1
|
Li H, Wang G, Tang Y, Wang L, Jiang Z, Liu J. Rhein alleviates diabetic cardiomyopathy by inhibiting mitochondrial dynamics disorder, apoptosis and hypertrophy in cardiomyocytes. Cell Signal 2025; 131:111734. [PMID: 40081546 DOI: 10.1016/j.cellsig.2025.111734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 02/18/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND Diabetic cardiomyopathy (DCM) is a significant cardiovascular complication in diabetic patients, and treatment regimens are limited. Rhein, a compound extracted from the herb rhubarb, was investigated in this study for its efficacy on DCM and the potential mechanism. METHODS Streptozotocin-induced DCM mice, high-glucose (HG)-treated neonatal rat cardiomyocytes (NRCMs), and H9c2 cells with ClpP knockdown were used for the study. We performed phenotypic and molecular mechanistic studies using immunoblotting, quantitative polymerase chain reaction, transmission electron microscopy, cardiac echocardiography, and histopathological analysis. RESULTS Rhein improved the cardiac function and myocardial fibrosis, and decreased the cross-sectional area of cardiomyocytes in the DCM mice. It also improved mitochondrial dynamic disorder as evidenced by a decreased ratio of mitochondrial fission-related proteins p-Drp1S616/ Drp1 and increased expression of mitochondrial fusion proteins (Opa1, Mfn1 and Mfn2). Rhein mitigated apoptosis as indicated by decreased apoptosis-related proteins (caspase 9, cleaved-caspase 3 and Bax) and increased anti-apoptosis protein Bcl2 in the heart tissue of DCM mice. Upregulations of cardiac hypertrophy associated genes (ANP, BNP and β-MHC) were significantly inhibited by Rhein treatment. In addition, the level of ClpP, a mitochondrial protease, was increased in DCM, but was normalized by Rhein treatment. However, ClpP knockdown exacerbated cardiomyocyte injury in the presence or absence of HG in H9c2 cells, indicating that a normal level of ClpP is essential for cardiomyocytes to survive. CONCLUSIONS Our results suggest that Rhein protects DCM by ameliorating mitochondrial dynamics disorder, inhibiting cardiomyocyte apoptosis, and myocardial hypertrophy. These protective effects of Rhein may be mediated by preventing ClpP upregulation.
Collapse
Affiliation(s)
- Hejuan Li
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China
| | - Genwang Wang
- Department of Health Service, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yi Tang
- Department of Cardiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Lei Wang
- Department of Cardiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Zhenzhou Jiang
- New Drug Screening Center, Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, China.
| | - Jing Liu
- Department of Cardiology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
2
|
Amador-Martínez I, Aranda-Rivera AK, Martínez-Castañeda MR, Pedraza-Chaverri J. Mitochondrial quality control and stress signaling pathways in the pathophysiology of cardio-renal diseases. Mitochondrion 2025; 84:102040. [PMID: 40252890 DOI: 10.1016/j.mito.2025.102040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 04/05/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Mitochondria are essential organelles for cellular function and have become a broad field of study. In cardio-renal diseases, it has been established that mitochondrial dysfunction is a primary mechanism leading to these pathologies. Under stress, mitochondria can develop stress response mechanisms to maintain mitochondrial quality control (MQC) and functions. In contrast, the perturbation of these mechanisms has been associated with the pathogenesis of several diseases. Thus, targeting specific pathways within MQC could offer a therapeutic avenue for protecting mitochondrial integrity. However, the mechanisms related to MQC and mitochondrial stress signaling in the cardio-renal axis have been poorly explored. The primary limitations include the lack of reproducibility in the experimental models of cardio-renal disease, the incomplete knowledge of molecules that generate bidirectional damage, and the temporality of the study models. Therefore, we believe that integration of all of those limitations, along with recent advances in MQC mechanisms (i.e., mitophagy), stress signaling pathways (e.g., integrated stress response, mitochondrial unfolded protein response, and mitochondrial protein import), associated pharmacology, and targeted therapeutic approaches could reveal what the deregulation of these mechanisms is like and provide ideas for generating strategies that seek to avoid the progression of cardio-renal diseases.
Collapse
Affiliation(s)
- Isabel Amador-Martínez
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, C.P. 04510, CDMX, Mexico; Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico
| | - Ana Karina Aranda-Rivera
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico; Departamento de Farmacología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04510, Mexico
| | - Mauricio Raziel Martínez-Castañeda
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico; Programa de Doctorado en Ciencias Biomédicas, Unidad de Posgrado, Edificio B - 101, 1° Piso, Circuito de Posgrado, Ciudad Universitaria, Coyoacán, C.P. 04510, CDMX, Mexico
| | - José Pedraza-Chaverri
- Department of Biology, Faculty of Chemistry, National Autonomous University of Mexico, Mexico City 04510, Mexico.
| |
Collapse
|
3
|
Xu J, Li Y, Wang G, Chen D, Hou C, Wang R, Dong W, Sun L, Yang K, Duan J, Pu G, Zhao X, Ai R, Xiu W, Wang Q, Wang C. Impaired mitochondrial degradation of CHCHD2 promotes metabolic dysfunction-associated steatohepatitis-related hepatocellular carcinoma by upregulating VEGFA. Oncogene 2025:10.1038/s41388-025-03321-3. [PMID: 40025232 DOI: 10.1038/s41388-025-03321-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 02/01/2025] [Accepted: 02/19/2025] [Indexed: 03/04/2025]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is the fastest-growing cause of liver cancer. The liver microenvironment of patients with MASH supports the development of hepatocellular carcinoma (HCC). Coiled-coil-helix-coiled-coil-helix domain-containing 2 (CHCHD2), which is located in both the mitochondria and nucleus, is increased in MASH liver. Its role in the development of MASH-HCC remain unknown. In this study, we found CHCHD2 protein levels were elevated in both tumor and para-tumor tissues of patients with MASH-HCC and diethylnitrosamine- and high-fat diet-induced MASH-HCC mice. Chchd2-knockout mice were generated. CHCHD2 was overexpressed in hepatocytes using AAV with TBG promoter. Chchd2 knockout inhibited the progression of MASH-HCC in mice. CHCHD2 protein-targeted ChIP-sequencing data revealed that CHCHD2 target genes encoding secretory proteins were enriched in cancer pathways. Among these genes, vascular endothelial growth factor A (VEGFA) level increased in CHCHD2-overexpressing livers and hepatocytes. Chchd2 knockdown reduced palmitate-induced VEGFA expression. Palmitate-treated hepatocyte increased the angiogenic activity of endothelial cells in a paracrine manner, and this was suppressed by Chchd2 knockdown in hepatocytes. CHCHD2-overexpressing hepatocytes promoted the angiogenic activity of endothelial cells. We futher employed an orthotopic murine model of HCC to demonstrate that elevated CHCHD2 protein levels in para-tumor tissues support HCC growth. In addition, we found that the degradation of CHCHD2 was primarily mediated by mitochondrial protease ClpXP, which was repressed in the MASH liver. In conclusion, the mitochondrial degradation of CHCHD2 is impaired in MASH, and elevated CHCHD2 levels in hepatocytes promote VEGFA transcription and support the growth of HCC.
Collapse
Affiliation(s)
- Jingwen Xu
- Department of Physiology and Pathophysiology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Yue Li
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Guangyan Wang
- Department of Physiology and Pathophysiology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Dapeng Chen
- Tianjin First Central Hospital Clinic Institute, Tianjin Medical University, Tianjin, China
| | - Chenxue Hou
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Rui Wang
- Department of Urology, Tianjin Institute of Urology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Wenhui Dong
- Department of Physiology and Pathophysiology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Lei Sun
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Kun Yang
- Department of Pathology, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jinjie Duan
- Department of Physiology and Pathophysiology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
- School of Public Health, Tianjin Medical University, Tianjin, China
| | - Guangyin Pu
- Department of Physiology and Pathophysiology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Xiaoyu Zhao
- Department of Physiology and Pathophysiology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Rong Ai
- Department of Physiology and Pathophysiology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China
| | - Wenjing Xiu
- Department of Physiology and Pathophysiology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.
| | - Qi Wang
- Center of Liver Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China.
| | - Chunjiong Wang
- Department of Physiology and Pathophysiology, the Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, China.
- Tianjin Key Laboratory of Medical Epigenetics, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
4
|
Guo Y, Huang H, Yang L, Shen Q, Liu Z, Wang Q, Chen S, Pan J, Zhai H, Li Y, Xu L, Yu C, Xu C. Amyloid precursor protein promotes MASH progression by upregulating death receptor 6-mediated hepatocyte apoptosis. J Biol Chem 2025; 301:108285. [PMID: 39938799 PMCID: PMC11923821 DOI: 10.1016/j.jbc.2025.108285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/25/2025] [Accepted: 02/03/2025] [Indexed: 02/14/2025] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a complicated process that contributes to end-stage liver disease and, eventually, hepatocellular carcinoma. Hepatocyte apoptosis, a well-defined form of cell death in MASH, is considered the primary cause of liver inflammation and fibrosis. However, the mechanisms underlying the regulation of hepatocyte apoptosis in MASH remain largely unclear. We explored the proapoptotic effect of hepatocyte amyloid precursor protein (APP) in MASH. C57BL/6J mice were fed a Western diet plus sugar water, a high-fat high-fructose diet, or a methionine and choline deficiency diet to induce MASH. APP expression was analyzed in murine MASH specimens. App-/- mice and mice with adeno-associated virus-mediated APP overexpression were established to study the role of APP in MASH. Palmitic acid was used to mimic lipotoxicity-induced MASH in AML12 cells. We identified a dramatic increase in APP expression in hepatocytes of patients with MASH and three different mouse models. Suppression of APP attenuated hepatic steatosis, inflammation, and fibrosis in MASH mice, whereas its restoration activated MASH pathogenesis. Furthermore, increased death receptor 6 (DR6) was observed in MASH mouse livers. Mechanistically, APP interacted with DR6, a tumor necrosis factor receptor, to facilitate DR6 expression and activation. Activated DR6 increased apoptosis in hepatocytes, which was associated with an increase in proapoptotic effectors (cleaved-caspase 3/7). Our results highlight the role of the APP-DR6 axis in hepatocyte apoptosis, inflammation activation, and fibrosis formation in murine MASH model, providing new insights into therapeutic strategies for MASH.
Collapse
Affiliation(s)
- Yanjun Guo
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hangkai Huang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ling Yang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qien Shen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhening Liu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qinqiu Wang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shenghui Chen
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaqi Pan
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haoliang Zhai
- Department of Gastroenterology, Haining Branch, The First Affiliated Hospital, Zhejiang University School of Medicine, Haining, China
| | - Youming Li
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lei Xu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China; Department of Gastroenterology, The First Affiliated Hospital of Ningbo University, Ningbo, China.
| | - Chaohui Yu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Chengfu Xu
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
5
|
Zhang J, Jiang Y, Fan D, Qiu Z, He X, Liu S, Li L, Dai Z, Zhang L, Shu Z, Li L, Zhang H, Yang T, Luo Y. Chemical activation of mitochondrial ClpP to modulate energy metabolism of CD4 + T cell for inflammatory bowel diseases treatment. Cell Rep Med 2024; 5:101840. [PMID: 39626672 PMCID: PMC11722089 DOI: 10.1016/j.xcrm.2024.101840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/25/2024] [Accepted: 11/05/2024] [Indexed: 12/20/2024]
Abstract
Inflammatory bowel disease (IBD) is an autoimmune disorder, and despite the availability of multiple Food and Drug Administration (FDA)-approved therapies, current clinical needs remain unmet. In this study, we find that caseinolytic protease P (ClpP) expression is markedly upregulated in colonic tissues from IBD patients and preclinical colitis models, particularly in CD4+ T cells. Subsequently, a small molecule, namely NCA029, is identified, and its therapeutic efficacy and mechanism of action are investigated both in vitro and in vivo. Oral administration of NCA029 significantly alleviates symptoms associated with dextran sulfate sodium (DSS)-induced acute and interleukin (IL)-10-deficient chronic colitis. The effects of NCA029 are largely dependent on its selective binding to ClpP in CD4+ T cells, thereby mitigating inflammation and restoring intestinal barrier function. Furthermore, NCA029 activates ClpP to promote oxidative phosphorylation (OXPHOS) inhibition and concomitantly modulate the Th17/Treg balance. In conclusion, our study develops a therapeutic strategy for treating IBD through the chemical activation of ClpP.
Collapse
Affiliation(s)
- Jiangnan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yunhan Jiang
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dongmei Fan
- Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiqiang Qiu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xinlian He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Song Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Linjie Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhengyi Dai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lidan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ziyi Shu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lili Li
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China; Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Hu Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China; Centre for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Inflammatory Bowel Disease, Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
6
|
Mu C, Wang S, Wang Z, Tan J, Yin H, Wang Y, Dai Z, Ding D, Yang F. Mechanisms and therapeutic targets of mitochondria in the progression of metabolic dysfunction-associated steatotic liver disease. Ann Hepatol 2024; 30:101774. [PMID: 39701281 DOI: 10.1016/j.aohep.2024.101774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 12/21/2024]
Abstract
Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) includes liver disease processes from simple fatty liver to nonalcoholic steatohepatitis, which may progress to liver fibrosis, cirrhosis, and even hepatocellular carcinoma (HCC). As the incidence of HCC derived from viral hepatitis decreases, MASLD has emerged as a significant health threat, driven by lifestyle changes and rising obesity rates among patients. The pathogenesis of MASLD is complex, involving factors such as insulin resistance, gut microbiota imbalance, and genetic and epigenetic factors. In recent years, the role of mitochondrial dysfunction in MASLD has gained significant attention, involving β-oxidation imbalance, oxidative stress increase, mitophagy defects, and mitochondrial DNA (mtDNA) mutations. This article reviews the pathophysiological mechanisms of mitochondrial dysfunction in MASLD, diagnostic methods, and potential therapeutic strategies. By synthesizing current research findings, the review aims to highlight the critical role of mitochondrial dysfunction as a target for future diagnostic and therapeutic interventions. This focus could pave the way for innovative clinical strategies, ultimately improving treatment options and patient prognosis in MASLD.
Collapse
Affiliation(s)
- Chenyang Mu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China; Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Sijie Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China; Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Zenghan Wang
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Jian Tan
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Haozan Yin
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Yuefan Wang
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Zhihui Dai
- Department of Medical Genetics, Naval Medical University, Shanghai, China
| | - Dongyang Ding
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, China
| | - Fu Yang
- Department of Medical Genetics, Naval Medical University, Shanghai, China; Shanghai Key Laboratory of Medical Bioprotection, Shanghai, China; Key Laboratory of Biological Defense, Ministry of Education, Shanghai, China.
| |
Collapse
|
7
|
Wang Z, He L, Fan Z, Luo Y. Patenting perspective of modulators of ClpP endopeptidase: 2019-present. Expert Opin Ther Pat 2024; 34:1073-1084. [PMID: 39267345 DOI: 10.1080/13543776.2024.2404233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/14/2024] [Accepted: 09/10/2024] [Indexed: 09/17/2024]
Abstract
INTRODUCTION ClpP is a highly conserved serine protease that plays a crucial role in maintaining protein homeostasis in both bacterial cells and human mitochondria. Several studies have demonstrated the potential of ClpP as a drug target, with ClpP modulators, including both inhibitors and activators, showing promise in treating a range of conditions such as drug-resistant bacteria, malignant cancers, and fatty liver disease. AREA COVERED This review provides an overview of patents related to ClpP modulators filed over the last five years, detailing their claims and therapeutic applications. The sources of patent information included databases of the European Patent Office, the China Patent Office and the U.S.A. patent Office, while relevant research articles were accessed through PubMed. EXPERT OPINION The number of patents concerning ClpP modulators is on the rise, reflecting advancements in related research. By summarizing and outlining relevant patents, we aim to stimulate further interest among researchers, ultimately leading to the development of effective drugs based on ClpP modulators. The broad spectrum of diseases associated with ClpP dysfunction underscores the potential for ClpP modulators to address a wide range of therapeutic needs.
Collapse
Affiliation(s)
- Zhenyu Wang
- State Key Laboratory of Biotherapy, West China Hospital, West Medical School, Sichuan University, Chengdu, China
| | - Liqing He
- State Key Laboratory of Biotherapy, West China Hospital, West Medical School, Sichuan University, Chengdu, China
| | - Ziheng Fan
- State Key Laboratory of Biotherapy, West China Hospital, West Medical School, Sichuan University, Chengdu, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy, West China Hospital, West Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
8
|
Wang Y, Zhou J, Yang Q, Li X, Qiu Y, Zhang Y, Liu M, Zhu AJ. Therapeutic siRNA targeting PLIN2 ameliorates steatosis, inflammation, and fibrosis in steatotic liver disease models. J Lipid Res 2024; 65:100635. [PMID: 39187042 PMCID: PMC11440260 DOI: 10.1016/j.jlr.2024.100635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/10/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is the most prevalent chronic liver disease worldwide. If left untreated, MASLD can progress from simple hepatic steatosis to metabolic dysfunction-associated steatohepatitis, which is characterized by inflammation and fibrosis. Current treatment options for MASLD remain limited, leaving substantial unmet medical needs for innovative therapeutic approaches. Here, we show that PLIN2, a lipid droplet protein inhibiting hepatic lipolysis, serves as a promising therapeutic target for MASLD. Hepatic PLIN2 levels were markedly elevated in multiple MASLD mouse models induced by diverse nutritional and genetic factors. The liver-specific deletion of Plin2 exhibited significant anti-MASLD effects in these models. To translate this discovery into a therapeutic application, we developed a GalNAc-siRNA conjugate with enhanced stabilization chemistry and validated its potent and sustained efficacy in suppressing Plin2 expression in mouse livers. This siRNA therapeutic, named GalNAc-siPlin2, was shown to be biosafe in mice. Treatment with GalNAc-siPlin2 for 6-8 weeks led to a decrease in hepatic triglyceride levels by approximately 60% in high-fat diet- and obesity-induced MASLD mouse models, accompanied with increased hepatic secretion of VLDL-triglyceride and enhanced thermogenesis in brown adipose tissues. Eight-week treatment with GalNAc-siPlin2 significantly improved hepatic steatosis, inflammation, and fibrosis in high-fat/high fructose-induced metabolic dysfunction-associated steatohepatitis models compared to control group. As a proof of concept, we developed a GalNAc-siRNA therapeutic targeting human PLIN2, which effectively suppressed hepatic PLIN2 expression and ameliorated MASLD in humanized PLIN2 knockin mice. Together, our results highlight the potential of GalNAc-siPLIN2 as a candidate MASLD therapeutic for clinical trials.
Collapse
Affiliation(s)
- Yao Wang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Jiaxin Zhou
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Qi Yang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Xinmeng Li
- Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Yifu Qiu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China; Institute of Molecular Medicine, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, College of Future Technology, Peking University, Beijing, China
| | - Yansong Zhang
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China; Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan, China.
| | - Min Liu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| | - Alan Jian Zhu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China; Peking University Chengdu Academy for Advanced Interdisciplinary Biotechnologies, Chengdu, Sichuan, China.
| |
Collapse
|
9
|
Giallongo S, Ferrigno J, Caltabiano R, Broggi G, Alanazi AM, Distefano A, Tropea E, Tramutola A, Perluigi M, Volti GL, Barone E, Barbagallo IA. Aging exacerbates oxidative stress and liver fibrosis in an animal model of Down Syndrome. Aging (Albany NY) 2024; 16:10203-10215. [PMID: 38942607 PMCID: PMC11236314 DOI: 10.18632/aging.205970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/11/2024] [Indexed: 06/30/2024]
Abstract
Down Syndrome (DS) is a common genetic disorder characterized by an extra copy of chromosome 21, leading to dysregulation of various metabolic pathways. Oxidative stress in DS is associated with neurodevelopmental defects, neuronal dysfunction, and a dementia onset resembling Alzheimer's disease. Additionally, chronic oxidative stress contributes to cardiovascular diseases and certain cancers prevalent in DS individuals. This study investigates the impact of ageing on oxidative stress and liver fibrosis using a DS murine model (Ts2Cje mice). Our results show that DS mice show increased liver oxidative stress and impaired antioxidant defenses, as evidenced by reduced glutathione levels and increased lipid peroxidation. Therefore, DS liver exhibits an altered inflammatory response and mitochondrial fitness as we showed by assaying the expression of HMOX1, CLPP, and the heat shock proteins Hsp90 and Hsp60. DS liver also displays dysregulated lipid metabolism, indicated by altered expression of PPARα, PPARγ, FATP5, and CTP2. Consistently, these changes might contribute to non-alcoholic fatty liver disease development, a condition characterized by liver fat accumulation. Consistently, histological analysis of DS liver reveals increased fibrosis and steatosis, as showed by Col1a1 increased expression, indicative of potential progression to liver cirrhosis. Therefore, our findings suggest an increased risk of liver pathologies in DS individuals, particularly when combined with the higher prevalence of obesity and metabolic dysfunctions in DS patients. These results shed a light on the liver's role in DS-associated pathologies and suggest potential therapeutic strategies targeting oxidative stress and lipid metabolism to prevent or mitigate liver-related complications in DS individuals.
Collapse
Affiliation(s)
- Sebastiano Giallongo
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95124, Italy
| | - Jessica Ferrigno
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95124, Italy
| | - Rosario Caltabiano
- Department G.F. Ingrassia, Section of Anatomic Pathology, University of Catania, Catania 95124, Italy
| | - Giuseppe Broggi
- Department G.F. Ingrassia, Section of Anatomic Pathology, University of Catania, Catania 95124, Italy
| | - Amer M Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Alfio Distefano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95124, Italy
| | - Emanuela Tropea
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95124, Italy
| | - Antonella Tramutola
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, Roma, RM 00185, Italy
| | - Marzia Perluigi
- Department of Biochemical Sciences “A. Rossi-Fanelli”, Sapienza University of Rome, Roma, RM 00185, Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania 95124, Italy
| | - Eugenio Barone
- Department G.F. Ingrassia, Section of Anatomic Pathology, University of Catania, Catania 95124, Italy
| | | |
Collapse
|
10
|
Ouyang KW, Wang TT, Wang H, Luo YX, Hu YF, Zheng XM, Ling Q, Wang KW, Xiong YW, Zhang J, Chang W, Zhang YF, Yuan Z, Li H, Gao L, Xu DX, Zhu HL, Yang L, Wang H. m6A-methylated Lonp1 drives mitochondrial proteostasis stress to induce testicular pyroptosis upon environmental cadmium exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 931:172938. [PMID: 38703850 DOI: 10.1016/j.scitotenv.2024.172938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Cadmium (Cd) is a widely distributed typical environmental pollutant and one of the most toxic heavy metals. It is well-known that environmental Cd causes testicular damage by inducing classic types of cell death such as cell apoptosis and necrosis. However, as a new type of cell death, the role and mechanism of pyroptosis in Cd-induced testicular injury remain unclear. In the current study, we used environmental Cd to generate a murine model with testicular injury and AIM2-dependent pyroptosis. Based on the model, we found that increased cytoplasmic mitochondrial DNA (mtDNA), activated mitochondrial proteostasis stress occurred in Cd-exposed testes. We used ethidium bromide to generate mtDNA-deficient testicular germ cells and further confirmed that increased cytoplasmic mtDNA promoted AIM2-dependent pyroptosis in Cd-exposed cells. Uracil-DNA glycosylase UNG1 overexpression indicated that environmental Cd blocked UNG-dependent repairment of damaged mtDNA to drive the process in which mtDNA releases to cytoplasm in the cells. Interestingly, we found that environmental Cd activated mitochondrial proteostasis stress by up-regulating protein expression of LONP1 in testes. Testicular specific LONP1-knockdown significantly reversed Cd-induced UNG1 protein degradation and AIM2-dependent pyroptosis in mouse testes. In addition, environmental Cd significantly enhanced the m6A modification of Lonp1 mRNA and its stability in testicular germ cells. Knockdown of IGF2BP1, a reader of m6A modification, reversed Cd-induced upregulation of LONP1 protein expression and pyroptosis activation in testicular germ cells. Collectively, environmental Cd induces m6A modification of Lonp1 mRNA to activate mitochondrial proteostasis stress, increase cytoplasmic mtDNA content, and trigger AIM2-dependent pyroptosis in mouse testes. These findings suggest that mitochondrial proteostasis stress is a potential target for the prevention of testicular injury.
Collapse
Affiliation(s)
- Kong-Wen Ouyang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Center of Prenatal Diagnosis, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi 214000, China
| | - Tian-Tian Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Department of Respiratory Medicine, Anhui Provincial Children's Hospital, Hefei, Anhui 230000, China
| | - Ye-Xin Luo
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yi-Fan Hu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Xin-Mei Zheng
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Qing Ling
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Kai-Wen Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yong-Wei Xiong
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of The People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Jin Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Wei Chang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Yu-Feng Zhang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Zhi Yuan
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Hao Li
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China
| | - Lan Gao
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of The People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - De-Xiang Xu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of The People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China
| | - Hua-Long Zhu
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of The People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Lan Yang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Center of Prenatal Diagnosis, Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi 214000, China.
| | - Hua Wang
- Department of Toxicology, School of Public Health, Anhui Medical University, China; Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of The People's Republic of China, No 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
11
|
Liu BH, Xu CZ, Liu Y, Lu ZL, Fu TL, Li GR, Deng Y, Luo GQ, Ding S, Li N, Geng Q. Mitochondrial quality control in human health and disease. Mil Med Res 2024; 11:32. [PMID: 38812059 PMCID: PMC11134732 DOI: 10.1186/s40779-024-00536-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 05/07/2024] [Indexed: 05/31/2024] Open
Abstract
Mitochondria, the most crucial energy-generating organelles in eukaryotic cells, play a pivotal role in regulating energy metabolism. However, their significance extends beyond this, as they are also indispensable in vital life processes such as cell proliferation, differentiation, immune responses, and redox balance. In response to various physiological signals or external stimuli, a sophisticated mitochondrial quality control (MQC) mechanism has evolved, encompassing key processes like mitochondrial biogenesis, mitochondrial dynamics, and mitophagy, which have garnered increasing attention from researchers to unveil their specific molecular mechanisms. In this review, we present a comprehensive summary of the primary mechanisms and functions of key regulators involved in major components of MQC. Furthermore, the critical physiological functions regulated by MQC and its diverse roles in the progression of various systemic diseases have been described in detail. We also discuss agonists or antagonists targeting MQC, aiming to explore potential therapeutic and research prospects by enhancing MQC to stabilize mitochondrial function.
Collapse
Affiliation(s)
- Bo-Hao Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Chen-Zhen Xu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yi Liu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zi-Long Lu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ting-Lv Fu
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Rui Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yu Deng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Guo-Qing Luo
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Song Ding
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ning Li
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| | - Qing Geng
- Department of Thoracic Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
12
|
He C, An Y, Shi L, Huang Y, Zhang H, Fu W, Wang M, Shan Z, Du Y, Xie J, Huang Z, Sun W, Zhao Y, Zhao B. Xiasangju alleviate metabolic syndrome by enhancing noradrenaline biosynthesis and activating brown adipose tissue. Front Pharmacol 2024; 15:1371929. [PMID: 38576483 PMCID: PMC10993144 DOI: 10.3389/fphar.2024.1371929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/06/2024] [Indexed: 04/06/2024] Open
Abstract
Metabolic syndrome (MetS) is a clinical condition associated with multiple metabolic risk factors leading to type 2 diabetes mellitus and other metabolic diseases. Recent evidence suggests that modulating adipose tissue to adaptive thermogenesis may offer therapeutic potential for MetS. Xiasangju (XSJ) is a marketed drug and dietary supplement used for the treatment of metabolic disease with anti-inflammatory activity. This study investigated the therapeutic effects of XSJ and the underlying mechanisms affecting the activation of brown adipose tissue (BAT) in MetS. The results revealed that XSJ ameliorated MetS by enhancing glucose and lipid metabolism, leading to reduced body weight and abdominal circumference, decreased adipose tissue and liver index, and improved blood glucose tolerance. XSJ administration stimulated catecholamine biosynthesis, increasing noradrenaline (NA) levels and activating NA-mediated proteins in BAT. Thus, BAT enhanced thermogenesis and oxidative phosphorylation (OXPHOS). Moreover, XSJ induced changes in gut microbiota composition, with an increase in Oscillibacter abundance and a decrease in Bilophila, Candidatus Stoquefichus, Holdemania, Parasutterella and Rothia. XSJ upregulated the proteins associated with intestinal tight junctions corresponding with lower serum lipopolysaccharide (LPS), tumor necrosis factor α (TNF-α) monocyte chemoattractant protein-1 (MCP-1) and interleukin-6 (IL-6) levels to maintain NA signaling transport. In summary, XSJ may alleviate MetS by promoting thermogenesis in BAT to ultimately boost energy metabolism through increasing NA biosynthesis, strengthening intestinal barrier integrity and reducing low-grade inflammation. These findings suggest XSJ has potential as a natural therapeutic agent for the treatment of MetS.
Collapse
Affiliation(s)
- Changhao He
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yongcheng An
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Lu Shi
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Central Laboratories, Qingdao Municipal Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Yan Huang
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Huilin Zhang
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Wanxin Fu
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Menglu Wang
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Ziyi Shan
- College of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yuhang Du
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jiamei Xie
- Department of Pharmacology of Chinese Materia Medica, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhiyun Huang
- Guangzhou Baiyunshan Xingqun Pharmaceutical Co., Ltd, Guangzhou, China
| | - Weiguang Sun
- Guangzhou Baiyunshan Xingqun Pharmaceutical Co., Ltd, Guangzhou, China
| | - Yonghua Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, China
| | - Baosheng Zhao
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
13
|
Wang Y, Yu H, Cen Z, Zhu Y, Wu W. Drug targets regulate systemic metabolism and provide new horizons to treat nonalcoholic steatohepatitis. Metabol Open 2024; 21:100267. [PMID: 38187470 PMCID: PMC10770762 DOI: 10.1016/j.metop.2023.100267] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 01/09/2024] Open
Abstract
Nonalcoholic steatohepatitis (NASH), is the advanced stage of nonalcoholic fatty liver disease (NAFLD) with rapidly rising global prevalence. It is featured with severe hepatocyte apoptosis, inflammation and hepatic lipogenesis. The drugs directly targeting the processes of steatosis, inflammation and fibrosis are currently under clinical investigation. Nevertheless, the long-term ineffectiveness and remarkable adverse effects are well documented, and new concepts are required to tackle with the root causes of NASH progression. We critically assess the recently validated drug targets that regulate the systemic metabolism to ameliorate NASH. Thermogenesis promoted by mitochondrial uncouplers restores systemic energy expenditure. Furthermore, regulation of mitochondrial proteases and proteins that are pivotal for intracellular metabolic homeostasis normalize mitochondrial function. Secreted proteins also improve systemic metabolism, and NASH is ameliorated by agonizing receptors of secreted proteins with small molecules. We analyze the drug design, the advantages and shortcomings of these novel drug candidates. Meanwhile, the structural modification of current NASH therapeutics significantly increased their selectivity, efficacy and safety. Furthermore, the arising CRISPR-Cas9 screen strategy on liver organoids has enabled the identification of new genes that mediate lipid metabolism, which may serve as promising drug targets. In summary, this article discusses the in-depth novel mechanisms and the multidisciplinary approaches, and they provide new horizons to treat NASH.
Collapse
Affiliation(s)
- Yibing Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, China
| | - Hanhan Yu
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| | - Zhipeng Cen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
- Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-Sen Memorial Hospital, Foshan, 528200, China
| | - Yutong Zhu
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| | - Wenyi Wu
- School of Kinesiology, Shanghai University of Sport, Shanghai, 200438, China
| |
Collapse
|
14
|
Longhitano L, Distefano A, Musso N, Bonacci P, Orlando L, Giallongo S, Tibullo D, Denaro S, Lazzarino G, Ferrigno J, Nicolosi A, Alanazi AM, Salomone F, Tropea E, Barbagallo IA, Bramanti V, Li Volti G, Lazzarino G, Torella D, Amorini AM. (+)-Lipoic acid reduces mitochondrial unfolded protein response and attenuates oxidative stress and aging in an in vitro model of non-alcoholic fatty liver disease. J Transl Med 2024; 22:82. [PMID: 38245790 PMCID: PMC10799515 DOI: 10.1186/s12967-024-04880-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/10/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a liver disorder characterized by the ac-cumulation of fat in hepatocytes without alcohol consumption. Mitochondrial dysfunction and endoplasmic reticulum (ER) stress play significant roles in NAFLD pathogenesis. The unfolded protein response in mitochondria (UPRmt) is an adaptive mechanism that aims to restore mitochondrial protein homeostasis and mitigate cellular stress. This study aimed to investigate the effects of ( +)-Lipoic acid (ALA) on UPRmt, inflammation, and oxidative stress in an in vitro model of NAFLD using HepG2 cells treated with palmitic acid and oleic acid to induce steatosis. RESULTS Treatment with palmitic and oleic acids increased UPRmt-related proteins HSP90 and HSP60 (heat shock protein), and decreased CLPP (caseinolytic protease P), indicating ER stress activation. ALA treatment at 1 μM and 5 μM restored UPRmt-related protein levels. PA:OA (palmitic acid:oleic acid)-induced ER stress markers IRE1α (Inositol requiring enzyme-1), CHOP (C/EBP Homologous Protein), BIP (Binding Immunoglobulin Protein), and BAX (Bcl-2-associated X protein) were significantly reduced by ALA treatment. ALA also enhanced ER-mediated protein glycosylation and reduced oxidative stress, as evidenced by decreased GPX1 (Glutathione peroxidase 1), GSTP1 (glutathione S-transferase pi 1), and GSR (glutathione-disulfide reductase) expression and increased GSH (Glutathione) levels, and improved cellular senescence as shown by the markers β-galactosidase, γH2Ax and Klotho-beta. CONCLUSIONS In conclusion, ALA ameliorated ER stress, oxidative stress, and inflammation in HepG2 cells treated with palmitic and oleic acids, potentially offering therapeutic benefits for NAFLD providing a possible biochemical mechanism underlying ALA beneficial effects.
Collapse
Affiliation(s)
- Lucia Longhitano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Alfio Distefano
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Paolo Bonacci
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Laura Orlando
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Sebastiano Giallongo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Simona Denaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Giuseppe Lazzarino
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Jessica Ferrigno
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | - Anna Nicolosi
- Hospital Pharmacy Unit, Ospedale Cannizzaro, 95125, Catania, Italy
| | - Amer M Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Federico Salomone
- Division of Gastroenterology, Ospedale Di Acireale, Azienda Sanitaria Provinciale Di Catania, Catania, Italy
| | - Emanuela Tropea
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| | | | - Vincenzo Bramanti
- U.O.S. Laboratory Analysis, Maggiore "Nino Baglieri" Hospital - ASP Ragusa, 97015, Modica (RG), Italy
| | - Giovanni Li Volti
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy.
| | - Giacomo Lazzarino
- UniCamillus-Saint Camillus International University of Health Sciences, Via Di Sant'Alessandro 8, 00131, Rome, Italy
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, Magna Graecia University, Catanzaro, Italy
| | - Angela Maria Amorini
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy
| |
Collapse
|
15
|
Jung IR, Ahima RS, Kim SF. Inositol polyphosphate multikinase modulates free fatty acids-induced insulin resistance in primary mouse hepatocytes. J Cell Biochem 2023; 124:1695-1704. [PMID: 37795573 DOI: 10.1002/jcb.30478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/28/2023] [Accepted: 09/12/2023] [Indexed: 10/06/2023]
Abstract
Insulin resistance is a critical mediator of the development of nonalcoholic fatty liver disease (NAFLD). An excess influx of fatty acids to the liver is thought to be a pathogenic cause of insulin resistance and the development of NAFLD. Although elevated levels of free fatty acids (FFA) in plasma contribute to inducing insulin resistance and NAFLD, the molecular mechanism is not completely understood. This study aimed to determine whether inositol polyphosphate multikinase (IPMK), a regulator of insulin signaling, plays any role in FFA-induced insulin resistance in primary hepatocytes. Here, we show that excess FFA decreased IPMK expression, and blockade of IPMK decrease attenuated the FFA-induced suppression of protein kinase B (Akt) phosphorylation in primary mouse hepatocytes (PMH). Moreover, overexpression of IPMK prevented the FFA-induced suppression of Akt phosphorylation by insulin, while knockout of IPMK exacerbated insulin resistance in PMH. In addition, treatment with MG132, a proteasomal inhibitor, inhibits FFA-induced decrease in IPMK expression and Akt phosphorylation in PMH. Furthermore, treatment with the antioxidant N-acetyl cysteine (NAC) significantly attenuated the FFA-induced reduction of IPMK and restored FFA-induced insulin resistance in PMH. In conclusion, our findings suggest that excess FFA reduces IPMK expression and contributes to the FFA-induced decrease in Akt phosphorylation in PMH, leading to insulin resistance. Our study highlights IPMK as a potential therapeutic target for preventing insulin resistance and NAFLD.
Collapse
Affiliation(s)
- Ik-Rak Jung
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA
| | - Rexford S Ahima
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sangwon F Kim
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
16
|
Jung IR, Ahima RS, Kim SF. IPMK modulates FFA-induced insulin resistance in primary mouse hepatocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.26.538310. [PMID: 37162825 PMCID: PMC10168377 DOI: 10.1101/2023.04.26.538310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Insulin resistance is a critical mediator of the development of non-alcoholic fatty liver disease (NAFLD). An excess influx of fatty acids to the liver is thought to be a pathogenic cause of insulin resistance and the development of non-alcoholic fatty liver disease (NAFLD). Although elevated levels of free fatty acids (FFA) in plasma contribute to inducing insulin resistance and NAFLD, the molecular mechanism is not completely understood. This study aimed to determine whether inositol polyphosphate multikinase (IPMK), a regulator of insulin signaling, plays any role in FFA-induced insulin resistance in primary hepatocytes. Here, we show that excess FFA decreased IPMK expression, and blockade of IPMK decrease attenuated the FFA-induced suppression of Akt phosphorylation in primary mouse hepatocytes (PMH). Moreover, overexpression of IPMK prevented the FFA-induced suppression of Akt phosphorylation by insulin, while knockout of IPMK exacerbated insulin resistance in PMH. In addition, treatment with MG132, a proteasomal inhibitor, inhibits FFA-induced decrease in IPMK expression and Akt phosphorylation in PMH. Furthermore, treatment with the antioxidant N-Acetyl Cysteine (NAC) significantly attenuated the FFA-induced reduction of IPMK and restored FFA-induced insulin resistance in PMH. In conclusion, our findings suggest that excess FFA reduces IPMK expression and contributes to the FFA-induced decrease in Akt phosphorylation in PMH, leading to insulin resistance. Our study highlights IPMK as a potential therapeutic target for preventing insulin resistance and NAFLD.
Collapse
Affiliation(s)
- Ik-Rak Jung
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA
| | - Rexford S Ahima
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sangwon F Kim
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
17
|
Fang QL, Qiao X, Yin XQ, Zeng YC, Du CH, Xue YM, Zhao XJ, Hu CY, Huang F, Lin YP. Flavonoids from Scutellaria amoena C. H. Wright alleviate mitochondrial dysfunction and regulate oxidative stress via Keap1/Nrf2/HO-1 axis in rats with high-fat diet-induced nonalcoholic steatohepatitis. Biomed Pharmacother 2023; 158:114160. [PMID: 36571996 DOI: 10.1016/j.biopha.2022.114160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Nonalcoholic steatohepatitis (NASH) is among the most common liver diseases in the world. Flavonoids from Scutellaria amoena (SAF) are used in the treatment of hepatopathy in China. However, the effect and mechanism against NASH remain unclear. We investigated the alleviating effect of SAF on NASH via regulating mitochondrial dysfunction and oxidative stress. METHODS The effects of SAF on NASH were evaluated using in vitro and in vivo methods. L02 cells were induced by fat emulsion to establish an adipocytes model, followed by treatment with SAF for 24 h. NASH rat models were established by the administration of a high-fat diet for 12 weeks and were administered SAF for six weeks. Changes in body weight, organ indexes, lipid levels, inflammatory cytokines, mitochondrial indicators, and fatty acid metabolism were investigated. RESULTS SAF significantly improved body weight, organ indexes, lipid levels, liver injury, and inflammatory infiltration in NASH rats. SAF notably regulated interleukin-6, tumor necrotic factor-alpha, superoxide dismutase (SOD), glutathione (GSH), malondialdehyde (MDA), kelch-like ECH-associated protein 1 (Keap1), nuclear factor-erythroid factor 2-related factor 2 (Nrf2), and heme oxygenase-1 (HO-1). Additionally, SAF improved mitochondrial dysfunction, increased the levels of GSH, SOD, ATP synthase, complex I and II, and decreased the level of MDA in liver mitochondria. SAF regulated the expression of β-oxidation genes, including peroxisome proliferator-activated receptor -gamma coactivator-1alpha (PGC-1α), carnitine palmitoyltransferase-1 (CPT1) A, CPT1B, medium-chain acyl-CoA dehydrogenase, long-chain acyl-CoA dehydrogenase, very long-chain acyl-CoA dehydrogenase, and PPARα. CONCLUSION SAF can alleviate NASH by regulating mitochondrial function and oxidative stress via the Keap1/Nrf2/HO-1 axis.
Collapse
Affiliation(s)
- Qiong-Lian Fang
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Xue Qiao
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Xun-Qing Yin
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Yong-Cheng Zeng
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Cheng-Hong Du
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Yong-Mei Xue
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Xiu-Juan Zhao
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Chun-Yan Hu
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, China
| | - Feng Huang
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, China.
| | - Yu-Ping Lin
- School of Chinese Materia Medica & Yunnan Key Laboratory of Southern Medicine Utilization, Yunnan University of Chinese Medicine, Kunming, China.
| |
Collapse
|
18
|
Wang GY, Zhang XY, Wang CJ, Guan YF. Emerging novel targets for nonalcoholic fatty liver disease treatment: Evidence from recent basic studies. World J Gastroenterol 2023; 29:75-95. [PMID: 36683713 PMCID: PMC9850950 DOI: 10.3748/wjg.v29.i1.75] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/29/2022] [Accepted: 12/14/2022] [Indexed: 01/04/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), a leading chronic disease worldwide, affects approximately a quarter of the global population. Nonalcoholic steatohepatitis (NASH) is an advanced form of NAFLD and is more likely to progress to liver fibrosis than simple steatosis. NASH is also identified as the most rapidly growing cause of hepatocellular carcinoma. Although in the past decade, several phase II/III clinical trials have shown promising results in the use of novel drugs targeting lipid synthase, farnesoid X receptor signaling, peroxisome proliferator-activated receptor signaling, hepatocellular injury, and inflammatory signaling, proven pharmaceutical agents to treat NASH are still lacking. Thus, continuous exploration of the mechanism underlying the pathogenesis of NAFLD and the identification of novel therapeutic targets remain urgent tasks in the field. In the current review, we summarize studies reported in recent years that not only provide new insights into the mechanisms of NAFLD development but also explore the possibility of treating NAFLD by targeting newly identified signaling pathways. We also discuss evidence focusing on the intrahepatic targets involved in the pathogenesis of NAFLD as well as extrahepatic targets affecting liver metabolism and function.
Collapse
Affiliation(s)
- Guang-Yan Wang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin 300070, China
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin 300070, China
| | - Xiao-Yan Zhang
- Health Science Center, East China Normal University, Shanghai 200241, China
| | - Chun-Jiong Wang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin 300070, China
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin 300070, China
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin 300070, China
| | - You-Fei Guan
- Advanced Institute for Medical Sciences, Dalian Medical University, Dalian 116044, Liaoning Province, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Dalian Medical University, Dalian 116044, Liaoning Province, China
- Dalian Key Laboratory for Nuclear Receptors in Major Metabolic Diseases, Dalian 116044, Liaoning Province, China
| |
Collapse
|
19
|
Zhang J, Luo B, Sui J, Qiu Z, Huang J, Yang T, Luo Y. IMP075 targeting ClpP for colon cancer therapy in vivo and in vitro. Biochem Pharmacol 2022; 204:115232. [PMID: 36030831 DOI: 10.1016/j.bcp.2022.115232] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/18/2022] [Accepted: 08/19/2022] [Indexed: 11/15/2022]
Abstract
ONC201 is a well-known caseinolytic protease (ClpP)activator with established benefits against multiple tumors, including colorectal cancer (CRC). In this study, we investigated the anticancer effects and associated mechanisms of the ClpP agonist IMP075, derived from ONC201. Acute toxicity and CCK-8 assayswere employed to determine the safety of IMP075. The effectiveness of IMP075 was investigated in HCT116 cells and a mouse xenograft tumor model. Additionally, the properties of IMP075 were evaluated by pharmacokinetic,CYP inhibition, and hERG inhibition assays. Finally, isothermal titration calorimetry (ITC), differential scanning fluorimetry (DSF), cellular thermal shift assay (CETSA), molecular dynamics simulations, point mutations, and shRNA experiments were employed to elucidate the potential mechanism of IMP075. Compared with ONC201, IMP075 exhibited similar toxicity and improved antitumor effects in vitro and in vivo. Interestingly, the affinity and agonistic effects of IMP075 on ClpP were superior to ONC201, which allowed IMP075 to disrupt respiratory chain integrity at lower doses in HCT116 cells, leading to mitochondrial dysfunction. Furthermore, molecular dynamics simulations demonstrate that IMP075 forms two pairs of hydrogen bonds with ClpP, maintaining ClpP in an agonistic state. Importantly, the antiproliferative activity of IMP075 significantly decreased following ClpP knockdown. Our findings substantiate that IMP075 exerts excellent antitumor effects against CRC by activating ClpP-mediated impairment of mitochondrial function. Due to its superior properties, IMP075 appears to be have huge prospects for application.
Collapse
Affiliation(s)
- Jiangnan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Baozhu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Sui
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiqiang Qiu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiasheng Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China; Institute of Immunology and Inflammation, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|