeji Hospital, Himeji, Japan
| | - Masaki Kaibori
- Department of Surgery, Kansai Medical University, Hirakata, Japan
| | - Hiroko Iijima
- Department of Gastroenterology, Division of Hepatobiliary and Pancreatic Diseases, Hyogo Medical University, Nishinomiya, Japan
| | - Yoichi Hiasa
- Department of Gastroenterology and Metabology, Ehime University Graduate School of Medicine, Matsuyama, Japan
| | - Takashi Kumada
- Department of Nursing, Gifu Kyoritsu University, Ogaki, Japan
| | | |
Collapse
|
16
|
Unome S, Imai K, Aiba M, Miwa T, Hanai T, Suetsugu A, Takai K, Shimizu M. Cachexia is an independent predictor of mortality in patients with hepatocellular carcinoma on systemic targeted therapy. Clin Nutr ESPEN 2025; 66:454-459. [PMID: 39993564 DOI: 10.1016/j.clnesp.2025.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/21/2025] [Accepted: 02/08/2025] [Indexed: 02/26/2025]
Abstract
BACKGROUND & AIM This study aimed to investigate the prevalence and prognostic impact of cachexia in patients with unresectable hepatocellular carcinoma (HCC) receiving systemic targeted therapy. METHODS This single-center retrospective study included patients with HCC who underwent systemic targeted therapy. Cachexia was defined using novel criteria proposed in 2023. The prognostic impact of cachexia was evaluated using the Cox proportional hazards model. RESULTS Of the 200 patients (160 males [80%]; median age, 73 years), cachexia was identified in 70 patients and associated with higher des-gamma-carboxy prothrombin levels, and extrahepatic spread. Patients with cachexia had significantly shorter overall survival (OS) (median 14.1 vs. 20.9 months, p = 0.002) and post-progression survival (PPS) (4.8 vs. 11.1 months, p = 0.001) compared to patients without cachexia. Multivariable analyses revealed cachexia as an independent adverse factor for OS (hazard ratio 1.54; 95% confidence interval 1.03-2.30, p = 0.035) and PPS (hazard ratio 1.64; 95% confidence interval 1.08-2.47, p = 0.018). No significant differences were observed in Progression-free survival between the two groups. Treatment discontinuation due to general appearance deterioration was more common in cachectic patients. CONCLUSIONS Cachexia was prevalent among patients with HCC receiving systemic targeted therapy and was identified as an independent predictor of poorer OS and PPS. Given the prognostic impact, the evaluation of cachexia is crucial in managing patients with HCC undergoing systemic targeted therapy.
Collapse
Affiliation(s)
- Shinji Unome
- Department of Gastroenterology/Internal Medicine, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Kenji Imai
- Department of Gastroenterology/Internal Medicine, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Masashi Aiba
- Department of Gastroenterology/Internal Medicine, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Takao Miwa
- Department of Gastroenterology/Internal Medicine, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Tatsunori Hanai
- Department of Gastroenterology/Internal Medicine, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Atsushi Suetsugu
- Department of Gastroenterology/Internal Medicine, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Koji Takai
- Department of Gastroenterology/Internal Medicine, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| | - Masahito Shimizu
- Department of Gastroenterology/Internal Medicine, Graduate School of Medicine, Gifu University, 1-1 Yanagido, Gifu 501-1194, Japan.
| |
Collapse
|
17
|
Zanuso V, Rimassa L, Braconi C. The rapidly evolving landscape of HCC: Selecting the optimal systemic therapy. Hepatology 2025; 81:1365-1386. [PMID: 37695554 DOI: 10.1097/hep.0000000000000572] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/04/2023] [Indexed: 09/12/2023]
Abstract
Over the past years, there has been a remarkable advance in the systemic treatment options for advanced HCC. The overall survival has gradually increased over time, with larger benefits for patients with sensitive tumors and preserved liver function, the latter being an essential condition for the delivery of sequential lines of treatment and optimization of clinical outcomes. With the approval of new first-line agents and the introduction of immune checkpoint inhibitor-based therapies, the treatment landscape of advanced HCC is becoming wider than ever. Atezolizumab plus bevacizumab and, more recently, durvalumab plus tremelimumab have entered the clinical practice and are the current standard of care for treatment-naïve patients, surpassing sorafenib and lenvatinib monopoly. As no head-to-head comparisons are available among all the first-line treatment options, the recommendation for the most appropriate choice and sequence is patient-driven and integrates efficacy data with clinical comorbidities, background liver disease, and the safety profile of available drugs. In addition, predictive biomarkers for successful patients' stratification are yet to be available and constitute the focus of ongoing research. The treatment algorithm is likely to become even more complex since systemic therapeutic approaches are now being translated into earlier stages of the disease, with an impact on the evolution of the sequential treatment of patients with HCC.
Collapse
Affiliation(s)
- Valentina Zanuso
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
| | - Lorenza Rimassa
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Chiara Braconi
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
- Beatson West of Scotland Cancer Centre, Glasgow, UK
| |
Collapse
|
18
|
Zhang F, Wang YS, Li SP, Zhao B, Huang N, Song RP, Meng FZ, Feng ZW, Zhang SY, Song HC, Chen XP, Liu LX, Wang JZ. Alpha-fetoprotein combined with initial tumor shape irregularity in predicting the survival of patients with advanced hepatocellular carcinoma treated with immune-checkpoint inhibitors: a retrospective multi-center cohort study. J Gastroenterol 2025; 60:442-455. [PMID: 39714631 PMCID: PMC11922967 DOI: 10.1007/s00535-024-02202-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/07/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs) are playing a significant role in the treatment of hepatocellular carcinoma (HCC). This study aims to explore the prognostic value of alpha-fetoprotein (AFP) and initial tumor shape irregularity in patients treated with ICIs. METHODS In this retrospective, multi-center study, 296 HCC patients were randomly divided into the training set and the validation set in a 3:2 ratio. The training set was used to evaluate prognostic factors and to develop an easily applicable ATSI (AFP and Tumor Shape Irregularity) score, which was verified in the validation set. RESULTS The ATSI score was developed from two independent prognostic risk factors: baseline AFP ≥ 400 ng/ml (HR 1.73, 95% CI 1.01-2.96, P = 0.046) and initial tumor shape irregularity (HR 1.94, 95% CI 1.03-3.65, P = 0.041). The median overall survival (OS) was not reached (95% CI 28.20-NA) in patients who met no criteria (0 points), 25.8 months (95% CI 14.17-NA) in patients who met one criterion (1 point), and 17.03 months (95% CI 11.73-23.83) in patients who met two criteria (2 points) (P = 0.001). The median progression-free survival (PFS) was 10.83 months (95% CI 9.27-14.33) for 0 points, 8.03 months (95% CI 6.77-10.57) for 1 point, and 5.03 months (95% CI 3.83-9.67) for 2 points (P < 0.001). The validation set effectively verified these results (median OS, 37.43/24.27/14.03 months for 0/1/2 points, P = 0.028; median PFS, 13.93/8.30/4.90 months for 0/1/2 points, P < 0.001). CONCLUSIONS The ATSI score can effectively predict prognosis in HCC patients receiving ICIs.
Collapse
Affiliation(s)
- Feng Zhang
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Yong-Shuai Wang
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Shao-Peng Li
- Department of Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Bin Zhao
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Nan Huang
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Rui-Peng Song
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Fan-Zheng Meng
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Zhi-Wen Feng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, 241000, China
| | - Shen-Yu Zhang
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Hua-Chuan Song
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China
| | - Xiao-Peng Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, Anhui, 241000, China.
| | - Lian-Xin Liu
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China.
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China.
| | - Ji-Zhou Wang
- Department of Hepatobiliary Surgery, Centre for Leading Medicine and Advanced Technologies of IHM, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
- Anhui Provincial Key Laboratory of Hepatopancreatobiliary Surgery, Hefei, Anhui, 230001, China.
- Anhui Provincial Clinical Research Center for Hepatobiliary Diseases, Hefei, Anhui, 230001, China.
| |
Collapse
|
19
|
Möhring C, Berger M, Sadeghlar F, Zhou X, Zhou T, Monin MB, Shmanko K, Welland S, Sinner F, Schwacha-Eipper B, Bauer U, Roderburg C, Pirozzi A, Ben Khaled N, Schrammen P, Balcar L, Pinter M, Ettrich TJ, Saborowski A, Berres ML, De Toni EN, Lüdde T, Rimassa L, Ehmer U, Venerito M, Radu IP, Schmidt-Wolf IGH, Weinmann A, Vogel A, Schmid M, Kalff JC, Strassburg CP, Gonzalez-Carmona MA. Evaluating Sorafenib (SORA-2) as Second-Line Treatment for Unresectable Hepatocellular Carcinoma: A European Retrospective Multicenter Study. Cancers (Basel) 2025; 17:972. [PMID: 40149306 PMCID: PMC11940497 DOI: 10.3390/cancers17060972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2025] [Revised: 03/03/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Systemic treatment for unresectable hepatocellular carcinoma (HCC) has rapidly advanced, with immune checkpoint inhibitors now the preferred first-line option. However, with multiple agents available and no established treatment sequence, selecting the most suitable second-line (2L) therapy remains challenging. While sorafenib is frequently chosen for 2L treatment, comprehensive data supporting its use is limited. This study evaluates the effectiveness of sorafenib as 2L therapy and factors influencing outcomes following first-line treatment failure in advanced HCC patients. METHODS This is a retrospective, multicenter study, including 81 patients with unresectable HCC from 12 European centers who received sorafenib as 2L treatment. Median overall survival (mOS), median progression-free survival (mPFS), radiological response to treatment, and toxicity were evaluated. Univariable and multivariable analyses were performed to identify potential predictors of clinical benefit. RESULTS In this cohort, some patients were treated with 2L sorafenib mOS for 7.4 months (95% CI: 6.6-13.6) and other patients were treated with mPFS for 3.7 months (95% CI: 3.0-4.8). Multivariable analysis revealed the best median OS for patients with CP A and AFP levels < 400 ng/mL (15.5 months). Adverse events (AE) of grade ≥ 3 were reported in 59.4% of patients. CONCLUSIONS In this real-world cohort of European patients with unresectable HCC, the outcome of sorafenib treatment in the 2L setting was comparable to that of the other established 2L treatment options in patients with preserved liver function and good performance status. This study contributes to the understanding of the role of sorafenib in the 2L setting and underscores the need for further research to identify predictive factors for response and survival in order to optimize treatment algorithms for advanced HCC.
Collapse
Affiliation(s)
- Christian Möhring
- Department of Medicine I, University Hospital of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (C.M.); (F.S.); (X.Z.); (T.Z.); (M.B.M.); (C.P.S.)
- Department IB of Internal Medicine, German Armed Forces Central Hospital, 56072 Koblenz, Germany
| | - Moritz Berger
- Institute for Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany; (M.B.); (M.S.)
- Core Facility Biostatistics, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Farsaneh Sadeghlar
- Department of Medicine I, University Hospital of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (C.M.); (F.S.); (X.Z.); (T.Z.); (M.B.M.); (C.P.S.)
| | - Xin Zhou
- Department of Medicine I, University Hospital of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (C.M.); (F.S.); (X.Z.); (T.Z.); (M.B.M.); (C.P.S.)
| | - Taotao Zhou
- Department of Medicine I, University Hospital of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (C.M.); (F.S.); (X.Z.); (T.Z.); (M.B.M.); (C.P.S.)
| | - Malte Benedikt Monin
- Department of Medicine I, University Hospital of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (C.M.); (F.S.); (X.Z.); (T.Z.); (M.B.M.); (C.P.S.)
- Infektionsmedizinisches Centrum Hamburg (ICH), 20146 Hamburg, Germany
| | - Kateryna Shmanko
- 1st Department of Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (K.S.); (A.W.)
| | - Sabrina Welland
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (S.W.); (A.S.); (A.V.)
| | - Friedrich Sinner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-Von-Guericke University Hospital, 39120 Magdeburg, Germany (M.V.)
| | - Birgit Schwacha-Eipper
- Hepatology-Department of Biomedical Research, University of Bern, 3012 Bern, Switzerland; (B.S.-E.); (I.-P.R.)
| | - Ulrike Bauer
- Department of Clinical Medicine—Clinical Department for Internal Medicine II, TUM School of Medicine and Health, Technical University of Munich, 80333 Munich, Germany; (U.B.); (U.E.)
| | - Christoph Roderburg
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, 40225 Düsseldorf, Germany; (C.R.)
| | - Angelo Pirozzi
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (A.P.); (L.R.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Najib Ben Khaled
- Department of Medicine II, University Hospital, LMU Munich, 81377 Munich, Germany; (N.B.K.); (E.N.D.T.)
| | - Peter Schrammen
- Medical Department III, University Hospital of Aachen, 52074 Aachen, Germany (M.-L.B.)
| | - Lorenz Balcar
- Division of Gastroenterology & Hepatology, Department of Medicine III, Medical University of Vienna, 1090 Vienna, Austria; (L.B.); (M.P.)
| | - Matthias Pinter
- Division of Gastroenterology & Hepatology, Department of Medicine III, Medical University of Vienna, 1090 Vienna, Austria; (L.B.); (M.P.)
| | - Thomas J. Ettrich
- Department of Internal Medicine I, University Hospital Ulm, 89081 Ulm, Germany;
| | - Anna Saborowski
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (S.W.); (A.S.); (A.V.)
| | - Marie-Luise Berres
- Medical Department III, University Hospital of Aachen, 52074 Aachen, Germany (M.-L.B.)
| | - Enrico N. De Toni
- Department of Medicine II, University Hospital, LMU Munich, 81377 Munich, Germany; (N.B.K.); (E.N.D.T.)
| | - Tom Lüdde
- Clinic for Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, 40225 Düsseldorf, Germany; (C.R.)
| | - Lorenza Rimassa
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (A.P.); (L.R.)
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Ursula Ehmer
- Department of Clinical Medicine—Clinical Department for Internal Medicine II, TUM School of Medicine and Health, Technical University of Munich, 80333 Munich, Germany; (U.B.); (U.E.)
| | - Marino Venerito
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-Von-Guericke University Hospital, 39120 Magdeburg, Germany (M.V.)
| | - Iuliana-Pompilia Radu
- Hepatology-Department of Biomedical Research, University of Bern, 3012 Bern, Switzerland; (B.S.-E.); (I.-P.R.)
- Department of Visceral Surgery and Medicine, Inselspital, University of Bern, 3012 Bern, Switzerland
| | - Ingo G. H. Schmidt-Wolf
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital of Bonn, 53127 Bonn, Germany;
| | - Arndt Weinmann
- 1st Department of Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (K.S.); (A.W.)
| | - Arndt Vogel
- Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical School, 30625 Hannover, Germany; (S.W.); (A.S.); (A.V.)
- Division of Gastroenterology and Hepatology, Toronto General Hospital, Toronto, ON M5G 2C4, Canada
| | - Matthias Schmid
- Institute for Medical Biometry, Informatics and Epidemiology, Medical Faculty, University of Bonn, 53127 Bonn, Germany; (M.B.); (M.S.)
| | - Jörg C. Kalff
- Department of Surgery, University Hospital of Bonn, 53127 Bonn, Germany;
| | - Christian P. Strassburg
- Department of Medicine I, University Hospital of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (C.M.); (F.S.); (X.Z.); (T.Z.); (M.B.M.); (C.P.S.)
| | - Maria A. Gonzalez-Carmona
- Department of Medicine I, University Hospital of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany; (C.M.); (F.S.); (X.Z.); (T.Z.); (M.B.M.); (C.P.S.)
| |
Collapse
|
20
|
Yin X, Deng N, Ding XY, Chen JL, Sun W. CRAFITY score and nomogram predict the clinical efficacy of lenvatinib combined with immune checkpoint inhibitors in hepatocellular carcinoma. World J Gastroenterol 2025; 31:101672. [PMID: 39991685 PMCID: PMC11755258 DOI: 10.3748/wjg.v31.i7.101672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 12/03/2024] [Accepted: 12/30/2024] [Indexed: 01/20/2025] Open
Abstract
BACKGROUND The CRAFITY score is mainly utilized for hepatocellular carcinoma (HCC) patients receiving atezolizumab and bevacizumab, with little investigation in its predictive capacity for alternative regimens, such as lenvatinib and programmed cell death protein 1 (PD-1) inhibitors, which are widely utilized in Chinese clinical practice. AIM To look at the predictive significance of the CRAFITY score in HCC patients taking lenvatinib and PD-1 inhibitors. METHODS The retrospective investigation consisted of 192 patients with incurable HCC who received lenvatinib and PD-1 inhibitors between January 2018 and January 2022. Patients were stratified according to CRAFITY score (based on baseline alpha-fetoprotein and C-reactive protein levels) into CRAFITY-low, CRAFITY-intermediate, and CRAFITY-high groups. Overall survival (OS) and progression-free survival (PFS) were assessed using Kaplan-Meier analysis, and independent prognostic factors were identified through Cox regression analysis. Nomograms were created to forecast survival for a year. RESULTS The median PFS and OS were the longest for patients in the CRAFITY-low group, followed by those in the CRAFITY-intermediate and CRAFITY-high groups (median PFS: 8.4 months, 6.0 months, and 3.1 months, P < 0.0001; median OS: 33.4 months, 19.2 months, and 6.6 months, P < 0.0001). Both the objective response rate (5%, 19.6%, and 22%, P = 0.0669) and the disease control rate (50%, 76.5%, and 80%, P = 0.0023) were considerably lower in the CRAFITY-high group. The findings from the multivariate analysis showed that a nomogram which included the tumor number, prior transarterial chemoembolization history, and CRAFITY score predicted 12-month survival with an area under the curve of 0.788 (95% confidence interval: 0.718-0.859), which was in good agreement with actual data. CONCLUSION The CRAFITY score is a valuable predictor of survival and treatment outcomes in patients receiving lenvatinib and PD-1 inhibitors.
Collapse
Affiliation(s)
- Xue Yin
- Department of Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Na Deng
- Department of Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xiao-Yan Ding
- Department of Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Jing-Long Chen
- Department of Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Wei Sun
- Department of Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| |
Collapse
|
21
|
Magyar CTJ, O'Kane GM, Aceituno L, Li Z, Vogel A, Bruix J, Mazzaferro V, Sapisochin G. Liver Transplantation for Hepatocellular Carcinoma: An Expanding Cornerstone of Care in the Era of Immunotherapy. J Clin Oncol 2025; 43:589-604. [PMID: 39680821 DOI: 10.1200/jco.24.00857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 09/20/2024] [Accepted: 10/19/2024] [Indexed: 12/18/2024] Open
Abstract
Liver transplantation (LT) has been accepted as a cornerstone of care in hepatocellular carcinoma (HCC) for almost three decades. In recent years, its role has been evolving to include patients with disease burden beyond the widely used Milan criteria. The integration of dynamic biomarkers such as alpha-fetoprotein together with downstaging approaches and tumor evolution after enlistment has allowed the selection of patients most likely to benefit, resulting in 5-year survival rates greater that 70%. With the increasing use of immune checkpoint inhibitors (ICIs) across all stages of disease, alone or in combination with locoregional therapies, there is now the potential to further expand the patient population with HCC who may benefit from LT. This brings challenges, given the global shortage of organs and the need to better understand the optimal use of ICIs before transplantation. Furthermore, the field of transplant oncology awaits additional biomarkers that can predict those likely to benefit from ICIs. More than ever, a multidisciplinary approach for liver cancer management is critical to ensure all patients are considered for LT where appropriate, and do not miss the opportunity for long-term survival.
Collapse
Affiliation(s)
- Christian Tibor Josef Magyar
- HPB Surgical Oncology, University Health Network, Toronto, ON, Canada
- Multi-Organ Transplant Program, University Health Network, Toronto, ON, Canada
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Grainne Mary O'Kane
- University of Toronto, Toronto, ON, Canada
- St Vincent's University Hospital and School of Medicine, University College Dublin, Dublin, Ireland
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
| | - Laia Aceituno
- Multi-Organ Transplant Program, University Health Network, Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
- Department of Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Zhihao Li
- HPB Surgical Oncology, University Health Network, Toronto, ON, Canada
- Multi-Organ Transplant Program, University Health Network, Toronto, ON, Canada
| | - Arndt Vogel
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada
- Division of Gastroenterology and Hepatology, Toronto General Hospital, Toronto, ON, Canada
- Department of Hepatology, Gastroenterology, Endocrinology & Infectious Diseases, Hannover Medical School, Hannover, Germany
| | - Jordi Bruix
- BCLC Group, Hospital Clinic Barcelona, IDIBAPS, CIBEREHD, University of Barcelona, Barcelona, Spain
| | - Vincenzo Mazzaferro
- Istituto Nazionale Tumori IRCCS, Hepato Pancreatic Biliary Surgery & Liver Transplantation Unit, Milano, Italy
- Department of Oncology and Hemato-Oncology, University of Milano, Milano, Italy
| | - Gonzalo Sapisochin
- HPB Surgical Oncology, University Health Network, Toronto, ON, Canada
- Multi-Organ Transplant Program, University Health Network, Toronto, ON, Canada
- University of Toronto, Toronto, ON, Canada
- Department of Medicine, Faculty of Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
22
|
Sangro B, Argemi J, Ronot M, Paradis V, Meyer T, Mazzaferro V, Jepsen P, Golfieri R, Galle P, Dawson L, Reig M. EASL Clinical Practice Guidelines on the management of hepatocellular carcinoma. J Hepatol 2025; 82:315-374. [PMID: 39690085 DOI: 10.1016/j.jhep.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 12/19/2024]
Abstract
Liver cancer is the third leading cause of cancer-related deaths worldwide, with hepatocellular carcinoma (HCC) accounting for approximately 90% of primary liver cancers. Advances in diagnostic and therapeutic tools, along with improved understanding of their application, are transforming patient treatment. Integrating these innovations into clinical practice presents challenges and necessitates guidance. These clinical practice guidelines offer updated advice for managing patients with HCC and provide a comprehensive review of pertinent data. Key updates from the 2018 EASL guidelines include personalised surveillance based on individual risk assessment and the use of new tools, standardisation of liver imaging procedures and diagnostic criteria, use of minimally invasive surgery in complex cases together with updates on the integrated role of liver transplantation, transitions between surgical, locoregional, and systemic therapies, the role of radiation therapies, and the use of combination immunotherapies at various stages of disease. Above all, there is an absolute need for a multiparametric assessment of individual risks and benefits, considering the patient's perspective, by a multidisciplinary team encompassing various specialties.
Collapse
|
23
|
Song JB, Guo SS, Gao WJ, Yang ZP, Tian ZL. Cellular Membrane Protein GRINA is Highly Expressed and Associated with Survival Outcomes in Liver Cancer Patients. Curr Med Sci 2025; 45:122-136. [PMID: 40011365 DOI: 10.1007/s11596-025-00025-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/23/2025] [Accepted: 01/26/2025] [Indexed: 02/28/2025]
Abstract
OBJECTIVE Hepatocellular carcinoma (HCC), a lethal cancer with high global mortality, may be targeted through ferroptosis, an iron-dependent form of cell death. Despite its potential, the prognostic value of ferroptosis in HCC is underexplored. METHODS Our study leveraged single-cell and bulk sequencing datasets to identify ferroptosis-related genes and developed a prognostic model via Cox and LASSO regression analyses. Survival and mutation analyses led to the creation of a nomogram for predicting patient prognosis. Furthermore, we investigated the role of GRINA, a ferroptosis-related gene, through functional assays, including cell proliferation, colony formation, and metastatic potential analyses. We also assessed mitochondrial abnormalities, intracellular iron, and ROS levels in GRINA-knockdown cells. RESULTS The developed ferroptosis-related model classified HCC patients into risk groups, revealing notable survival disparities. High-risk patients presented increased immune checkpoint gene expression. The nomogram revealed robust prognostic accuracy. Additionally, we found that GRINA suppression reduced HCC cell proliferation, colony formation, and metastatic potential. Cells with GRINA knockdown presented mitochondrial abnormalities and increased intracellular iron and ROS levels. CONCLUSIONS By analysing multiomics sequencing data, we established a connection between ferroptosis-related risk groups and the tumor immune microenvironment. These findings provide novel insights into the role of ferroptosis in HCC and suggest that GRINA inhibition is a potential therapeutic strategy, leading to mitochondrial damage and the induction of ferroptosis in HCC cell lines.
Collapse
Affiliation(s)
- Jun-Bo Song
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Shan-Shan Guo
- Department of Physiology and Pathophysiology, Air Force Medical University, Xi'an, 710032, China
| | - Wen-Jie Gao
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Zhi-Peng Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Ze-Lin Tian
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
24
|
Ascari S, Chen R, Vivaldi C, Stefanini B, De Sinno A, Dalbeni A, Federico P, Tovoli F. Advancements in immunotherapy for hepatocellular carcinoma. Expert Rev Anticancer Ther 2025; 25:151-165. [PMID: 39913170 DOI: 10.1080/14737140.2025.2461631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/28/2025] [Accepted: 01/29/2025] [Indexed: 02/07/2025]
Abstract
INTRODUCTION The advent of immune-based combinations, primarily leveraging immune checkpoint inhibitors, has revolutionized the therapeutic landscape of hepatocellular carcinoma (HCC). The current scenario features multiple therapies that have shown superiority over tyrosine kinase inhibitors; however, the absence of direct comparisons and validated prognostic biomarkers complicates therapeutic decision-making. Additionally, a significant proportion of patients still exhibit primary or secondary resistance to existing immunotherapies, underscoring the ongoing need for novel therapeutic strategies. AREAS COVERED This narrative review discusses current strategies aimed at improving the efficacy of immunotherapy for HCC, focusing on the following aspects: available therapeutic options, identification of prognostic biomarkers, approaches to overcoming resistance (including the development of neoantigen vaccines), and the exploration of adjuvant and neoadjuvant strategies. EXPERT OPINION The future of systemic therapies for HCC is likely to be driven by advancements in immunotherapy. Key areas of exploration for the coming years include the discovery of novel checkpoint inhibitors or complementary agents to enhance tumor response when combined with existing treatments, a shift toward neoadjuvant/perioperative trials instead of traditional adjuvant approaches, and the development of personalized neoantigen vaccines.
Collapse
Affiliation(s)
- Sara Ascari
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Rusi Chen
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Caterina Vivaldi
- Unit of Medical Oncology 2, Azienda Ospedaliero- Universitaria Pisana, Pisa, Italy
| | - Bernardo Stefanini
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Andrea De Sinno
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Andrea Dalbeni
- Liver Unit, Medicine Department, University of Verona and University and Hospital Trust (AOUI) of Verona, Verona, Italy
- Unit of General Medicine C, Medicine Department, University of Verona and Hospital Trust (AOUI) of Verona, Verona, Italy
| | | | - Francesco Tovoli
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
- Division of Internal Medicine, Hepatobiliary and Immunoallergic Diseases, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
25
|
He T, Xu B, Wang LN, Wang ZY, Shi HC, Zhong CJ, Zhu XD, Shen YH, Zhou J, Fan J, Sun HC, Hu B, Huang C. The prognostic value of systemic immune-inflammation index in patients with unresectable hepatocellular carcinoma treated with immune-based therapy. Biomark Res 2025; 13:10. [PMID: 39806475 PMCID: PMC11730499 DOI: 10.1186/s40364-024-00722-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 12/27/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Predicting the efficacy of immune-based therapy in patients with unresectable hepatocellular carcinoma (HCC) remains a clinical challenge. This study aims to evaluate the prognostic value of the systemic immune-inflammation index (SII) in forecasting treatment response and survival outcomes for HCC patients undergoing immune-based therapy. METHODS We analyzed a cohort of 268 HCC patients treated with immune-based therapy from January 2019 to March 2023. A training cohort of 93 patients received atezolizumab plus bevacizumab (T + A), while a validation cohort of 175 patients underwent treatment with tyrosine kinase inhibitors (TKIs) combined with anti-PD-(L)1 therapy. The SII cutoff value, determined using X-tile analysis based on overall survival (OS) in the training cohort, divided patients into high (> 752*109) and low (≤ 752*109) SII groups. Prognostic factors were identified through univariate and multivariate logistic and Cox regression analyses, and survival outcomes were assessed using Kaplan-Meier methods. The predictive accuracy of SII was evaluated using receiver operating characteristic (ROC) curves. RESULTS An optimal SII cutoff of 752*109 stratified patients into high and low SII groups. Univariate and multivariate logistic regression indicated that SII was a significant predictor of the objective response rate (ORR), which was markedly different between the low and high SII subgroups (34.72% vs. 9.52%, P = 0.019). This finding was consistent in the validation cohort (34.09% vs. 16.28%, P = 0.026). SII also demonstrated prognostic value in Cox regression and Kaplan-Meier analyses. ROC curves confirmed that SII had superior predictive accuracy compared to common clinical indicators, with predictive relevance even in AFP-negative patients. Furthermore, a lower SII was associated with a higher T cell ratio and an increased number of CD8+ T cells and Granzyme B+ CD8+ T cells in peripheral blood. CONCLUSION SII is a promising predictor of both therapeutic efficacy and prognosis in HCC patients undergoing immune-based treatments. Its application may enhance clinical decision-making, thereby improving patient outcomes from immune-based therapy.
Collapse
Affiliation(s)
- Tian He
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University180 Fenglin Road, Shanghai, 200032, China
| | - Bin Xu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University180 Fenglin Road, Shanghai, 200032, China
| | - Lu-Na Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University180 Fenglin Road, Shanghai, 200032, China
| | - Zi-Yi Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University180 Fenglin Road, Shanghai, 200032, China
| | - Huan-Chen Shi
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University180 Fenglin Road, Shanghai, 200032, China
| | - Cheng-Jie Zhong
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University180 Fenglin Road, Shanghai, 200032, China
| | - Xiao-Dong Zhu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University180 Fenglin Road, Shanghai, 200032, China
| | - Ying-Hao Shen
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University180 Fenglin Road, Shanghai, 200032, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University180 Fenglin Road, Shanghai, 200032, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University180 Fenglin Road, Shanghai, 200032, China
| | - Hui-Chuan Sun
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University180 Fenglin Road, Shanghai, 200032, China
| | - Bo Hu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University180 Fenglin Road, Shanghai, 200032, China.
| | - Cheng Huang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute and Zhongshan Hospital, Fudan University180 Fenglin Road, Shanghai, 200032, China.
| |
Collapse
|
26
|
Huang X, Peng G, Kong Y, Cao X, Zhou X. The Prognostic Value of CRP/Alb Ratio in Predicting Overall Survival for Hepatocellular Carcinoma Treated with Transcatheter Intra-Arterial Therapy Combined with Molecular-Targeted Agents and PD-1/PD-L1 Inhibitors. J Inflamm Res 2025; 18:203-217. [PMID: 39802506 PMCID: PMC11725233 DOI: 10.2147/jir.s483208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025] Open
Abstract
Purpose This study aimed to evaluate the prognostic value of C-reactive protein to albumin (CRP/Alb) ratio in hepatocellular carcinoma (HCC) treated with transcatheter intra-arterial therapy combined with molecular targeted agents (MTAs) and programmed cell death protein 1 (PD-1)/programmed death-ligand 1 (PD-L1) inhibitors. Methods Medical records of 271 consecutive patients with HCC receiving this combination therapy in China between 2019 and 2023 were retrospectively analyzed. Prognostic factors for progression-free survival (PFS) and overall survival (OS) were identified using univariate and multivariate Cox regression analyses. The discriminatory capability of inflammation-based prognostic scores-including the CRP/Alb ratio, C-reactive protein and alpha-fetoprotein in immunotherapy (CRAFITY) score, modified Glasgow prognostic score (mGPS), platelet-lymphocyte ratio (PLR), and systemic immune-inflammation index (SII)-was assessed using the area under the curve (AUC). Results A total of 133 patients met the inclusion criteria. The optimal cutoff value for the binary classification of CRP/Alb ratio in predicting OS, as determined using X-tile software, was 0.02. Multivariate analysis identified the CRP/Alb ratio (hazard ratio [HR] = 2.61, p < 0.001), tumor size (HR = 2.45, p = 0.018), and extrahepatic metastases (HR = 1.93, p = 0.015) as independent predictors of OS. For PFS, significant factors included Eastern Cooperative Oncology Group Performance Status (HR = 1.55, p = 0.033) and macrovascular invasion (HR = 1.48, p = 0.046). Patients with higher CRP/Alb ratios were more likely to experience fever and fatigue. The CRP/Alb ratio demonstrated significantly higher AUCs than PLR and SII at 24 months (all p < 0.05) and showed comparable AUCs to CRAFITY score and mGPS at 12, 24, and 36 months. Conclusion The CRP/Alb ratio is a valuable prognostic marker for predicting OS and treatment-related adverse events in HCC patients receiving transcatheter intra-arterial therapy combined with MTAs and PD-1/PD-L1 inhibitors. This ratio can be used as a simple and reliable biomarker for assessing prognosis and guiding patient selection in clinical practice.
Collapse
Affiliation(s)
- Xiaoyu Huang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People’s Republic of China
| | - Gang Peng
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People’s Republic of China
| | - Yaqing Kong
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People’s Republic of China
| | - Xiaojing Cao
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People’s Republic of China
| | - Xiang Zhou
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People’s Republic of China
| |
Collapse
|
27
|
Yang C, Liang Z, Zhao L, Li R, Ma P. Prediction of microvascular invasion in hepatocellular carcinoma using a preoperative serum C-reactive protein-based nomogram. Sci Rep 2025; 15:522. [PMID: 39748118 PMCID: PMC11696813 DOI: 10.1038/s41598-024-84835-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025] Open
Abstract
Microvascular invasion (MVI) diagnosis relies on postoperative pathological examinations, underscoring the urgent need for a novel diagnostic method. C-Reactive Protein (CRP), has shown significant relevance to hepatocellular carcinoma (HCC) prognosis. This study aims to explore the relationship between preoperative serum CRP levels and microvascular invasion in hepatocellular carcinoma and develop a nomogram model for predicting MVI. Patients were categorized into MVI-positive and MVI-negative groups for analysis. Serum CRP levels were compared between the two groups. And then use LASSO regression to screen variables and build a nomogram. CRP levels showed significant differences between the MVI-positive and MVI-negative groups. Multivariable logistic regression analysis identified CRP (OR = 4.85, P < 0.001), lnAFP (OR = 3.11, P < 0.001), WBC count (OR = 2.73, P = 0.003), and tumor diameter (OR = 2.38, P = 0.01) as independent predictors of MVI. A nomogram based on these variables showed good predictive performance in both the training and validation cohorts with dual validation. The clinical prediction nomogram model, which includes serum CRP levels, WBC count, tumor diameter, and serum AFP levels, showed good performance in predicting MVI in both the training and validation cohorts.
Collapse
Affiliation(s)
- Chaohao Yang
- Hepatopancreatobiliary Surgery Department, The first affiliated hospital of Zhengzhou university, Zhengzhou, 450001, China
| | - Zhiwei Liang
- Hepatopancreatobiliary Surgery Department, The first affiliated hospital of Zhengzhou university, Zhengzhou, 450001, China
| | - Longshuan Zhao
- Hepatopancreatobiliary Surgery Department, The first affiliated hospital of Zhengzhou university, Zhengzhou, 450001, China
| | - Renfeng Li
- Hepatopancreatobiliary Surgery Department, The first affiliated hospital of Zhengzhou university, Zhengzhou, 450001, China.
| | - Pengfei Ma
- Hepatopancreatobiliary Surgery Department, The first affiliated hospital of Zhengzhou university, Zhengzhou, 450001, China.
| |
Collapse
|
28
|
Singh M, Alka, Shukla P, Wen ZH, Ko CY, Vinayagam R. TPGS-modified Chitosan Nanoparticles of EGFR Inhibitor: Physicochemical and In vitro Evaluation against HepG2 Cell Lines. Curr Drug Deliv 2025; 22:465-478. [PMID: 38204256 DOI: 10.2174/0115672018268315231206045504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/12/2023] [Accepted: 10/23/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Gefitinib (GFN) is an Epithelial Growth Factor Receptor (EGFR) inhibitor, and Food and Drug Administration (FDA) has approved medication to treat lung cancer. However, this investigation aimed to produce and characterize Gefitinib (GFN)-loaded chitosan and soy lecithin nanoparticles (NPs) modified with D-α-tocopheryl polyethylene glycol 1000 succinate mono ester (TPGS) and assess their therapeutic potential against HepG2 liver cell lines. METHODS Chitosan, a cationic polymer with biocompatible and biodegradable properties, was combined with soy lecithin to develop the NPs loaded with GFN using a self-organizing ionic interaction methodology. RESULTS The entrapment efficiency and drug loading were found to be 59.04±4.63 to 87.37±3.82% and 33.46±3.76 to 49.50±4.35%, respectively, and results indicated the encapsulation of GEN in NPs. The pH of the formulations was observed between 4.48-4.62. Additionally, all the prepared NPs showed the size and PDI range of 89.2±15.9 nm to 799.2±35.8 nm and 0.179±0.065 to 0.455±0.097, respectively. The FTIR bands in optimized formulation (GFN-NP1) indicated that the drug might be contained within the NP's core. The SEM photograph revealed the spherical shape of NPs. The kinetic release model demonstrated the combination of diffusion and erosion mechanisms. The IC50 value of GFN and GFN-NP1 formulation against the HepG2 cell lines were determined and found to be 63.22±3.36 μg/ml and 45.80±2.53 μg/ml, respectively. DAPI and PI staining agents were used to detect nuclear morphology. CONCLUSION It was observed that the optimized GFN-NP1 formulation successfully internalized and inhibited the growth of HepG2 cells. Hence, it can be concluded that the prepared NPs can be a new therapeutic option for treating liver cancer.
Collapse
Affiliation(s)
- Mahendra Singh
- Department of Biotechnology, Institute of Biotechnology, Life and Applied Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| | - Alka
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India
| | - Prashant Shukla
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, UPES, Dehradun 248007, Uttarakhand, India
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung 804201, Taiwan
| | - Chou-Yuan Ko
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Kaohsiung Armed Forces General Hospital, Kaohsiung 80284, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Ramachandran Vinayagam
- Department of Biotechnology, Institute of Biotechnology, Life and Applied Sciences, Yeungnam University, Gyeongsan, Gyeongbuk 38541, Republic of Korea
| |
Collapse
|
29
|
De Martin E, Fulgenzi CAM, Celsa C, Laurent-Bellue A, Torkpour A, Lombardi P, D'Alessio A, Pinato DJ. Immune checkpoint inhibitors and the liver: balancing therapeutic benefit and adverse events. Gut 2024:gutjnl-2024-332125. [PMID: 39658265 DOI: 10.1136/gutjnl-2024-332125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024]
Abstract
Immune checkpoint inhibitors (ICI) have led to breakthrough improvements in the management of malignancy including hepatocellular (HCC) and biliary tract cancer, improving decades-old standards of care and increasing patient survival. In both liver tumour types, which commonly arise in the context of liver inflammation and underlying functional impairment, the lack of validated predictors of response underscores the need to balance predicted gains in survival with risk of treatment-related hepatoxicity and decompensation of underlying chronic liver disease.In addition, the liver is implicated in the toxicity associated with ICI therapy for non-liver cancers, which exhibits a high degree of variability in presentation and severity. An accurate assessment is mandatory for the diagnosis and management of ICI-induced liver injury.In this Recent Advances article, we provide an overview of the mechanisms of efficacy and toxicity of anticancer immunotherapy in liver tumours and liver toxicity in extrahepatic malignancies.We compare and contrast characteristics, management strategies and outcomes from immune-related liver injury in patients with chronic hepatitis/cirrhosis or with an underlying healthy liver and discuss the latest findings on how toxicity and decompensation may impact the outlook of patients with liver tumours and extrahepatic malignancies offering insights into the future directions of clinical research and practice in the field.
Collapse
Affiliation(s)
- Eleonora De Martin
- Centre Hepatobiliaire, Paul Brousse Hospital, Villejuif, France
- Paris-Saclay University, Faculty of Medicine, Le Kremlin-Bicetre, France
| | | | - Ciro Celsa
- Surgery & Cancer, Imperial College London, London, UK
- Department of Health Promotion, Mother & Child Care, Internal Medicine & Medical Specialties, Gastroenterology and Hepatology Unit, Palermo, Italy
| | - Astrid Laurent-Bellue
- Hôpital Kremlin Bicêtre, Anatomie & Cytologie Pathologiques, Le Kremlin Bicetre, France
| | - Aria Torkpour
- Surgery & Cancer, Imperial College London, London, UK
| | - Pasquale Lombardi
- Surgery & Cancer, Imperial College London, London, UK
- Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Roma, Italy
| | - Antonio D'Alessio
- Surgery & Cancer, Imperial College London, London, UK
- Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - David J Pinato
- Surgery & Cancer, Imperial College London, London, UK
- Imperial College London, University of Eastern Piedmont Amedeo Avogadro, Department of Translational Medicine, Novara, Italy
| |
Collapse
|
30
|
Simonetto DA, Winder GS, Connor AA, Terrault NA. Liver transplantation for alcohol-associated liver disease. Hepatology 2024; 80:1441-1461. [PMID: 38889100 DOI: 10.1097/hep.0000000000000978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/31/2024] [Indexed: 06/20/2024]
Abstract
Alcohol-associated liver disease (ALD) is a major cause of morbidity and mortality worldwide, and a leading indication for liver transplantation (LT) in many countries, including the United States. However, LT for ALD is a complex and evolving field with ethical, social, and medical challenges. Thus, it requires a multidisciplinary approach and individualized decision-making. Short-term and long-term patient and graft survival of patients undergoing LT for ALD are comparable to other indications, but there is a continued need to develop better tools to identify patients who may benefit from LT, improve the pretransplant and posttransplant management of ALD, and evaluate the impact of LT for ALD on the organ donation and transplantation systems. In this review, we summarize the current evidence on LT for ALD, from alcohol-associated hepatitis to decompensated alcohol-associated cirrhosis. We discuss the indications, criteria, outcomes, and controversies of LT for these conditions and highlight the knowledge gaps and research priorities in this field.
Collapse
Affiliation(s)
- Douglas A Simonetto
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Ashton A Connor
- Department of Surgery, Houston Methodist Hospital, Houston, Texas, USA
| | - Norah A Terrault
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
31
|
Ueno M, Takeda H, Takai A, Morimura H, Nishijima N, Iwamoto S, Okuyama S, Umeda M, Seta T, Ikeda A, Goto T, Miyamoto S, Kayahara T, Uenoyama Y, Matsumura K, Nakano S, Mishima M, Inuzuka T, Eso Y, Takahashi K, Marusawa H, Osaki Y, Hatano E, Seno H. CRAFITY score as a predictive marker for refractoriness to atezolizumab plus bevacizumab therapy in hepatocellular carcinoma: a multicenter retrospective study. J Gastroenterol 2024; 59:1107-1118. [PMID: 39289234 PMCID: PMC11541291 DOI: 10.1007/s00535-024-02150-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND Although atezolizumab plus bevacizumab (Atezo/Bev) therapy has been used as the preferred first-line treatment for advanced hepatocellular carcinoma (HCC), up to 26% of patients do not achieve disease control, suggesting alternative treatments might be more beneficial for such patients. We investigated key predictors for refractoriness to Atezo/Bev therapy, particularly in the first-line setting. METHODS We retrospectively analyzed 302 patients with HCC who received Atezo/Bev therapy between October 2020 and September 2022 across nine hospitals in Japan. Refractoriness was defined as best overall response (BOR) of progressive disease or stable disease and a progression-free survival (PFS) of < 180 days (RECIST v1.1). Clinical benefit was defined as BOR of partial/complete response or stable disease with PFS of ≥ 180 days. Baseline characteristics and potential predictors, identified through literature review, were compared between these groups. Stratifications of overall survival (OS), and PFS were also assessed. RESULTS Refractoriness was observed in 126 (41.7%) patients, while 154 (51.0%) achieved clinical benefit. Due to a significant association between the treatment line and refractory rate, the subsequent analysis focused on the first-line cohort (n = 214; 72 [33.6%] patients showed refractoriness). Among 13 potential predictors, the CRP and AFP in immunotherapy (CRAFITY) score had the best predictive performance, with refractory rates of 24.6%, 44.6%, and 57.9% in CRAFITY-0, 1, and 2 patients, respectively (p < 0.001). OS and PFS were also well-stratified by this scoring system. CONCLUSIONS Approximately one-third of patients were refractory to first-line Atezo/Bev therapy. The CRAFITY score demonstrated superior performance in predicting refractoriness.
Collapse
Affiliation(s)
- Masayuki Ueno
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Gastroenterology and Hepatology, Kurashiki Central Hospital, Kurashiki, Japan
| | - Haruhiko Takeda
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Atsushi Takai
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Hiroki Morimura
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Department of Gastroenterology and Hepatology, Osaka Red Cross Hospital, Osaka, Japan
| | - Norihiro Nishijima
- Department of Gastroenterology and Hepatology, Meiwa Hospital, Nishinomiya, Japan
| | - Satoru Iwamoto
- Department of Gastroenterology, Kyoto Medical Center, Kyoto, Japan
| | - Shunsuke Okuyama
- Department of Gastroenterology and Hepatology, Kurashiki Central Hospital, Kurashiki, Japan
| | - Makoto Umeda
- Department of Gastroenterology and Hepatology, Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Takeshi Seta
- Department of Gastroenterology and Hepatology, Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
- Department of Health Informatics, Graduate School of Medicine and School of Public Health, Kyoto University, Kyoto, Japan
| | - Atsuyuki Ikeda
- Department of Gastroenterology and Hepatology, Kyoto Katsura Hospital, Kyoto, Japan
| | - Tomoyuki Goto
- Department of Medical Oncology, Shiga General Hospital, Moriyama, Japan
| | | | - Takahisa Kayahara
- Department of Gastroenterology and Hepatology, Kurashiki Central Hospital, Kurashiki, Japan
| | - Yoshito Uenoyama
- Department of Gastroenterology and Hepatology, Japanese Red Cross Wakayama Medical Center, Wakayama, Japan
| | - Kazuyoshi Matsumura
- Department of Gastroenterology and Hepatology, Shiga General Hospital, Moriyama, Japan
| | - Shigeharu Nakano
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Masako Mishima
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Tadashi Inuzuka
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yuji Eso
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Ken Takahashi
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
- Division of Cancer Immunotherapy, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroyuki Marusawa
- Department of Gastroenterology and Hepatology, Osaka Red Cross Hospital, Osaka, Japan
| | - Yukio Osaki
- Department of Gastroenterology and Hepatology, Meiwa Hospital, Nishinomiya, Japan
| | - Etsuro Hatano
- Division of Hepato-Biliary-Pancreatic Surgery and Transplantation, Department of Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hiroshi Seno
- Department of Gastroenterology and Hepatology, Graduate School of Medicine, Kyoto University, 54 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
32
|
Xue J, Yang S, Zhang SS, Fan J, Wu ZL, Sui CJ, Yang YQ, Zhang JF, Liu P, Zhang DJ, Qiu XY, Zhang T, Chen L, Wu G, Wang HY, Tang J. Deciphering the Multifaceted Immune Landscape of Unresectable Primary Liver Cancer to Predict Immunotherapy Response. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309631. [PMID: 39467150 DOI: 10.1002/advs.202309631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 08/30/2024] [Indexed: 10/30/2024]
Abstract
Immunotherapies employing PD-1/PD-L1 immune checkpoint inhibitors (ICIs) are vital for primary liver cancer (PLC), but response rates remain unsatisfying. Accurate differentiation of responders from non-responders to immunotherapy is imperative. Here, single-cell-scaled mass cytometry analysis on sequential peripheral blood mononuclear cells (PBMCs) from ICI-treated PLC patients is conducted, and tissue residence of immune subpopulations is assessed via multiplex immunohistochemistry. In the discovery cohort (n = 24), responders have lower baseline B cell and HLA-DR+CD8+T cell, and higher CD14+CD16- classical monocyte (CM) proportions. CMs decrease more in responders PBMCs, while HLA-DR+CD8+T cells conformably amplify after ICI-exposure. Responsive individuals display upregulated exhaustion and activation markers in peripheral immune lineages. In the expanded cohort of 77 patients, the augment of the B cells in non-responders is re-confirmed. Responders demonstrate much higher enrichment of B cells or tertiary lymphoid structures in tumor compared to non-responders. A prospective model that excelled in early discrimination of responders is developed using generalized linear model and achieves a satisfactory AUC over 0.9 in all three independent cohorts. Integratedly, the study unveils dynamic immune landscapes in PLC patients undergoing ICI-based therapy, aiding in PLC patient stratification for ICI-based treatment and fostering new response monitoring strategies.
Collapse
Affiliation(s)
- Jun Xue
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Shuai Yang
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Si-Si Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Jun Fan
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zi-Long Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Cheng-Jun Sui
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
- National Center for Liver Cancer, Shanghai, 200441, China
| | - Yong-Qiang Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, China
| | - Jin-Feng Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Pian Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - De-Jun Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Xin-Yao Qiu
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Tao Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lei Chen
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
- National Center for Liver Cancer, Shanghai, 200441, China
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Hong-Yang Wang
- Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, China
- National Center for Liver Cancer, Shanghai, 200441, China
| | - Jing Tang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| |
Collapse
|
33
|
Zuo M, Wei R, Li D, Li W, An C. The AFCRPLITY score for predicting the prognosis of immunotherapy combined with local-regional therapy in unresectable hepatocellular carcinoma. Ther Adv Med Oncol 2024; 16:17588359241297080. [PMID: 39563715 PMCID: PMC11574904 DOI: 10.1177/17588359241297080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 10/14/2024] [Indexed: 11/21/2024] Open
Abstract
BACKGROUND Immunotherapy combined with intra-arterial therapy (IAT) has shown great potential in the treatment of unresectable hepatocellular carcinoma (uHCC). However, there are currently no available biomarkers that can predict the prognosis of immune-based combined therapy. OBJECTIVES To establish a scoring method to predict prognosis in uHCC patients undergoing IAT plus immunotherapy. METHODS Between March 2019 and August 2022, uHCC patients undergoing IAT in combination with programmed cell death (ligand) 1 (PD-1)/PD-L1-based immunotherapy were retrospectively analyzed. RESULTS Among 1046 patients included, 780 patients were enrolled into hepatic arterial infusion chemotherapy immunotherapy cohorts (training set: n = 546, one center; external testing set: n = 234, three centers) and 266 patients were treated with trans-arterial chemoembolization (TACE) plus immunotherapy were enrolled into TACE immunotherapy cohort (validation set: n = 266). We developed the easy-to-apply alpha-fetoprotein (AFP), C-reactive protein (CRP), and platelet-to-lymphocyte ratio (PLR) in immunotherapy (AFCRPLITY) score and investigated the prognostic value of baseline variables on the disease control rate (DCR) and progression-free survival (PFS). HCC patients with low AFCRPLITY scores would have better PFS and DCRs than patients with high AFCRPLITY scores (AFCRPLITY 0: vs AFCRPLITY 1: vs AFCRPLITY 2: vs AFCRPLITY 3: p < 0.001 for PFS, p = 0.001 for DCRs) in the training set, which was confirmed in the external testing set and validation set. The highest level of CD8+ T cells was in the AFCRPLITY score = 0 group than the other two groups. CONCLUSION The AFCRPLITY score is associated with PFS and DCR in uHCC patients receiving IATs plus immunotherapy. This score may be helpful for counseling, but prospective validation is needed. DESIGN A retrospective, multi-institutional study. TRIAL REGISTRATION The study has been retrospectively registered at the Chinese Clinical Trial Registry (https://www.chictr.org.cn/, ChiCTR2300075828).
Collapse
Affiliation(s)
- Mengxuan Zuo
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- State Key Laboratory of Oncology in South China, Guangzhou, P.R. China
- Guangdong Provincial Clinical Research Center for Cancer, P.R. China
| | - Ran Wei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, P.R. China
| | - Da Li
- Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, Guangzhou, P.R. China
- State Key Laboratory of Oncology in South China, Guangzhou, P.R. China
- Guangdong Provincial Clinical Research Center for Cancer, P.R. China
| | - Wang Li
- State Key Laboratory of Oncology in South China, Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, P.R. China
- State Key Laboratory of Oncology in South China, Guangzhou, P.R. China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P.R. China
| | - Chao An
- State Key Laboratory of Oncology in South China, Department of Minimally Invasive Interventional Therapy, Sun Yat-sen University Cancer Center, 651 Dongfeng East Road, Guangzhou 510060, P.R. China
- State Key Laboratory of Oncology in South China, Guangzhou, P.R. China
- Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, P.R. China
| |
Collapse
|
34
|
Kang W, Zhao H, Lian Q, Li H, Zhou X, Li H, Weng S, Yan Z, Yang Z. Prognostic Prediction and Risk Stratification of Transarterial Chemoembolization Combined with Targeted Therapy and Immunotherapy for Unresectable Hepatocellular Carcinoma: A Dual-Center Study. J Hepatocell Carcinoma 2024; 11:2169-2179. [PMID: 39530050 PMCID: PMC11552392 DOI: 10.2147/jhc.s487080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
PURPOSE The combination of transarterial chemoembolization, molecular targeted therapy, and immunotherapy (triple therapy) has shown promising outcomes in the treatment of unresectable hepatocellular carcinoma (HCC). This study aimed to build a prognostic model to identify patients who could benefit from triple therapy. PATIENTS AND METHODS This retrospective study encompassed 242 patients with HCC who underwent triple therapy from two centers (Training cohort: 158 patients from the Center 1; External validation cohort: 84 patients from the Center 2). Independent predictors of overall survival (OS) and progression-free survival (PFS) were identified through Cox regression analyses, and prognostic models based on Cox proportional hazards models were developed. Prognosis was assessed using Kaplan - Meier curves. RESULTS In the training cohort, independent predictors of PFS included vascular invasion and the C-reactive protein and alpha-fetoprotein in immunotherapy (CRAFITY) score. Independent predictors of OS were the CRAFITY score, extrahepatic metastasis, and the neutrophil-to-lymphocyte ratio. Prognostic prediction models were constructed based on these variables. The prognostic model for OS demonstrated a C-index of 0.715 (95% confidence interval (CI), 0.662-0.768) in the training cohort and 0.701 (95% CI, 0.628-0.774) in the validation cohort. Patients were divided into low- and high-risk categories using the predictive model (P<0.001). These findings were corroborated by the external validation cohort. CONCLUSION The developed prognostic model serves as a reliable and convenient tool to predict outcomes in patients with unresectable HCC undergoing triple therapy. It aids clinicians in making informed treatment decisions.
Collapse
Affiliation(s)
- Wendi Kang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People’s Republic of China
| | - Huafei Zhao
- Department of Radiology, Guangdong 999 Brain Hospital, Guangzhou, 510080, People’s Republic of China
| | - Qicai Lian
- Department of Interventional Radiology, the Affiliated Cancer Hospital of Guizhou Medical University, Guiyang, 550000, People’s Republic of China
| | - Hang Li
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People’s Republic of China
| | - Xuan Zhou
- Department of Radiology, Third Xiangya Hospital, Central South University, Changsha, 410013, Hunan, People’s Republic of China
| | - Hao Li
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, People’s Republic of China
| | - Siyuan Weng
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People’s Republic of China
| | - Zhentao Yan
- Department of Interventional Radiology, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, People’s Republic of China
| | - Zhengqiang Yang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, People’s Republic of China
| |
Collapse
|
35
|
Wu W, Yang Z, Zou H, Long T, Zhou Z, Zhang Y, Chen M, Hu D. The CRAFITY score emerges as a paramount prognostic indicator in hepatocellular carcinoma patients received Lenvatinib and Pembrolizumab. Front Immunol 2024; 15:1474456. [PMID: 39555053 PMCID: PMC11563818 DOI: 10.3389/fimmu.2024.1474456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/11/2024] [Indexed: 11/19/2024] Open
Abstract
Background Levels of C-reactive protein (CRP) and alpha-fetoprotein (AFP) in immunotherapy (CRAFITY) scores are associated with the prognosis of patients with hepatocellular carcinoma (HCC). This study aimed to explore the efficacy of lenvatinib and pembrolizumab (Len-P) based on the CRAFITY score. Methods In this study, 228 patients with HCC who received Len-P in Sun Yat-sen University Cancer Center were included. CRAFITY 0 score was defined as AFP level below 100 ng/ml, CRP level below 1 mg/dl, CRAFITY 1 score was defined as AFP level at least 100 ng/ml or CRP level at least 1 mg/dl. CRAFITY 2 scores were defined as AFP levels exceeding 100 ng/ml and CRP levels exceeding 100 ng/ml. The primary outcome was overall survival (OS). The second outcome was tumor response rate. Results The survival time of CRAFITY 0 is significantly longer than that of CRAFITY 1 and CRAFITY 2 (p =.044). Univariate analysis showed that largest tumor size (HR = 2.149; 95% CI 1.129 - 4.091; p =.02), lymph node metastasis (HR = 2.012; 95% CI 1.132- 3.579; p = .017), and CRAFITY (HR = 0.372; 95% CI 0.168-0.824; p = .015) were important risk determinants of OS in all patients. The results of multivariate analysis show that CRAFITY score is an independent risk factors for OS (HR = 0.719; 95% CI 0.377-1.374; p =.048). The ORR of CRAFITY 0, 1 and 2 scores were 36.4%, 32% and 27.4%, respectively (p = .556). The ORR of intrahepatic lesions by CRAFITY 0, 1 and 2 were 37.9%, 35%, 30.6% (p= .688). Conclusion CRAFITY score is a good predictor of prognosis in HCC patients receiving Len-P.
Collapse
Affiliation(s)
- Weijie Wu
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zhenyun Yang
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Hao Zou
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Teng Long
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Zhongguo Zhou
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Yaojun Zhang
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Minshan Chen
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Dandan Hu
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| |
Collapse
|
36
|
Ha NB, Yao F. Alcohol and Hepatocellular Carcinoma. Clin Liver Dis 2024; 28:633-646. [PMID: 39362712 PMCID: PMC12037205 DOI: 10.1016/j.cld.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Alcohol-associated liver disease (ALD) poses a significant risk for hepatocellular carcinoma (HCC), comprising various liver conditions from steatosis to cirrhosis. Despite accounting for a third of global HCC cases and deaths, ALD-related HCC lacks characterization compared to viral hepatitis-related HCC. Proposed mechanisms for ALD-related HCC include acetaldehyde toxicity, increased reactive oxygen species, and inflammation. This review examines ALD-associated HCC epidemiology, co-factors like viral hepatitis and metabolic syndrome, surveillance, and treatment challenges. Despite advances in screening and management, ALD-related HCC often presents at advanced stages, limiting treatment options and survival.
Collapse
Affiliation(s)
- Nghiem B Ha
- Hepatology, Liver Transplant, Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Francisco, 505 Parnassus Avenue, S-357, San Francisco, CA 94112, USA
| | - Francis Yao
- Hepatology, Liver Transplant, Division of Gastroenterology and Hepatology, Department of Medicine, University of California, San Francisco, 505 Parnassus Avenue, S-357, San Francisco, CA 94112, USA.
| |
Collapse
|
37
|
Dai Z, Chen C, Zhou Z, Zhou M, Xie Z, Liu Z, Liu S, Chen Y, Li J, Liu B, Shen J. Circulating Biomarkers Predict Immunotherapeutic Response in Hepatocellular Carcinoma Using a Machine Learning Method. J Hepatocell Carcinoma 2024; 11:2133-2144. [PMID: 39493265 PMCID: PMC11531708 DOI: 10.2147/jhc.s474593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 10/23/2024] [Indexed: 11/05/2024] Open
Abstract
Background Immune checkpoint inhibitor (ICI) therapy is a promising treatment for cancer. However, the response rate to ICI therapy in hepatocellular carcinoma (HCC) patients is low (approximately 30%). Thus, an approach to predict whether a patient will benefit from ICI therapy is required. This study aimed to design a classifier based on circulating indicators to identify patients suitable for ICI therapy. Methods This retrospective study included HCC patients who received immune checkpoint inhibitor therapy between March 2017 and September 2023 at Nanjing Drum Tower Hospital and Jinling Hospital. The levels of the 17 serum biomarkers and baseline patients' characters were assessed to discern meaningful circulating indicators related with survival benefits using random forest. A prognostic model was then constructed to predict survival of patients after treatment. Results A total of 369 patients (mean age 56, median follow-up duration 373 days,) were enrolled in this study. Among the 17 circulating biomarkers, 11 were carefully selected to construct a classifier. Receiver operating characteristic (ROC) analysis yielded an area under the curve (AUC) of 0.724. Notably, patients classified into the low-risk group exhibited a more positive prognosis (P = 0.0079; HR, 0.43; 95% CI 0.21-0.87). To enhance efficacy, we incorporated 11 clinical features. The extended model incorporated 12 circulating indicators and 5 clinical features. The AUC of the refined classifier improved to 0.752. Patients in the low-risk group demonstrated superior overall survival compared with those in the high-risk group (P = 0.026; HR 0.39; 95% CI 0.11-1.37). Conclusion Circulating biomarkers are useful in predicting therapeutic outcomes and can help in making clinical decisions regarding the use of ICI therapy.
Collapse
Affiliation(s)
- Zhiyan Dai
- Department of Precision Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Chao Chen
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
- Department of Oncology, Jinling Hospital, Clinical College of Nanjing Medical University, Nanjing, 21002, People’s Republic of China
| | - Ziyan Zhou
- Department of Precision Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Mingzhen Zhou
- Department of Precision Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Zhengyao Xie
- Department of Precision Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Ziyao Liu
- Department of Precision Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Siyuan Liu
- Department of Precision Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Yiqiang Chen
- Department of Precision Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jingjing Li
- Department of Precision Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Baorui Liu
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Jie Shen
- Department of Precision Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
- Department of Oncology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, People’s Republic of China
| |
Collapse
|
38
|
Egerer M, Schuch K, Schöler D, Artusa F, Püngel T, Holtman TM, Loosen SH, Demir M, Wree A, Luedde T, Tacke F, Roderburg C, Mohr R. Extracellular Vesicles May Predict Response to Atezolizumab Plus Bevacizumab in Patients with Advanced Hepatocellular Carcinoma. Cancers (Basel) 2024; 16:3651. [PMID: 39518089 PMCID: PMC11545167 DOI: 10.3390/cancers16213651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/24/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND AND AIMS Treatment with atezolizumab and bevacizumab has been approved as one of the standards of care for patients with advanced hepatocellular carcinoma (HCC). The median overall survival (OS) upon available treatments still remains below 2 years, urgently suggesting better stratification tools to identify ideal candidates for this treatment and potentially allowing personalized approaches. In this study, we evaluated the potential role of extracellular vesicles (EVs) as a novel biomarker in patients receiving atezolizumab and bevacizumab for HCC. METHODS We characterized EVs in 212 longitudinal serum samples from an observational cohort of 53 individuals with advanced HCC, who started therapy with atezolizumab plus bevacizumab at our center between January 2020 and March 2022. RESULTS In our cohort, the overall efficacy of atezolizumab and bevacizumab was comparable to previously published phase III data. We detected significantly smaller EVs in treatment responders, while enlarged EVs were associated with significantly decreased efficacy of atezolizumab and bevacizumab in terms of OS. A decrease in vesicle size during immunotherapy was related to a longer progression-free survival (PFS). A univariate Cox regression analysis including various clinicopathological parameters (e.g., tumor stage, markers of inflammation, organ dysfunction, or tumor markers) revealed vesicle size as an independent prognostic marker in HCC patients receiving atezolizumab and bevacizumab. Moreover, higher vesicle concentrations and lower zeta potentials were identified as a positive prognostic factor throughout treatment. CONCLUSIONS Distinct EV characteristics such as vesicle size, concentration, and zeta potential represent promising novel biomarkers in patients with advanced HCC receiving atezolizumab and bevacizumab, potentially helping to identify optimal candidates for checkpoint inhibitor-based treatments.
Collapse
Affiliation(s)
- Mara Egerer
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité–Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (M.E.); (F.A.); (T.P.); (T.M.H.); (M.D.); (A.W.); (F.T.)
| | - Kathrin Schuch
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (K.S.); (D.S.); (S.H.L.); (T.L.); (C.R.)
| | - David Schöler
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (K.S.); (D.S.); (S.H.L.); (T.L.); (C.R.)
| | - Fabian Artusa
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité–Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (M.E.); (F.A.); (T.P.); (T.M.H.); (M.D.); (A.W.); (F.T.)
| | - Tobias Püngel
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité–Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (M.E.); (F.A.); (T.P.); (T.M.H.); (M.D.); (A.W.); (F.T.)
- Berlin Institute of Health, 10178 Berlin, Germany
| | - Theresa Maria Holtman
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité–Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (M.E.); (F.A.); (T.P.); (T.M.H.); (M.D.); (A.W.); (F.T.)
| | - Sven H. Loosen
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (K.S.); (D.S.); (S.H.L.); (T.L.); (C.R.)
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité–Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (M.E.); (F.A.); (T.P.); (T.M.H.); (M.D.); (A.W.); (F.T.)
| | - Alexander Wree
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité–Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (M.E.); (F.A.); (T.P.); (T.M.H.); (M.D.); (A.W.); (F.T.)
| | - Tom Luedde
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (K.S.); (D.S.); (S.H.L.); (T.L.); (C.R.)
| | - Frank Tacke
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité–Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (M.E.); (F.A.); (T.P.); (T.M.H.); (M.D.); (A.W.); (F.T.)
| | - Christoph Roderburg
- Department of Gastroenterology, Hepatology and Infectious Diseases, University Hospital Düsseldorf, Moorenstraße 5, 40225 Düsseldorf, Germany; (K.S.); (D.S.); (S.H.L.); (T.L.); (C.R.)
| | - Raphael Mohr
- Department of Hepatology and Gastroenterology, Campus Virchow Klinikum (CVK) and Campus Charité Mitte (CCM), Charité–Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany; (M.E.); (F.A.); (T.P.); (T.M.H.); (M.D.); (A.W.); (F.T.)
| |
Collapse
|
39
|
Wang H, Li J, Ouyang Y, Ren H, An C, Liu W. Multiparametric MRI based deep learning model for prediction of early recurrence of hepatocellular carcinoma after SR following TACE. J Cancer Res Clin Oncol 2024; 150:448. [PMID: 39379692 PMCID: PMC11461583 DOI: 10.1007/s00432-024-05941-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/04/2024] [Indexed: 10/10/2024]
Abstract
BACKGROUND Surgical resection (SR) following transarterial chemoembolization (TACE) is a promising treatment for unresectable hepatocellular carcinoma (uHCC). However, biomarkers for the prediction of postoperative recurrence are needed. PURPOSE To develop and validate a model combining deep learning (DL) and clinical data for early recurrence (ER) in uHCC patients after TACE. METHODS A total of 511 patients who received SR following TACE were assigned to derivation (n = 413) and validation (n = 98) cohorts. Deep learning features were taken from the largest tumor area in liver MRI. A nomogram using DL signatures and clinical data was made to forecast early recurrence risk in uHCC patients. Model performance was evaluated using area under the curve (AUC). RESULTS A total of 2278 subsequences and 31,346 slices multiparametric MRI including contrast-enhanced T1WI, T2WI and DWI were input in the DL model simultaneously. Multivariable analysis identified three independent predictors for the development of the nomogram: tumor number (hazard ratio [HR]:3.42, 95% confidence interval [CI]: 2.75-4.31, P = 0.003), microvascular invasion (HR: 9.21, 6.24-32.14; P < 0.001), and DL scores (HR: 17.46, 95% CI: 12.94-23.57, P < 0.001). The AUC of the nomogram was 0.872 and 0.862 in two cohorts, significantly outperforming single-subsequence-based DL mode and clinical model (all, P < 0.001). The nomogram provided two risk strata for cumulative overall survival in two cohorts, showing significant statistical results (P < 0.001). CONCLUSIONS The DL-based nomogram is essential to identify patients with uHCC suitable for treatment with SR following TACE and may potentially benefit personalized decision-making.
Collapse
Affiliation(s)
- Hongyu Wang
- Department of Interventional Therapy, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Jinwei Li
- Department of Interventional Therapy, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Yushu Ouyang
- Department of Interventional Therapy, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - He Ren
- Department of Ultrasound, The Sixth Medical Center of Chinese PLA General Hospital, Beijing, 100048, China
| | - Chao An
- Department of Minimal Invasive Intervention, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China
| | - Wendao Liu
- Department of Interventional Therapy, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou, 510080, Guangdong, People's Republic of China.
| |
Collapse
|
40
|
Cowzer D, Chou JF, Walch H, Keane F, Khalil D, Shia J, Do RKG, Yarmohammadi H, Erinjeri JP, El Dika I, Yaqubie A, Azhari H, Gambarin M, Hajj C, Crane C, Wei AC, Jarnagin W, Solit DB, Berger MF, O'Reilly EM, Schultz N, Chatila W, Capanu M, Abou-Alfa GK, Harding JJ. Clinicogenomic predictors of outcomes in patients with hepatocellular carcinoma treated with immunotherapy. Oncologist 2024; 29:894-903. [PMID: 38937977 PMCID: PMC11448888 DOI: 10.1093/oncolo/oyae110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/26/2024] [Indexed: 06/29/2024] Open
Abstract
INTRODUCTION Immune checkpoint inhibitor (ICI) combinations extend overall survival (OS) while anti-PD-1/L1 monotherapy is non-inferior to sorafenib in treatment-naïve, patients with advanced hepatocellular carcinoma (HCC). Clinicogenomic features are posited to influence patient outcomes. METHODS The primary objective of this retrospective study was to define the clinical, pathologic, and genomic factors associated with outcomes to ICI therapy in patients with HCC. Patients with histologically confirmed advanced HCC treated with ICI at Memorial Sloan Kettering Cancer Center from 2012 to 2022 were included. Association between clinical, pathological, and genomic characteristics were assessed with univariable and multivariable Cox regression model for progression-free survival (PFS) and OS. RESULTS Two-hundred and forty-two patients were treated with ICI-based therapy. Patients were predominantly male (82%) with virally mediated HCC (53%) and Child Pugh A score (70%). Median follow-up was 28 months (0.5-78.4). Median PFS for those treated in 1st line, 2nd line and ≥ 3rd line was 4.9 (range: 2.9-6.2), 3.1 (2.3-4.0), and 2.5 (2.1-4.0) months, respectively. Median OS for those treated in 1st line, 2nd line, and ≥ 3rd line was 16 (11-22), 7.5 (6.4-11), and 6.4 (4.6-26) months, respectively. Poor liver function and performance status associated with worse PFS and OS, while viral hepatitis C was associated with favorable outcome. Genetic alterations were not associated with outcomes. CONCLUSION Clinicopathologic factors were the major determinates of outcomes for patients with advanced HCC treated with ICI. Molecular profiling did not aid in stratification of ICI outcomes. Future studies should explore alternative biomarkers such as the level of immune activation or the pretreatment composition of the immune tumor microenvironment.
Collapse
Affiliation(s)
- Darren Cowzer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Joanne F Chou
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Henry Walch
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Fergus Keane
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Danny Khalil
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Medical College of Cornell University, New York, NY, United States
| | - Jinru Shia
- Weill Medical College of Cornell University, New York, NY, United States
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Richard K G Do
- Weill Medical College of Cornell University, New York, NY, United States
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Hooman Yarmohammadi
- Weill Medical College of Cornell University, New York, NY, United States
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Joseph P Erinjeri
- Weill Medical College of Cornell University, New York, NY, United States
| | - Imane El Dika
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Medical College of Cornell University, New York, NY, United States
| | - Amin Yaqubie
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Hassan Azhari
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Medical College of Cornell University, New York, NY, United States
| | - Maya Gambarin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Medical College of Cornell University, New York, NY, United States
| | - Carla Hajj
- Weill Medical College of Cornell University, New York, NY, United States
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Christopher Crane
- Weill Medical College of Cornell University, New York, NY, United States
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Alice C Wei
- Weill Medical College of Cornell University, New York, NY, United States
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, NY, United States
| | - William Jarnagin
- Weill Medical College of Cornell University, New York, NY, United States
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York, NY, United States
| | - David B Solit
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Medical College of Cornell University, New York, NY, United States
| | - Michael F Berger
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Medical College of Cornell University, New York, NY, United States
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Eileen M O'Reilly
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Medical College of Cornell University, New York, NY, United States
| | - Nikolaus Schultz
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Medical College of Cornell University, New York, NY, United States
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Walid Chatila
- Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Marinela Capanu
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Ghassan K Abou-Alfa
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Medical College of Cornell University, New York, NY, United States
| | - James J Harding
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
- Weill Medical College of Cornell University, New York, NY, United States
| |
Collapse
|
41
|
Childs A, Aidoo-Micah G, Maini MK, Meyer T. Immunotherapy for hepatocellular carcinoma. JHEP Rep 2024; 6:101130. [PMID: 39308986 PMCID: PMC11414669 DOI: 10.1016/j.jhepr.2024.101130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 09/25/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a major global healthcare challenge, with >1 million patients predicted to be affected annually by 2025. In contrast to other cancers, both incidence and mortality rates continue to rise, and HCC is now the third leading cause of cancer-related death worldwide. Immune checkpoint inhibitors (ICIs) have transformed the treatment landscape for advanced HCC, with trials demonstrating a superior overall survival benefit compared to sorafenib in the first-line setting. Combination therapy with either atezolizumab (anti-PD-L1) and bevacizumab (anti-VEGF) or durvalumab (anti-PD-L1) and tremelimumab (anti-CTLA-4) is now recognised as standard of care for advanced HCC. More recently, two phase III studies of ICI-based combination therapy in the early and intermediate disease settings have successfully met their primary end points of improved recurrence- and progression-free survival, respectively. Despite these advances, and in contrast to other tumour types, there remain no validated predictive biomarkers of response to ICIs in HCC. Ongoing research efforts are focused on further characterising the tumour microenvironment in order to select patients most likely to benefit from ICI and identify novel therapeutic targets. Herein, we review the current understanding of the immune landscape in which HCC develops and the evidence for ICI-based therapeutic strategies in HCC. Additionally, we describe the state of biomarker development and novel immunotherapy approaches in HCC which have progressed beyond the pre-clinical stage and into early-phase trials.
Collapse
Affiliation(s)
- Alexa Childs
- Department of Medical Oncology, Royal Free Hospital, London, UK
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| | - Gloryanne Aidoo-Micah
- Department of Medical Oncology, Royal Free Hospital, London, UK
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| | - Mala K. Maini
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, UK
| | - Tim Meyer
- Department of Medical Oncology, Royal Free Hospital, London, UK
- UCL Cancer Institute, University College London, UK
| |
Collapse
|
42
|
Zeng ZX, Wu JY, Zhuang SW, Yan ML. Reply to: "Is the TAE score a promising prognostic predictor for unresectable hepatocellular carcinoma treated with TACE plus lenvatinib with PD‑1 inhibitors? Further validation should be performed". Hepatol Int 2024; 18:1589-1590. [PMID: 38976226 DOI: 10.1007/s12072-024-10682-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 04/06/2024] [Indexed: 07/09/2024]
Affiliation(s)
- Zhen-Xin Zeng
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Jia-Yi Wu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China
- Department of Hepatobiliary Pancreatic Surgery, Fujian Provincial Hospital, Dongjie Road 134, Fuzhou, 350001, Fujian Province, China
| | - Shao-Wu Zhuang
- Department of Interventional Radiology, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, Fujian Province, China
| | - Mao-Lin Yan
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China.
- Department of Hepatobiliary Pancreatic Surgery, Fujian Provincial Hospital, Dongjie Road 134, Fuzhou, 350001, Fujian Province, China.
| |
Collapse
|
43
|
Ju M, Pan B, Huang Y, Zhou Y, Chen J, Xiang H, Xu S, Chen S, Lan C, Li J, Zheng M. The efficacy of first and second immunotherapy exposure in patients with recurrent or metastatic cervical cancer. Cancer Med 2024; 13:e70204. [PMID: 39382194 PMCID: PMC11462590 DOI: 10.1002/cam4.70204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/02/2024] [Accepted: 08/26/2024] [Indexed: 10/10/2024] Open
Abstract
OBJECTIVE Immunotherapy has led to changes in cervical cancer guidelines. Therefore, additional biomarkers to identify the ideal patient who would experience the most benefit may be important. METHODS We retrospectively collected 208 patients with R/M CC and recorded clinicopathologic information, peripheral blood markers and treatments to analyze the prognostic factors of clinical outcomes. Response rate comparison, univariate, and multivariate analyses were performed to assess the efficacy of different factors. RESULTS A total of 43.27% patients achieved objective responses, including 18 with complete response and 72 with partial response. Patients receiving first-line immunotherapy had much higher objective response rate (ORR) than the remaining patients (53.8% vs. 34.8%, p = 0.006). CRP >3 ECOG ≥1 and recurrence in 6 months predicted shorter progression free survival (PFS). CRP >3, GLU >6.1 independently predicted unfavorable overall survival (OS). Compared with no antiangiogenic therapy, previous antiangiogenic therapy reduced the median OS by nearly 14 months. Immunotherapy rechallenge was still effective after first immunotherapy failure, and combined with dual-immunotherapy or bevacizumab combined with chemoradiotherapy resulted in a 60.00% or 62.50% ORR, respectively. Patients with squamous cell carcinoma, with stable disease or objective response in the first immunotherapy or without chemotherapy in second immunotherapy had favorable clinical outcome. CONCLUSION The baseline CRP levels in serum was an independent factor for PFS and OS of R/M CC patients treated with immunotherapy, and previous antiangiogenic therapy was associated with poor OS. Patients still show response to immunotherapy rechallenge and combined treatment with bevacizumab or candonilimab showed higher response rate than anti-PD-1 after immunotherapy failure.
Collapse
Affiliation(s)
- Mingxiu Ju
- Department of Gynecology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP.R. China
| | - Baoyue Pan
- Department of Gynecology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP.R. China
| | - Yongwen Huang
- Department of Gynecology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP.R. China
| | - Yun Zhou
- Department of Gynecology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP.R. China
| | - Jieping Chen
- Department of Gynecology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP.R. China
| | - Huiling Xiang
- Department of Gynecology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP.R. China
| | - Shije Xu
- Department of Gynecology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP.R. China
| | - Siyu Chen
- Department of Gynecology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP.R. China
| | - Chunyan Lan
- Department of Gynecology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP.R. China
| | - Jundong Li
- Department of Gynecology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP.R. China
| | - Min Zheng
- Department of Gynecology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouP.R. China
| |
Collapse
|
44
|
Liu K, Zheng X, Dai J, Hou C, Lu D, Zhao B, Yin S, Wang G, Cao Q, Jiang B, Gao S, Huang X, Xie J, Zhang Y, Li S, Zhang A, Yang W, Wang S, Tan Y, Shi W, Lv W, Wu X. Prognostic Evaluation for Hepatocellular Carcinoma with Portal Vein Tumor Thrombus Patients Treated with Transarterial Chemoembolization Plus Molecular Targeted Therapies-Development and Validation of the ABPS Score. Acad Radiol 2024; 31:4034-4044. [PMID: 38508935 DOI: 10.1016/j.acra.2024.02.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 03/22/2024]
Abstract
RATIONALE AND OBJECTIVES Transarterial chemoembolization (TACE) plus molecular targeted therapies has emerged as the main approach for treating hepatocellular carcinoma (HCC) with portal vein tumor thrombus (PVTT). A robust model for outcome prediction and risk stratification of recommended TACE plus molecular targeted therapies candidates is lacking. We aimed to develop an easy-to-use tool specifically for these patients. METHODS A retrospective analysis was conducted on 384 patients with HCC and PVTT who underwent TACE plus molecular targeted therapies at 16 different institutions. We developed and validated a new prognostic score which called ABPS score. Additionally, an external validation was performed on data from 200 patients enrolled in a prospective cohort study. RESULTS The ABPS score (ranging from 0 to 3 scores), which involves only Albumin-bilirubin (ALBI, grade 1: 0 score; grade 2: 1 score), PVTT(I-II type: 0 score; III-IV type: 1 score), and systemic-immune inflammation index (SII,<550 × 1012: 0 score; ≥550 × 1012: 1 score). Patients were categorized into three risk groups based on their ABPS score: ABPS-A, B, and C (scored 0, 1-2, and 3, respectively). The concordance index (C-index) of the ABPS scoring system was calculated to be 0.802, significantly outperforming the HAP score (0.758), 6-12 (0.712), Up to 7 (0.683), and ALBI (0.595) scoring systems (all P < 0.05). These research findings were further validated in the external validation cohorts. CONCLUSION The ABPS score demonstrated a strong association with survival outcomes and radiological response in patients undergoing TACE plus molecular targeted therapy for HCC with PVTT. The ABPS scoring system could serve as a valuable tool to guide treatment selection for these patients.
Collapse
Affiliation(s)
- Kaicai Liu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China; Department of Interventional Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences & Medicine, University of Science & Technology of China, Hefei 230001, China
| | - Xiaomin Zheng
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Jiaying Dai
- Department of Interventional Radiology, Anqing Municipal Hospital, Anqing 246000, Anhui, China
| | - Changlong Hou
- Department of Interventional Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences & Medicine, University of Science & Technology of China, Hefei 230001, China
| | - Dong Lu
- Department of Interventional Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences & Medicine, University of Science & Technology of China, Hefei 230001, China
| | - Bensheng Zhao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Shiwu Yin
- Department of Interventional Radiology, Second People's Hospital of Hefei, Hefei 230011, Anhui, China
| | - Guoxiang Wang
- Department of Interventional Radiology, The First Affiliated Hospital of Wannan Medical College, Wuhu 241000, China
| | - Qisheng Cao
- Department of Interventional Radiology, Maanshan City People's Hospital, Maanshan 243000, Anhui, China
| | - Bo Jiang
- Department of Interventional Ultrasound, The Second Affiliated Hospital, Anhui Medical University, Hefei 230022, Anhui, China
| | - Songxue Gao
- Department of Radiology, Wan Bei General Hospital of Wanbei Coal power Group, Suzhou 236600, Anhui, China
| | - Xudong Huang
- Department of Interventional Radiology, Affiliated Hospital of Anhui University of Science and Technology, Huainan 232001, Anhui, China
| | - Jun Xie
- Department of Radiology, Fuyang People's Hospital, Fuyang 236600, Anhui, China
| | - Yudong Zhang
- Department of Interventional Radiology, Hefei First People's Hospital, Hefei 230061, Anhui, China
| | - Shuangsheng Li
- Department of Interventional Radiology, Bozhou People's Hospital, Bozhou 236800, Anhui, China
| | - Aiwu Zhang
- Department of Interventional Radiology, Xinhua Hospital of Huainan Xinhua Medical Group, Huainan 232052, Anhui, China
| | - Wei Yang
- Department of Interventional Radiology, The First People's Hospital of Chuzhou, Huainan 239499, Anhui, China
| | - Song Wang
- Department of Interventional Radiology,Fuyang Cancer Hospital, Fuyang 236600, Anhui, China
| | - Yulin Tan
- Department of Interventional Radiology, The First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China
| | - Wanyin Shi
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Weifu Lv
- Department of Interventional Radiology, The First Affiliated Hospital of USTC, Division of Life Sciences & Medicine, University of Science & Technology of China, Hefei 230001, China
| | - Xingwang Wu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China.
| |
Collapse
|
45
|
Callan L, Razeghi H, Grindrod N, Gaede S, Wong E, Tan D, Vickress J, Patrick J, Lock M. Prognostic Index for Liver Radiation (PILiR). Curr Oncol 2024; 31:5862-5872. [PMID: 39451740 PMCID: PMC11506490 DOI: 10.3390/curroncol31100436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/25/2024] [Accepted: 09/27/2024] [Indexed: 10/26/2024] Open
Abstract
A Prognostic Index for Liver Radiation (PILiR) for improved patient selection for stereotactic liver-directed radiotherapy (SBRT) was developed. Using a large single-center database, 195 patients treated with SBRT for local control, including 66 with hepatocellular carcinoma (HCC) and 129 with metastatic liver disease, were analyzed. Only patients ineligible for alternative treatments were included. Overall survival was 11.9 months and 9.4 months in the HCC group and metastatic groups, respectively. In the combined dataset, Child-Pugh Score (CPS) (p = 0.002), serum albumin (p = 0.039), and presence of extrahepatic disease (p = 0.012) were significant predictors of early death on multivariable analysis and were included in the PILiR (total score 0 to 5). Median survival was 23.8, 9.1, 4.5, and 2.6 months for patients with 0, 1-2, 3, and 4-5 points, respectively. In the HCC dataset, CPS (p < 0.001) and gross tumor volume (p = 0.013) were predictive of early death. In the metastatic dataset, serum albumin (p < 0.001) and primary disease site (p = 0.003) were predictive of early death. The AUC for the combined, HCC, and metastatic datasets are 0.78, 0.84, and 0.80, respectively. Poor liver function (defined by CPS and serum albumin) and extrahepatic disease were most predictive of early death, providing clinically important expected survival information for patients and caregivers.
Collapse
Affiliation(s)
| | - Haddis Razeghi
- Radiation Oncology, London Health Sciences Centre, London, ON N6A 5W9, Canada; (H.R.); (N.G.); (S.G.); (E.W.); (J.V.); (J.P.)
- Faculty of Nursing, Western University, London, ON N6A 3K7, Canada
| | - Natalie Grindrod
- Radiation Oncology, London Health Sciences Centre, London, ON N6A 5W9, Canada; (H.R.); (N.G.); (S.G.); (E.W.); (J.V.); (J.P.)
- Pathology & Labaratory Medicine, Western University, London, ON N6A 3K7, Canada
| | - Stewart Gaede
- Radiation Oncology, London Health Sciences Centre, London, ON N6A 5W9, Canada; (H.R.); (N.G.); (S.G.); (E.W.); (J.V.); (J.P.)
- Department of Physics and Astronomy, Western University, London, ON N6A 3K7, Canada
| | - Eugene Wong
- Radiation Oncology, London Health Sciences Centre, London, ON N6A 5W9, Canada; (H.R.); (N.G.); (S.G.); (E.W.); (J.V.); (J.P.)
- Department of Physics and Astronomy, Western University, London, ON N6A 3K7, Canada
| | - David Tan
- Asian Alliance Radiation & Oncology, Centre for Stereotactic Radiosurgery, Singapore 289891, Singapore;
| | - Jason Vickress
- Radiation Oncology, London Health Sciences Centre, London, ON N6A 5W9, Canada; (H.R.); (N.G.); (S.G.); (E.W.); (J.V.); (J.P.)
- Department of Physics and Astronomy, Western University, London, ON N6A 3K7, Canada
| | - John Patrick
- Radiation Oncology, London Health Sciences Centre, London, ON N6A 5W9, Canada; (H.R.); (N.G.); (S.G.); (E.W.); (J.V.); (J.P.)
| | - Michael Lock
- Radiation Oncology, London Health Sciences Centre, London, ON N6A 5W9, Canada; (H.R.); (N.G.); (S.G.); (E.W.); (J.V.); (J.P.)
- Schulich School of Medicine, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
46
|
Sun L, Hu Z, Xie W, Yang Z, Zeng H, Zhang Y, Chen M, Hu D, Zhou Z, Pan Y. Sequential vs. concurrent systemic therapies in combination with FOLFOX-HAIC for locally advanced hepatocellular carcinoma: a single-center, real-world cohort study. BMC Cancer 2024; 24:1168. [PMID: 39300392 DOI: 10.1186/s12885-024-12940-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 09/11/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Tri-combination therapy based on hepatic arterial infusion chemotherapy (HAIC) of infusion fluorouracil, leucovorin, and oxaliplatin (FOLFOX-HAIC) plus immune checkpoint inhibitors (ICIs) and tyrosine kinase inhibitors (TKIs) for the locally advanced hepatocellular carcinoma (HCC) patients have been proven effective. However, whether it was best for these HCC patients to start with the most potent therapeutic pattern was still under debate. This retrospective study evaluated the efficacy and safety of FOLFOX-HAIC combined with systemic therapies in the patterns of sequential and concurrent schedules. METHODS This real-world study included 117 unresectable HCC patients who initially received either FOLFOX-HAIC monotherapy (HAIC group, n = 44) or concurrent ICIs and TKIs (ConHAIC group, n = 73) from March 2020 and June 2022, during the period of FOLFOX-HAIC monotherapy in HAIC group, patients in the HAIC group (n = 30) experienced progressive disease (PD) would have their treatment pattern converted from the FOLFOX-HAIC monotherapy to the combination of FOLFOX-HAIC plus ICIs and TKIs sequentially (SeqHAIC group). The progression-free survival (PFS) and overall survival (OS), as primary outcomes, were compared between patients in the SeqHAIC and ConHAIC groups. RESULTS The median follow-up time of the SeqHAIC group was 24.92 months (95% CI, 12.74-37.09 months) and of the ConHAIC group was 17.87 months (95% CI, 16.85-18.89 months) and no significant difference was observed in both PFS (HR, 1.572; 95% CI, 0.848-2.916; p = 0.151) and OS (HR, 1.212; 95% CI, 0.574-2.561; p = 0.614) between the SeqHAIC and the ConHAIC groups. As for the tumor responses, there was no significant difference between the two groups regarding tumor responses, overall response rates (p = 0.658) and disease control rates (p = 0.641) were 50.0%, 45.2%, and 83.3%, 89.0% for the SeqHAIC and the ConHAIC groups, respectively. CONCLUSION Our study revealed that sequential systemic ICIs and TKIs in combination with FOLFOX-HAIC provides similar long-term prognosis and better tolerability compared to concurrent therapy for locally advanced HCC patients. Prospective studies with a larger sample size and longer follow-up are required to validate these findings.
Collapse
Affiliation(s)
- Liyang Sun
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, Guangdong, 510060, People's Republic of China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
- Guangdong Provnvial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Zhiwen Hu
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, Guangdong, 510060, People's Republic of China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
- Guangdong Provnvial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Wa Xie
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, Guangdong, 510060, People's Republic of China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
- Guangdong Provnvial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Zhenyun Yang
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, Guangdong, 510060, People's Republic of China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
- Guangdong Provnvial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Huilan Zeng
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, Guangdong, 510060, People's Republic of China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
- Guangdong Provnvial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Yaojun Zhang
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, Guangdong, 510060, People's Republic of China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
- Guangdong Provnvial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Minshan Chen
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, Guangdong, 510060, People's Republic of China
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
- Guangdong Provnvial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Dandan Hu
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, Guangdong, 510060, People's Republic of China.
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
- Guangdong Provnvial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| | - Zhongguo Zhou
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, Guangdong, 510060, People's Republic of China.
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
- Guangdong Provnvial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| | - Yangxun Pan
- Department of Liver Surgery, Sun Yat-sen University Cancer Center, 651 Dongfeng Road East, Guangzhou, Guangdong, 510060, People's Republic of China.
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
- Guangdong Provnvial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
47
|
Liao W, Xu H, Hutton D, Wu Q, Yang Y, Feng M, Lei W, Bai L, Li J, Li Q. Cost-effectiveness analysis of durvalumab plus tremelimumab as first-line therapy in patients with unresectable hepatocellular carcinoma. Ther Adv Med Oncol 2024; 16:17588359241274625. [PMID: 39301138 PMCID: PMC11412210 DOI: 10.1177/17588359241274625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 07/05/2024] [Indexed: 09/22/2024] Open
Abstract
Background The HIMALAYA trial found that durvalumab plus tremelimumab significantly prolonged progression-free survival and overall survival in patients with unresectable hepatocellular carcinoma (HCC) compared with sorafenib. Objective This study aimed to investigate the cost-effectiveness of durvalumab plus tremelimumab compared with sorafenib in the first-line HCC setting. Design A Markov model-based cost-effectiveness analysis. Methods We created a Markov model to compare healthcare costs and clinical outcomes of HCC patients treated with durvalumab plus tremelimumab in the first-line setting compared with sorafenib. We estimated transition probabilities from randomized trials. Lifetime direct healthcare costs, quality-adjusted life-years (QALYs), and incremental cost-effectiveness ratios were calculated for first-line durvalumab plus tremelimumab compared with sorafenib from a US payer's perspective. Results In the base case, first-line durvalumab plus tremelimumab was associated with an improvement of 0.29 QALYs compared with sorafenib. While both treatment strategies were associated with considerable lifetime expenditures, first-line durvalumab plus tremelimumab was less expensive than sorafenib ($188,405 vs $218,584). The incremental net monetary benefit for durvalumab plus tremelimumab versus sorafenib was $72,762 (valuing QALYs at $150,000 each). The results of durvalumab plus tremelimumab were better in terms of costs and health outcomes in patients with HBV-related HCC and high alpha-fetoprotein levels. Conclusion First-line durvalumab plus tremelimumab was estimated to be dominant for the treatment of unresectable HCC compared with sorafenib from a US payer's perspective.
Collapse
Affiliation(s)
- Weiting Liao
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- West China Biomedical Big Data Center, Sichuan University, Chengdu, China
| | - Huiqiong Xu
- Division of Abdominal Tumor Multimodality Treatment, Cancer Center, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - David Hutton
- Department of Health Management and Policy, University of Michigan, Ann Arbor, MI, USA
| | - Qiuji Wu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- West China Biomedical Big Data Center, Sichuan University, Chengdu, China
| | - Yang Yang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- West China Biomedical Big Data Center, Sichuan University, Chengdu, China
| | - Mingyang Feng
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- West China Biomedical Big Data Center, Sichuan University, Chengdu, China
| | - Wanting Lei
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- West China Biomedical Big Data Center, Sichuan University, Chengdu, China
| | - Liangliang Bai
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- West China Biomedical Big Data Center, Sichuan University, Chengdu, China
| | - Junying Li
- Thoracic Oncology Ward, Cancer Center, West China Hospital, Sichuan University, GuoXue 37, Chengdu 610041, China
| | - Qiu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, GuoXue 37, Chengdu 610041, China
- West China Biomedical Big Data Center, Sichuan University, Chengdu, China
| |
Collapse
|
48
|
Chan YT, Zhang C, Wu J, Lu P, Xu L, Yuan H, Feng Y, Chen ZS, Wang N. Biomarkers for diagnosis and therapeutic options in hepatocellular carcinoma. Mol Cancer 2024; 23:189. [PMID: 39242496 PMCID: PMC11378508 DOI: 10.1186/s12943-024-02101-z] [Citation(s) in RCA: 40] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024] Open
Abstract
Liver cancer is a global health challenge, causing a significant social-economic burden. Hepatocellular carcinoma (HCC) is the predominant type of primary liver cancer, which is highly heterogeneous in terms of molecular and cellular signatures. Early-stage or small tumors are typically treated with surgery or ablation. Currently, chemotherapies and immunotherapies are the best treatments for unresectable tumors or advanced HCC. However, drug response and acquired resistance are not predictable with the existing systematic guidelines regarding mutation patterns and molecular biomarkers, resulting in sub-optimal treatment outcomes for many patients with atypical molecular profiles. With advanced technological platforms, valuable information such as tumor genetic alterations, epigenetic data, and tumor microenvironments can be obtained from liquid biopsy. The inter- and intra-tumoral heterogeneity of HCC are illustrated, and these collective data provide solid evidence in the decision-making process of treatment regimens. This article reviews the current understanding of HCC detection methods and aims to update the development of HCC surveillance using liquid biopsy. Recent critical findings on the molecular basis, epigenetic profiles, circulating tumor cells, circulating DNAs, and omics studies are elaborated for HCC diagnosis. Besides, biomarkers related to the choice of therapeutic options are discussed. Some notable recent clinical trials working on targeted therapies are also highlighted. Insights are provided to translate the knowledge into potential biomarkers for detection and diagnosis, prognosis, treatment response, and drug resistance indicators in clinical practice.
Collapse
Affiliation(s)
- Yau-Tuen Chan
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Cheng Zhang
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Junyu Wu
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Pengde Lu
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Lin Xu
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Hongchao Yuan
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Zhe-Sheng Chen
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA.
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| |
Collapse
|
49
|
Qi L, Zhu Y, Li J, Zhou M, Liu B, Chen J, Shen J. CT radiomics-based biomarkers can predict response to immunotherapy in hepatocellular carcinoma. Sci Rep 2024; 14:20027. [PMID: 39198563 PMCID: PMC11358293 DOI: 10.1038/s41598-024-70208-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
Hepatocellular Carcinoma (HCC) remains a leading cause of cancer deaths. Despite the rise of immunotherapies, many HCC patients don't benefit. There's a clear need for biomarkers to guide treatment decisions. This research aims to identify such biomarkers by combining radiological data and machine learning. We analyzed clinical and CT imaging data of 54 HCC patients undergoing immunotherapy. Radiologic features were examined to develop a model predicting short-term immunotherapy effects. We utilized 9 machine learning and 2 ensemble learning techniques using RapidMiner for model construction. We conducted the validation of the above feature combination using 29 HCC patients who received immunotherapy from another hospital, and tested and validated it using XGBoost combined with a genetic algorithm. In 54 HCC patients, radiomics features varied significantly between those with partial response (PR) and stable disease (SD). Key features in Gray Level Run Length Matrix (GLRLM) and in adjacent tissues' Intensity Direct, Neighborhood Gray Tone Difference Matrix (NGTDM), and Shape correlated with short-term immunotherapy efficacy. Selected feature combinations of 15, 19, and 8/15 features yielded better outcomes. Deep learning, random forest, and naive bayes outperformed other methods, with Bagging being more reliable than Adaboost. In the validation set of 29 HCC patients, the mentioned feature combination also demonstrated favorable performance. Furthermore, we achieved improved results when employing XGBoost in conjunction with a genetic algorithm for testing and validation. The machine learning model built with CT image features derived from GLCM, GLRLM, IntensityDirect, NGTDM, and Shape can accurately forecast the short-term efficacy of immunotherapy for HCC.
Collapse
Affiliation(s)
- Liang Qi
- The Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No.321 Zhongshan Road, Nanjing, 210008, China
| | - Yahui Zhu
- The Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No.321 Zhongshan Road, Nanjing, 210008, China
| | - Jinxin Li
- Department of Li Ka Shing Faculty of Medicine, The University of Hong Kong, HKSAR, China
| | - Mingzhen Zhou
- The Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Baorui Liu
- The Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No.321 Zhongshan Road, Nanjing, 210008, China.
- The Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Jiu Chen
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No.321 Zhongshan Road, Nanjing, 210008, China.
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China.
| | - Jie Shen
- The Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, No.321 Zhongshan Road, Nanjing, 210008, China.
- The Comprehensive Cancer Centre, Department of Oncology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| |
Collapse
|
50
|
Wang J, Xiao P, Li X, Wu W, Shi D, Lin W, Wu Z. Predictive value of circulating immune cell changes in response to PD-1 blockade and TKI therapy in patients with hepatocellular carcinoma. Clin Res Hepatol Gastroenterol 2024; 48:102390. [PMID: 38823631 DOI: 10.1016/j.clinre.2024.102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
PURPOSE This study investigated the dynamic changes in circulating immune cells following immune checkpoint inhibitors (ICIs), tyrosine kinase inhibitors (TKIs), and interventional therapy in hepatocellular carcinoma (HCC). METHODS HCC patients undergoing transarterial chemoembolization (TACE), TKI, and ICI treatment were included in the treatment group. Peripheral blood samples were collected from these patients before each cycle of PD-1 blockade treatment. Flow cytometry analysis was conducted to assess the composition of peripheral immune cells and identify PD-1-expressing T cells. RESULTS The treatment group showed a median time-to-tumor progression (TTP) of 8 months and an overall survival (OS) of 19 months. In comparison, the control group had 6 months and 15 months respectively. These differences were statistically significant (P = 0.029 for TTP and P = 0.020 for OS). In HCC patients receiving Lenvatinib, more circulating natural killer (NK) cells were noted. After 1-2 cycles of PD-1 antibody treatment, a general decline in the proportion of circulating PD-1+T cells was found, indicating individual variations in response. CONCLUSION Circulating immune cells have the potential to serve as indicators of the response to immunotherapy, providing a means to monitor dynamic changes and optimize treatment for HCC.
Collapse
Affiliation(s)
- Jianpeng Wang
- Target and Interventional Radiology Department of Oncology, First People's Hospital of Foshan, Foshan, China.
| | - Ping Xiao
- Department of Experimental Research, First People's Hospital of Foshan, Foshan, China
| | - Xishan Li
- Department of Interventional Radiology, Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, China
| | - Wenyu Wu
- Target and Interventional Radiology Department of Oncology, First People's Hospital of Foshan, Foshan, China
| | - Degang Shi
- Target and Interventional Radiology Department of Oncology, First People's Hospital of Foshan, Foshan, China
| | - Wei Lin
- Department of Experimental Research, First People's Hospital of Foshan, Foshan, China
| | - Zuchang Wu
- Department of Experimental Research, First People's Hospital of Foshan, Foshan, China
| |
Collapse
|