1
|
Osmani Z, Brouwer WP, Grashof DGB, Lim Y, Doukas M, Janssen HLA, van de Werken HJG, Boonstra A. Metabolic dysfunction-associated steatohepatitis reduces interferon and macrophage liver gene signatures in patients with chronic hepatitis B. J Hepatol 2025; 82:594-603. [PMID: 39490745 DOI: 10.1016/j.jhep.2024.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 11/05/2024]
Abstract
BACKGROUND & AIMS Patients with chronic HBV infection and concomitant metabolic dysfunction-associated steatohepatitis (MASH) have been shown to develop more severe liver disease than patients with chronic HBV alone. However, our understanding of the underlying mechanisms is limited. Herein, we study how comorbid MASH impacts immune activity in the livers of patients with chronic HBV infection. METHODS Bulk RNA sequencing was performed on liver biopsies from patients with only MASH (n = 10), only HBeAg-negative chronic HBV (ENEG; n = 11), combined MASH/ENEG (n = 9) and healthy controls (n = 9). Biopsies with no or minimal fibrosis (≤F2) were selected to avoid confounding effects of fibrosis. We compared whole transcriptome data from patients with MASH/ENEG to those with ENEG alone to determine the impact of comorbid MASH on chronic hepatitis B. RESULTS There is a high degree of overlap of liver gene expression profiles in patients with only ENEG vs. those with only MASH compared to healthy controls, suggesting a largely shared mechanism of liver dysfunction and immune activity for these distinct conditions. In patients with ENEG, comorbid MASH was associated with significantly reduced interferon pathway activity (normalized enrichment score = 2.03, p.adj = 0.0251), the expression of interferon-stimulated genes (e.g., IFIT2, IFI27, IFITM1, IFI6), and macrophage gene signatures (e.g., MARCO, CD163, CD5L, CD63), when compared to patients with ENEG alone. CONCLUSIONS Transcriptomic profiling of the liver suggests that MASH negatively impacts interferon-stimulated gene expression and macrophage gene signatures in the livers of patients with ENEG, which may affect antiviral immune pathways, viral replication and inflammatory responses, resulting in an increased risk of advanced fibrosis in patients with chronic hepatitis B. Our study provides valuable insights for guiding future research aimed at developing effective, tailored strategies for managing patients with both conditions. IMPACT AND IMPLICATIONS In recent decades, obesity and associated health issues have reached epidemic levels, with steatotic liver disease affecting up to 30% of adults in developed countries, and this trend is also observed among patients with chronic hepatitis B. Given the high and rising prevalence of steatotic liver disease and its frequent co-occurrence in patients with chronic hepatitis B, it is essential to understand how conditions such as metabolic dysfunction-associated steatohepatitis (MASH) impact immune responses in the liver. This study provides unique insights into the impact of MASH on HBV antiviral immune activity in the livers of patients with chronic hepatitis B. The rising number of patients with both conditions affects treatment outcomes and highlights the urgent need for novel, tailored therapeutic strategies. Our study holds significant relevance for guiding future research on developing treatment strategies for patients with both MASH and chronic hepatitis B.
Collapse
Affiliation(s)
- Zgjim Osmani
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| | - Willem Pieter Brouwer
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Dwin G B Grashof
- Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Youkyung Lim
- Department of Immunology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Michael Doukas
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Harry L A Janssen
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands; Toronto General Hospital, University of Toronto, Canada
| | | | - Andre Boonstra
- Department of Gastroenterology and Hepatology, Erasmus University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
2
|
Teo JMN, Chen W, Ling GS. Neutrophil plasticity in liver diseases. J Leukoc Biol 2025; 117:qiae222. [PMID: 39383213 DOI: 10.1093/jleuko/qiae222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/09/2024] [Indexed: 10/11/2024] Open
Abstract
The liver has critical digestive, metabolic, and immunosurveillance roles, which get disrupted during liver diseases such as viral hepatitis, fatty liver disease, and hepatocellular carcinoma. While previous research on the pathological development of these diseases has focused on liver-resident immune populations, such as Kupffer cells, infiltrating immune cells responding to pathogens and disease also play crucial roles. Neutrophils are one such key population contributing to hepatic inflammation and disease progression. Belonging to the initial waves of immune response to threats, neutrophils suppress bacterial and viral spread during acute infections and have homeostasis-restoring functions, whereas during chronic insults, they display their plastic nature by responding to the inflammatory environment and develop new phenotypes alongside longer life spans. This review summarizes the diversity in neutrophil function and subpopulations present at steady state, during liver disease, and during liver cancer.
Collapse
Affiliation(s)
- Jia Ming Nickolas Teo
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Weixin Chen
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong, China
| | - Guang Sheng Ling
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Laboratory Block, 21 Sassoon Road, Pokfulam, Hong Kong, China
- Department of Medicine, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Faculty Administration Wing, 21 Sassoon Road, Pokfulam, Hong Kong, China
- State Key Laboratory of Liver Research, The University of Hong Kong, HK Jockey Club Building for Interdisciplinary Research, 5 Sassoon Road, Pokfulam, Hong Kong, China
| |
Collapse
|
3
|
Millian DE, Arroyave E, Wanninger TG, Krishnan S, Bao D, Zhang JR, Rao A, Spratt H, Ferguson M, Chen V, Stevenson HL, Saldarriaga OA. Alterations in the hepatic microenvironment following direct-acting antiviral therapy for chronic hepatitis C. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.02.17.25321289. [PMID: 40034770 PMCID: PMC11875275 DOI: 10.1101/2025.02.17.25321289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Background and aims. The first direct-acting antivirals (DAAs) to treat the viral hepatitis C (HCV) became available in 2011. Despite numerous clinical studies of patient outcomes after treatment, few have evaluated changes in the liver microenvironment. Despite achieving sustained virologic response (SVR), patients may still experience adverse outcomes like cirrhosis and hepatocellular carcinoma. By comparing gene and protein expression in liver biopsies collected before and after treatment, we sought to determine whether specific signatures correlated with disease progression and adverse clinical outcomes. Methods. Biopsies were collected from 22 patients before and after DAA treatment. We measured ∼770 genes and used multispectral imaging with custom machine learning algorithms to analyze phenotypes of intrahepatic macrophages (CD68, CD14, CD16, MAC387, CD163) and T cells (CD3, CD4, CD8, CD45, FoxP3). Results. Before DAA treatment, patients showed two distinct gene expression patterns: one with high pro-inflammatory and antiviral gene expression and another with weaker expression. Patients with adverse outcomes exhibited significantly (p<0.05) more inflammatory activity and had more advanced fibrosis stages in their baseline biopsies than those with liver disease resolution. Patients who achieved SVR had significantly decreased liver enzymes, reduced inflammatory scores, and restored type 1 interferon pathways similar to controls. However, after DAA treatment, patients with persistently high gene expression (67%, pre-hot) still had significantly worse outcomes (p<0.049) despite achieving SVR. A persistent lymphocytic infiltrate was observed in a subset of these patients (76.5%). After therapy, anti-inflammatory macrophages (CD16+, CD16+CD163+, CD16+CD68+) increased, and T cell heterogeneity was more pronounced, showing a predominance of helper and memory T cells (CD3+CD45RO+, CD4+CD45RO+, CD3+CD4+CD45RO+). Conclusions. Patients who have more inflamed livers and more advanced fibrosis before DAA treatment should be closely followed for the development of adverse outcomes, even after achieving SVR. We can enhance patient risk stratification by integrating gene and protein expression profiles with clinical data. This could identify those who may benefit from more intensive monitoring or alternative therapeutic approaches, inspiring a new era of personalized patient care. Lay Summary Direct-acting antiviral (DAA) therapy has dramatically improved the treatment of chronic HCV, making it curable for most people. This study determined gene and protein expression differences in the liver before and after treatment of HCV. These results will lead to a deeper understanding of the changes in the hepatic immune microenvironment with and without the virus present in the liver in hopes of improving patient surveillance, prognosis, and outcome in the future.
Collapse
|
4
|
Ma L, Li CC, Wang XW. Roles of Cellular Neighborhoods in Hepatocellular Carcinoma Pathogenesis. ANNUAL REVIEW OF PATHOLOGY 2025; 20:169-192. [PMID: 39854188 DOI: 10.1146/annurev-pathmechdis-111523-023520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2025]
Abstract
The development of hepatocellular carcinoma (HCC) involves an intricate interplay among various cell types within the liver. Unraveling the orchestration of these cells, particularly in the context of various etiologies, may hold the key to deciphering the underlying mechanisms of this complex disease. The advancement of single-cell and spatial technologies has revolutionized our ability to determine cellular neighborhoods and understand their crucial roles in disease pathogenesis. In this review, we highlight the current research landscape on cellular neighborhoods in chronic liver disease and HCC, as well as the emerging computational approaches applicable to delineate disease-associated cellular neighborhoods, which may offer insights into the molecular mechanisms underlying HCC pathogenesis and pave the way for effective disease interventions.
Collapse
Affiliation(s)
- Lichun Ma
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA;
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| | - Cherry Caiyi Li
- Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA;
| | - Xin Wei Wang
- Liver Cancer Program, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, USA
| |
Collapse
|
5
|
Gonzales GA, Huang S, Wilkinson L, Nguyen JA, Sikdar S, Piot C, Naumenko V, Rajwani J, Wood CM, Dinh I, Moore M, Cedeño E, McKenna N, Polyak MJ, Amidian S, Ebacher V, Rosin NL, Carneiro MB, Surewaard B, Peters NC, Mody CH, Biernaskie J, Yates RM, Mahoney DJ, Canton J. The pore-forming apolipoprotein APOL7C drives phagosomal rupture and antigen cross-presentation by dendritic cells. Sci Immunol 2024; 9:eadn2168. [PMID: 39485861 DOI: 10.1126/sciimmunol.adn2168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 07/23/2024] [Accepted: 10/07/2024] [Indexed: 11/03/2024]
Abstract
Conventional dendritic cells (cDCs) generate protective cytotoxic T lymphocyte (CTL) responses against extracellular pathogens and tumors. This is achieved through a process known as cross-presentation (XP), and, despite its biological importance, the mechanism(s) driving XP remains unclear. Here, we show that a cDC-specific pore-forming protein called apolipoprotein L 7C (APOL7C) is up-regulated in response to innate immune stimuli and is recruited to phagosomes. Association of APOL7C with phagosomes led to phagosomal rupture and escape of engulfed antigens to the cytosol, where they could be processed via the endogenous MHC class I antigen processing pathway. Accordingly, mice deficient in APOL7C did not efficiently prime CD8+ T cells in response to immunization with bead-bound and cell-associated antigens. Together, our data indicate the presence of dedicated apolipoproteins that mediate the delivery of phagocytosed proteins to the cytosol of activated cDCs to facilitate XP.
Collapse
Affiliation(s)
- Gerone A Gonzales
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Song Huang
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Liam Wilkinson
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Jenny A Nguyen
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Saif Sikdar
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Research Institute, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Research Institute, Calgary, Alberta, Canada
| | - Cécile Piot
- Immunobiology Laboratory, Francis Crick Institute, London, UK
| | - Victor Naumenko
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Research Institute, Calgary, Alberta, Canada
- Riddell Centre for Cancer Immunotherapy, Calgary, Alberta, Canada
| | - Jahanara Rajwani
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Research Institute, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Research Institute, Calgary, Alberta, Canada
| | - Cassandra M Wood
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Irene Dinh
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Melanie Moore
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Eymi Cedeño
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Neil McKenna
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Maria J Polyak
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Calvin, Joan and Phoebe Snyder Institute for Chronic Disease, Calgary, Alberta, Canada
| | - Sara Amidian
- Cell Imaging Core, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Nicole L Rosin
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Matheus B Carneiro
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Calvin, Joan and Phoebe Snyder Institute for Chronic Disease, Calgary, Alberta, Canada
| | - Bas Surewaard
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Calvin, Joan and Phoebe Snyder Institute for Chronic Disease, Calgary, Alberta, Canada
| | - Nathan C Peters
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Calvin, Joan and Phoebe Snyder Institute for Chronic Disease, Calgary, Alberta, Canada
| | - Christopher H Mody
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Calvin, Joan and Phoebe Snyder Institute for Chronic Disease, Calgary, Alberta, Canada
| | - Jeff Biernaskie
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Robin M Yates
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
- Calvin, Joan and Phoebe Snyder Institute for Chronic Disease, Calgary, Alberta, Canada
| | - Douglas J Mahoney
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
- Alberta Children's Research Institute, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Research Institute, Calgary, Alberta, Canada
- Riddell Centre for Cancer Immunotherapy, Calgary, Alberta, Canada
| | - Johnathan Canton
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Microbiology, Immunology, and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Riddell Centre for Cancer Immunotherapy, Calgary, Alberta, Canada
- Calvin, Joan and Phoebe Snyder Institute for Chronic Disease, Calgary, Alberta, Canada
- Hotchkiss Brain Institute, Calgary, Alberta, Canada
| |
Collapse
|
6
|
Cui A, Chung RT, Alatrakchi N. Reply to: "Changes of hepatic myeloid cells in chronic viral hepatitis and after cure and their clinical significance". J Hepatol 2024; 81:e247. [PMID: 39168314 DOI: 10.1016/j.jhep.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Affiliation(s)
- Ang Cui
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard School of Dental Medicine, Harvard University, Boston, MA, USA; Harvard Medical School, Harvard University, Boston, MA, USA.
| | - Raymond T Chung
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Nadia Alatrakchi
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Liu C, Guo C, Liu K. Changes of hepatic myeloid cells in chronic viral hepatitis and after cure and their clinical significance. J Hepatol 2024; 81:e127-e128. [PMID: 38331326 DOI: 10.1016/j.jhep.2024.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 02/04/2024] [Indexed: 02/10/2024]
Affiliation(s)
- Congyun Liu
- Pediatric, Baoshan People's Hospital, 94 West Bao Xiu Road, Baoshan 678099, Yunnan Province, China
| | - Cheng Guo
- Comprehensive Pediatrics & Pulmonary and Critical Care Medicine, Kunming Children's Hospital, No.28, Shulin Street, Kunming 650103, Yunnan Province, China
| | - Kai Liu
- Comprehensive Pediatrics & Pulmonary and Critical Care Medicine, Kunming Children's Hospital, No.28, Shulin Street, Kunming 650103, Yunnan Province, China.
| |
Collapse
|
8
|
Maali Y, Flores Molina M, Khedr O, Abdelnabi MN, Dion J, Hassan GS, Shoukry NH. Two transcriptionally and functionally distinct waves of neutrophils during mouse acute liver injury. Hepatol Commun 2024; 8:e0459. [PMID: 38896080 PMCID: PMC11186811 DOI: 10.1097/hc9.0000000000000459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/28/2024] [Indexed: 06/21/2024] Open
Abstract
BACKGROUND Neutrophils are key mediators of inflammation during acute liver injury (ALI). Emerging evidence suggests that they also contribute to injury resolution and tissue repair. However, the different neutrophil subsets involved in these processes and their kinetics are undefined. Herein, we characterized neutrophil kinetics and heterogeneity during ALI. METHODS We used the carbon tetrachloride model of ALI and employed flow cytometry, tissue imaging, and quantitative RT-PCR to characterize intrahepatic neutrophils during the necroinflammatory early and late repair phases of the wound healing response to ALI. We FACS sorted intrahepatic neutrophils at key time points and examined their transcriptional profiles using RNA-sequencing. Finally, we evaluated neutrophil protein translation, mitochondrial function and metabolism, reactive oxygen species content, and neutrophil extracellular traps generation. RESULTS We detected 2 temporarily distinct waves of neutrophils during (1) necroinflammation (at 24 hours after injury) and (2) late repair (at 72 hours). Early neutrophils were proinflammatory, characterized by: (1) upregulation of inflammatory cytokines, (2) activation of the noncanonical NF-κB pathway, (3) reduction of protein translation, (4) decreased oxidative phosphorylation, and (5) higher propensity to generate reactive oxygen species and neutrophil extracellular traps. In contrast, late neutrophils were prorepair and enriched in genes and pathways associated with tissue repair and angiogenesis. Finally, early proinflammatory neutrophils were characterized by the expression of a short isoform of C-X-C chemokine receptor 5, while the late prorepair neutrophils were characterized by the expression of C-X-C chemokine receptor 4. CONCLUSIONS This study underscores the phenotypic and functional heterogeneity of neutrophils and their dual role in inflammation and tissue repair during ALI.
Collapse
Affiliation(s)
- Yousef Maali
- Immunopathology Axis, Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Quebec, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Quebec, Canada
| | - Manuel Flores Molina
- Immunopathology Axis, Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Quebec, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Quebec, Canada
| | - Omar Khedr
- Immunopathology Axis, Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Mohamed N. Abdelnabi
- Immunopathology Axis, Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Quebec, Canada
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, Quebec, Canada
| | - Jessica Dion
- Immunopathology Axis, Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Ghada S. Hassan
- Immunopathology Axis, Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Quebec, Canada
| | - Naglaa H. Shoukry
- Immunopathology Axis, Centre de Recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Montréal, Quebec, Canada
- Departement de médecine, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
9
|
Lee J, Gil D, Park H, Lee Y, Mun SJ, Shin Y, Jo E, Windisch MP, Kim JH, Son MJ. A multicellular liver organoid model for investigating hepatitis C virus infection and nonalcoholic fatty liver disease progression. Hepatology 2024; 80:186-201. [PMID: 37976400 DOI: 10.1097/hep.0000000000000683] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023]
Abstract
BACKGROUND AND AIMS HCV infection can be successfully managed with antiviral therapies; however, progression to chronic liver disease states, including NAFLD, is common. There is currently no reliable in vitro model for investigating host-viral interactions underlying the link between HCV and NAFLD; although liver organoids (LOs) show promise, they currently lack nonparenchymal cells, which are key to modeling disease progression. APPROACH AND RESULTS Here, we present a novel, multicellular LO model using a coculture system of macrophages and LOs differentiated from the same human pluripotent stem cells (PSCs). The cocultured macrophages shifted toward a Kupffer-like cell type, the liver-resident macrophages present in vivo , providing a suitable model for investigating NAFLD pathogenesis. With this multicellular Kupffer-like cell-containing LO model, we found that HCV infection led to lipid accumulation in LOs by upregulating host lipogenesis, which was more marked with macrophage coculture. Reciprocally, long-term treatment of LOs with fatty acids upregulated HCV amplification and promoted inflammation and fibrosis. Notably, in our Kupffer-like cell-containing LO model, the effects of 3 drugs for NASH that have reached phase 3 clinical trials exhibited consistent results with the clinical outcomes. CONCLUSIONS Taken together, we introduced a multicellular LO model consisting of hepatocytes, Kupffer-like cells, and HSCs, which recapitulated host-virus intercommunication and intercellular interactions. With this novel model, we present a physiologically relevant system for the investigation of NAFLD progression in patients with HCV.
Collapse
Affiliation(s)
- Jaeseo Lee
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Dayeon Gil
- Korea National Stem Cell Bank, Chungcheongbuk-do, Republic of Korea
- Department of Chronic Diseases Convergence Research, Division of Intractable Diseases Research, Korea National Institute of Health, Osong Health Technology Administration Complex, Republic of Korea
| | - Hyeyeon Park
- Korea National Stem Cell Bank, Chungcheongbuk-do, Republic of Korea
- Department of Chronic Diseases Convergence Research, Division of Intractable Diseases Research, Korea National Institute of Health, Osong Health Technology Administration Complex, Republic of Korea
| | - Youngsun Lee
- Korea National Stem Cell Bank, Chungcheongbuk-do, Republic of Korea
- Department of Chronic Diseases Convergence Research, Division of Intractable Diseases Research, Korea National Institute of Health, Osong Health Technology Administration Complex, Republic of Korea
| | - Seon Ju Mun
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
| | - Yongbo Shin
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
| | - Eunji Jo
- Applied Molecular Virology Laboratory, Institute Pasteur Korea, Seongnam-si, Republic of Korea
| | - Marc P Windisch
- Applied Molecular Virology Laboratory, Institute Pasteur Korea, Seongnam-si, Republic of Korea
| | - Jung-Hyun Kim
- Korea National Stem Cell Bank, Chungcheongbuk-do, Republic of Korea
- Department of Chronic Diseases Convergence Research, Division of Intractable Diseases Research, Korea National Institute of Health, Osong Health Technology Administration Complex, Republic of Korea
- College of Pharmacy, Ajou University, Suwon, Republic of Korea
| | - Myung Jin Son
- Stem Cell Convergence Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, Republic of Korea
- Department of Functional Genomics, Korea University of Science & Technology (UST), Daejeon, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| |
Collapse
|
10
|
Seurre C, Roca Suarez AA, Testoni B, Zoulim F, Grigorov B. After the Storm: Persistent Molecular Alterations Following HCV Cure. Int J Mol Sci 2024; 25:7073. [PMID: 39000179 PMCID: PMC11241208 DOI: 10.3390/ijms25137073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
The development of direct-acting antivirals (DAAs) against hepatitis C virus (HCV) has revolutionized the management of this pathology, as their use allows viral elimination in a large majority of patients. Nonetheless, HCV remains a major public health problem due to the multiple challenges associated with its diagnosis, treatment availability and development of a prophylactic vaccine. Moreover, HCV-cured patients still present an increased risk of developing hepatic complications such as hepatocellular carcinoma. In the present review, we aim to summarize the impact that HCV infection has on a wide variety of peripheral and intrahepatic cell populations, the alterations that remain following DAA treatment and the potential molecular mechanisms implicated in their long-term persistence. Finally, we consider how recent developments in single-cell multiomics could refine our understanding of this disease in each specific intrahepatic cell population and drive the field to explore new directions for the development of chemo-preventive strategies.
Collapse
Affiliation(s)
- Coline Seurre
- INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (C.S.); (A.A.R.S.); (B.T.); (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
| | - Armando Andres Roca Suarez
- INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (C.S.); (A.A.R.S.); (B.T.); (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
| | - Barbara Testoni
- INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (C.S.); (A.A.R.S.); (B.T.); (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
| | - Fabien Zoulim
- INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (C.S.); (A.A.R.S.); (B.T.); (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
- Hospices Civils de Lyon, 69002 Lyon, France
| | - Boyan Grigorov
- INSERM U1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (C.S.); (A.A.R.S.); (B.T.); (F.Z.)
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
| |
Collapse
|
11
|
Borrelli C, Gurtner A, Arnold IC, Moor AE. Stress-free single-cell transcriptomic profiling and functional genomics of murine eosinophils. Nat Protoc 2024; 19:1679-1709. [PMID: 38504138 DOI: 10.1038/s41596-024-00967-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 12/20/2023] [Indexed: 03/21/2024]
Abstract
Eosinophils are a class of granulocytes with pleiotropic functions in homeostasis and various human diseases. Nevertheless, they are absent from conventional single-cell RNA sequencing atlases owing to technical difficulties preventing their transcriptomic interrogation. Consequently, eosinophil heterogeneity and the gene regulatory networks underpinning their diverse functions remain poorly understood. We have developed a stress-free protocol for single-cell RNA capture from murine tissue-resident eosinophils, which revealed distinct intestinal subsets and their roles in colitis. Here we describe in detail how to enrich eosinophils from multiple tissues of residence and how to capture high-quality single-cell transcriptomes by preventing transcript degradation. By combining magnetic eosinophil enrichment with microwell-based single-cell RNA capture (BD Rhapsody), our approach minimizes shear stress and processing time. Moreover, we report how to perform genome-wide CRISPR pooled genetic screening in ex vivo-conditioned bone marrow-derived eosinophils to functionally probe pathways required for their differentiation and intestinal maturation. These protocols can be performed by any researcher with basic skills in molecular biology and flow cytometry, and can be adapted to investigate other granulocytes, such as neutrophils and mast cells, thereby offering potential insights into their roles in both homeostasis and disease pathogenesis. Single-cell transcriptomics of eosinophils can be performed in 2-3 d, while functional genomics assays may require up to 1 month.
Collapse
Affiliation(s)
- Costanza Borrelli
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
| | - Alessandra Gurtner
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland
| | - Isabelle C Arnold
- Institute of Experimental Immunology, University of Zürich, Zürich, Switzerland.
| | - Andreas E Moor
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
| |
Collapse
|
12
|
Wang R, Peng X, Yuan Y, Shi B, Liu Y, Ni H, Guo W, Yang Q, Liu P, Wang J, Su Z, Yu S, Liu D, Zhang J, Xia J, Liu X, Li H, Yang Z, Peng Z. Dynamic immune recovery process after liver transplantation revealed by single-cell multi-omics analysis. Innovation (N Y) 2024; 5:100599. [PMID: 38510071 PMCID: PMC10952083 DOI: 10.1016/j.xinn.2024.100599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/27/2024] [Indexed: 03/22/2024] Open
Abstract
Elucidating the temporal process of immune remodeling under immunosuppressive treatment after liver transplantation (LT) is critical for precise clinical management strategies. Here, we performed a single-cell multi-omics analysis of peripheral blood mononuclear cells (PBMCs) collected from LT patients (with and without acute cellular rejection [ACR]) at 13 time points. Validation was performed in two independent cohorts with additional LT patients and healthy controls. Our study revealed a four-phase recovery process after LT and delineated changes in immune cell composition, expression programs, and interactions along this process. The intensity of the immune response differs between the ACR and non-ACR patients. Notably, the newly identified inflamed NK cells, CD14+RNASE2+ monocytes, and FOS-expressing monocytes emerged as predictive indicators of ACR. This study illuminates the longitudinal evolution of the immune cell landscape under tacrolimus-based immunosuppressive treatment during LT recovery, providing a four-phase framework that aids the clinical management of LT patients.
Collapse
Affiliation(s)
- Rui Wang
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of General Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Organ Transplantation Institute of Xiamen University, Xiamen Human Organ Transplantation Quality Control Center, Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xiao Peng
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of General Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Organ Transplantation Institute of Xiamen University, Xiamen Human Organ Transplantation Quality Control Center, Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yixin Yuan
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of General Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Organ Transplantation Institute of Xiamen University, Xiamen Human Organ Transplantation Quality Control Center, Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Baojie Shi
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of General Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Organ Transplantation Institute of Xiamen University, Xiamen Human Organ Transplantation Quality Control Center, Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Yuan Liu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hengxiao Ni
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Wenzhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, China
| | - Qiwei Yang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Pingguo Liu
- Department of Hepatobiliary & Pancreatic Surgery, The National Key Clinical Specialty, Zhongshan Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Jie Wang
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of General Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Organ Transplantation Institute of Xiamen University, Xiamen Human Organ Transplantation Quality Control Center, Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Zhaojie Su
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of General Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Organ Transplantation Institute of Xiamen University, Xiamen Human Organ Transplantation Quality Control Center, Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Shengnan Yu
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of General Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Organ Transplantation Institute of Xiamen University, Xiamen Human Organ Transplantation Quality Control Center, Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Dehua Liu
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of General Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Organ Transplantation Institute of Xiamen University, Xiamen Human Organ Transplantation Quality Control Center, Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Jinyan Zhang
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Junjie Xia
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of General Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Organ Transplantation Institute of Xiamen University, Xiamen Human Organ Transplantation Quality Control Center, Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Xueni Liu
- Department of General Surgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200080, China
| | - Hao Li
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of General Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Organ Transplantation Institute of Xiamen University, Xiamen Human Organ Transplantation Quality Control Center, Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Zhengfeng Yang
- Precision Research Center for Refractory Diseases, Institute for Clinical Research, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201620, China
| | - Zhihai Peng
- Organ Transplantation Clinical Medical Center of Xiamen University, Department of General Surgery, Xiang’an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361102, China
- Organ Transplantation Institute of Xiamen University, Xiamen Human Organ Transplantation Quality Control Center, Xiamen Key Laboratory of Regeneration Medicine, Fujian Provincial Key Laboratory of Organ and Tissue Regeneration, School of Medicine, Xiamen University, Xiamen 361102, China
| |
Collapse
|
13
|
He R, Wang Y, Shuang C, Xu C, Li X, Cao Y. Single-cell transcriptomics reveals activation of endothelial cell and identifies LHPP as a potential target in ulcerative colitis. Heliyon 2024; 10:e29163. [PMID: 38601522 PMCID: PMC11004881 DOI: 10.1016/j.heliyon.2024.e29163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/30/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024] Open
Abstract
This study delves into Ulcerative colitis (UC), a persistent gastrointestinal disorder marked by inflammation and ulcers, significantly elevating colorectal cancer risk. The emergence of single-cell RNA sequencing (scRNA-seq) technology has opened new avenues for dissecting the intricate cellular dynamics and molecular mechanisms at play in UC pathology. By analyzing scRNA-seq data from individuals with UC, our study has revealed a consistent enhancement of inflammatory response pathways throughout the course of the disease, alongside detailing the characteristics of endothelial cell damage within colitis environments. A noteworthy finding is the downregulation of Phospholysine Phosphohistidine Inorganic Pyrophosphate Phosphatase (LHPP), which exhibited a inversely correlate with STAT3 expression levels. The markedly reduced expression of LHPP in both the tissues and plasma of UC patients positions LHPP as a compelling target for therapeutic intervention. Our findings highlight the pivotal role LHPP could play in moderating inflammation, spotlighting its potential as a crucial molecular target in the quest to understand and treat UC.
Collapse
Affiliation(s)
- Ruoyu He
- Department of Gastroenterology, The Third Affiliated Hospital of Zhejiang Chinese Medical University, No. 219 Moganshan Road, Xihu District, Hangzhou Zhejiang, 310005, Zhejiang Province, China
| | - Yanfei Wang
- Department of Gastroenterology, The Third Affiliated Hospital of Zhejiang Chinese Medical University, No. 219 Moganshan Road, Xihu District, Hangzhou Zhejiang, 310005, Zhejiang Province, China
| | - Chen Shuang
- Department of Neurology, The Third Affiliated Hospital of Zhejiang Chinese Medical University, No. 219 Moganshan Road, Xihu District, Hangzhou, 310005, Zhejiang Province, China
| | - Chan Xu
- Clinical Laboratory, The Third Affiliated Hospital of Zhejiang Chinese Medical University, No. 219 Moganshan Road, Xihu District, Hangzhou, 310005, Zhejiang Province, China
| | - Xiaoling Li
- Elder Medicine Department, The Third Affiliated Hospital of Zhejiang Chinese Medical University, No. 219 Moganshan Road, Xihu District, Hangzhou, 310005, Zhejiang Province, China
| | - Yanfei Cao
- Department of Gastroenterology, The Third Affiliated Hospital of Zhejiang Chinese Medical University, No. 219 Moganshan Road, Xihu District, Hangzhou Zhejiang, 310005, Zhejiang Province, China
| |
Collapse
|
14
|
Zhang Y, Qiu H, Duan F, An H, Qiao H, Zhang X, Zhang JR, Ding Q, Na J. A Comparative Study of Human Pluripotent Stem Cell-Derived Macrophages in Modeling Viral Infections. Viruses 2024; 16:552. [PMID: 38675895 PMCID: PMC11053470 DOI: 10.3390/v16040552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/03/2024] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
Macrophages play multiple roles in innate immunity including phagocytosing pathogens, modulating the inflammatory response, presenting antigens, and recruiting other immune cells. Tissue-resident macrophages (TRMs) adapt to the local microenvironment and can exhibit different immune responses upon encountering distinct pathogens. In this study, we generated induced macrophages (iMACs) derived from human pluripotent stem cells (hPSCs) to investigate the interactions between the macrophages and various human pathogens, including the hepatitis C virus (HCV), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), and Streptococcus pneumoniae. iMACs can engulf all three pathogens. A comparison of the RNA-seq data of the iMACs encountering these pathogens revealed that the pathogens activated distinct gene networks related to viral response and inflammation in iMACs. Interestingly, in the presence of both HCV and host cells, iMACs upregulated different sets of genes involved in immune cell migration and chemotaxis. Finally, we constructed an image-based high-content analysis system consisting of iMACs, recombinant GFP-HCV, and hepatic cells to evaluate the effect of a chemical inhibitor on HCV infection. In summary, we developed a human cell-based in vitro model to study the macrophage response to human viral and bacterial infections; the results of the transcriptome analysis indicated that the iMACs were a useful resource for modeling pathogen-macrophage-tissue microenvironment interactions.
Collapse
Affiliation(s)
- Yaxuan Zhang
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Hui Qiu
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Fuyu Duan
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing 100084, China
- Cord Blood Bank, Guangzhou Institute of Eugenics and Perinatology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510000, China
| | - Haoran An
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China
- Institute of Medical Technology, Peking University Health Science Center, Peking University, Beijing 100084, China
| | - Huimin Qiao
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xingwu Zhang
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Qiang Ding
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jie Na
- Center for Stem Cell Biology and Regenerative Medicine, School of Medicine, Tsinghua University, Beijing 100084, China
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
15
|
Crouchet E, Baumert TF. Unraveling the role of the liver myeloid compartment during hepatitis C virus cure. J Hepatol 2024; 80:184-187. [PMID: 37088307 PMCID: PMC7615597 DOI: 10.1016/j.jhep.2023.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 04/25/2023]
Affiliation(s)
- Emilie Crouchet
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Strasbourg, France
| | - Thomas F Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hepatiques UMR_S1110, Strasbourg, France; Service d'hépato-gastroentérologie, Hôpitaux Universitaires de Strasbourg, Strasbourg, France; Institut Hospitalo-Universitaire (IHU), Université de Strasbourg, Strasbourg, France; Institut Universitaire de France (IUF), Paris, France.
| |
Collapse
|
16
|
Zhang C, Sui Y, Liu S, Yang M. The Roles of Myeloid-Derived Suppressor Cells in Liver Disease. Biomedicines 2024; 12:299. [PMID: 38397901 PMCID: PMC10886773 DOI: 10.3390/biomedicines12020299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Liver disease-related mortality is a major cause of death worldwide. Hepatic innate and adaptive immune cells play diverse roles in liver homeostasis and disease. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells. MDSCs can be broadly divided into monocytic MDSCs and polymorphonuclear or granulocytic MDSCs, and they functionally interact with both liver parenchymal and nonparenchymal cells, such as hepatocytes and regulatory T cells, to impact liver disease progression. The infiltration and activation of MDSCs in liver disease can be regulated by inflammatory chemokines and cytokines, tumor-associated fibroblasts, epigenetic regulation factors, and gut microbiota during liver injury and cancer. Given the pivotal roles of MDSCs in advanced liver diseases, they can be targeted to treat primary and metastatic liver cancer, liver generation, alcoholic and nonalcoholic liver disease, and autoimmune hepatitis. Currently, several treatments such as the antioxidant and anti-inflammatory agent berberine are under preclinical and clinical investigation to evaluate their therapeutic efficacy on liver disease and their effect on MDSC infiltration and function. Phenotypic alteration of MDSCs in different liver diseases that are in a model-dependent manner and lack special markers for distinct MDSCs are challenges for targeting MDSCs to treat liver disease. Multi-omics study is an option to uncover the features of disease-specific MDSCs and potential gene or protein targets for liver disease treatment. In summary, MDSCs play important roles in the pathogenesis and progression of liver disease by regulating both intrahepatic innate and adaptive immune responses.
Collapse
Affiliation(s)
- Chunye Zhang
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65212, USA;
| | - Yuxiang Sui
- School of Life Science, Shanxi Normal University, Linfen 041004, China
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310006, China
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
17
|
Wang YF, He RY, Xu C, Li XL, Cao YF. Single-cell analysis identifies phospholysine phosphohistidine inorganic pyrophosphate phosphatase as a target in ulcerative colitis. World J Gastroenterol 2023; 29:6222-6234. [PMID: 38186864 PMCID: PMC10768394 DOI: 10.3748/wjg.v29.i48.6222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/27/2023] [Accepted: 12/14/2023] [Indexed: 12/27/2023] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic gastrointestinal disorder characterized by inflammation and ulceration, representing a significant predisposition to colorectal cancer. Recent advances in single-cell RNA sequencing (scRNA-seq) technology offer a promising avenue for dissecting the complex cellular inter-actions and molecular signatures driving UC pathology. AIM To utilize scRNA-seq technology to dissect the complex cellular interactions and molecular signatures that underlie UC pathology. METHODS In this research, we integrated and analyzed the scRNA-seq data from UC patients. Moreover, we conducted mRNA and protein level assays as well as pathology-related staining tests on clinical patient samples. RESULTS In this study, we identified the sustained upregulation of inflammatory response pathways during UC progression, characterized the features of damaged endo-thelial cells in colitis. Furthermore, we uncovered the downregulation of phospholysine phosphohistidine inorganic pyrophosphate phosphatase (LHPP) has a negative correlation with signal transducer and activator of transcription 3. Significant downregulation of LHPP in UC patient tissues and plasma suggests that LHPP may serve as a potential therapeutic target for UC. This paper highlights the importance of LHPP as a potential key target in UC and unveils its potential role in inflammation regulation. CONCLUSION The findings suggest that LHPP may serve as a potential therapeutic target for UC, emphasizing its importance as a potential key target in UC and unveiling its role in inflammation regulation.
Collapse
Affiliation(s)
- Yan-Fei Wang
- Department of Gastroenterology, The Third Affiliated Hospital of Zhejiang Chinese Medical University, No. 219 Moganshan Road, Xihu District, Hangzhou 310005, Zhejiang Province, China
| | - Ruo-Yu He
- Department of Gastroenterology, The Third Affiliated Hospital of Zhejiang Chinese Medical University, No. 219 Moganshan Road, Xihu District, Hangzhou 310005, Zhejiang Province, China
| | - Chan Xu
- Clinical Laboratory, The Third Affiliated Hospital of Zhejiang Chinese Medical University, No. 219 Moganshan Road, Xihu District, Hangzhou 310005, Zhejiang Province, China
| | - Xiao-Ling Li
- Elder Medicine Department, The Third Affiliated Hospital of Zhejiang Chinese Medical University, No. 219 Moganshan Road, Xihu District, Hangzhou 310005, Zhejiang Province, China
| | - Yan-Fei Cao
- Department of Gastroenterology, The Third Affiliated Hospital of Zhejiang Chinese Medical University, No. 219 Moganshan Road, Xihu District, Hangzhou 310005, Zhejiang Province, China
| |
Collapse
|
18
|
Testoni B, Roca Suarez AA, Battisti A, Plissonnier ML, Heil M, Fontanges T, Villeret F, Chouik Y, Levrero M, Gill U, Kennedy P, Zoulim F. Evaluation of the HBV liver reservoir with fine needle aspirates. JHEP Rep 2023; 5:100841. [PMID: 37675272 PMCID: PMC10477677 DOI: 10.1016/j.jhepr.2023.100841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/19/2023] [Accepted: 06/22/2023] [Indexed: 09/08/2023] Open
Abstract
Background & Aims Finite duration of treatment associated with HBsAg loss is the current goal for improved therapeutic approaches against chronic HBV infection, as it indicates elimination or durable inactivation of intrahepatic covalently closed circular DNA (cccDNA). To assist drug development, the definition of early predictive markers of HBsAg loss by assessing their value in reflecting intrahepatic cccDNA levels and transcriptional activity is essential. Fine needle aspirates (FNAs) have recently emerged as a less invasive alternative to core liver biopsy (CLB) and showed to be useful for investigating intrahepatic immune responses. The aim of this study was to optimise and validate the use of FNA vs. CLB to evaluate the intrahepatic viral reservoir. Methods Paired FNA/CLB samples were obtained from patients with HBeAg+ chronic hepatitis (n = 4), HBeAg- chronic hepatitis (n = 4), and HBeAg- chronic infection (n = 1). One HBeAg+ patient was undergoing tenofovir treatment. HBV 3.5-kb RNA and cccDNA were quantified by droplet digital PCR. Results cccDNA was quantifiable in all but one FNA/CLB pair, showing the highest levels in untreated HBeAg+ patients, except for the tenofovir-treated patient. Similarly, 3.5-kb RNA was detectable in all but one FNA sample and showed higher levels in HBeAg+ patients. When comparing cccDNA and 3.5-kb RNA quantification in FNA vs. CLB samples, no statistically significant differences were identified. Conclusions These results demonstrate the possibility to quantify cccDNA and assess its transcriptional activity in patients with chronic hepatitis B by combining FNA and droplet digital PCR. This supports the use of FNA in clinical trials to evaluate the intrahepatic viral reservoir during the development of new antivirals and immunomodulatory agents. Impact and implications Chronic hepatitis B infection is characterised by a complex interplay between immune responses and viral replication in the liver, which determines the long-term outcome of the disease. In this study, we show that fine needle aspiration of the liver, a less-invasive alternative to core biopsies, allows the assessment of the hepatic viral reservoir.
Collapse
Affiliation(s)
- Barbara Testoni
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- Hepatology Institute of Lyon, Lyon, France
| | - Armando Andres Roca Suarez
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- Hepatology Institute of Lyon, Lyon, France
| | - Arianna Battisti
- Barts Liver Centre, Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Marie-Laure Plissonnier
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- Hepatology Institute of Lyon, Lyon, France
| | | | - Thierry Fontanges
- Department of Hepatology, Croix Rousse Hospital, Hospices Civils de Lyon, Lyon, France
| | - François Villeret
- Department of Hepatology, Croix Rousse Hospital, Hospices Civils de Lyon, Lyon, France
| | - Yasmina Chouik
- Department of Hepatology, Croix Rousse Hospital, Hospices Civils de Lyon, Lyon, France
| | - Massimo Levrero
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- Hepatology Institute of Lyon, Lyon, France
- Department of Hepatology, Croix Rousse Hospital, Hospices Civils de Lyon, Lyon, France
- Department of Internal Medicine – DMISM and the IIT Center for Life Nanoscience (CLNS), Sapienza University, Rome, Italy
| | - Upkar Gill
- Barts Liver Centre, Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Patrick Kennedy
- Barts Liver Centre, Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Fabien Zoulim
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), Lyon, France
- Hepatology Institute of Lyon, Lyon, France
- Department of Hepatology, Croix Rousse Hospital, Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
19
|
Shoukry NH, Cox AL, Walker CM. Immunological Monitoring in Hepatitis C Virus Controlled Human Infection Model. Clin Infect Dis 2023; 77:S270-S275. [PMID: 37579206 PMCID: PMC10425133 DOI: 10.1093/cid/ciad359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023] Open
Abstract
Controlled human infection model trials for hepatitis C virus represent an important opportunity to identify correlates of protective immunity against a well-characterized inoculum of hepatitis C virus and how such responses are modified by vaccination. In this article, we discuss the approach to immunological monitoring during such trials, including a set of recommendations for optimal sampling schedule and preferred immunological assays to examine the different arms of the immune response. We recommend that this approach be adapted to different trial designs. Finally, we discuss how these studies can provide surrogate predictors of the success of candidate vaccines.
Collapse
Affiliation(s)
- Naglaa H Shoukry
- Centre de Recherche du Centre Hospitalier de l’Université de Montréal (CRCHUM), Montréal, Québec, Canada
- Département de Médecine, Université de Montréal, Montréal, Québec, Canada
| | - Andrea L Cox
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Christopher M Walker
- Center for Vaccines and Immunity, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, Ohio, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
20
|
Zou J, Li J, Zhong X, Tang D, Fan X, Chen R. Liver in infections: a single-cell and spatial transcriptomics perspective. J Biomed Sci 2023; 30:53. [PMID: 37430371 PMCID: PMC10332047 DOI: 10.1186/s12929-023-00945-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/27/2023] [Indexed: 07/12/2023] Open
Abstract
The liver is an immune organ that plays a vital role in the detection, capture, and clearance of pathogens and foreign antigens that invade the human body. During acute and chronic infections, the liver transforms from a tolerant to an active immune state. The defence mechanism of the liver mainly depends on a complicated network of intrahepatic and translocated immune cells and non-immune cells. Therefore, a comprehensive liver cell atlas in both healthy and diseased states is needed for new therapeutic target development and disease intervention improvement. With the development of high-throughput single-cell technology, we can now decipher heterogeneity, differentiation, and intercellular communication at the single-cell level in sophisticated organs and complicated diseases. In this concise review, we aimed to summarise the advancement of emerging high-throughput single-cell technologies and re-define our understanding of liver function towards infections, including hepatitis B virus, hepatitis C virus, Plasmodium, schistosomiasis, endotoxemia, and corona virus disease 2019 (COVID-19). We also unravel previously unknown pathogenic pathways and disease mechanisms for the development of new therapeutic targets. As high-throughput single-cell technologies mature, their integration into spatial transcriptomics, multiomics, and clinical data analysis will aid in patient stratification and in developing effective treatment plans for patients with or without liver injury due to infectious diseases.
Collapse
Affiliation(s)
- Ju Zou
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Jie Li
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiao Zhong
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Xuegong Fan
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Ruochan Chen
- Hunan Key Laboratory of Viral Hepatitis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
21
|
Maretti-Mira AC, Salomon MP, Hsu AM, Matsuba C, Golden-Mason L. Chronic HCV infection promotes cytotoxicity in antigen-specific CD8 + T cells regardless of virus specificity. FRONTIERS IN VIROLOGY (LAUSANNE, SWITZERLAND) 2023; 3:1198361. [PMID: 37886042 PMCID: PMC10601542 DOI: 10.3389/fviro.2023.1198361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Introduction Despite advancements in hepatitis C virus (HCV) infection treatment, HCV still represents a significant public health burden. Besides progressive hepatic damage, viral persistence has lasting effects on innate and adaptive immune responses. Lack of a complete understanding of the factors driving an effective HCV response contributes to the failure to develop a vaccine for prevention. This study advances the existing knowledge on HCV-specific CD8+ T cells and describes the impact of current or past HCV infection on CD8+ T cells specific for other viruses. Methods We used barcoded-dextramers to identify and sort CD8+ T cells specific for HCV, cytomegalovirus, and influenza, and characterized them using single-cell RNA sequencing technology. Our cohort included chronic (cHCV), spontaneously resolved (rHCV), and subjects undergoing direct-acting antiviral (DAA) therapy. Results We show that HCV-specific CD8+ T cells have cytotoxic features in patients with cHCV, which is progressively reduced with DAA therapy and persists 12 weeks after treatment completion. We also observe a shift in the CD8+ T cell phenotype on DAA treatment, with decreased effector memory and exhausted cell signatures. In rHCV, we also detected a smaller proportion of effector memory cells compared to cHCV. The proportion of CD8+ exhausted T cells in cHCV and rHCV subjects was comparable. Moreover, we also observed that non-HCV virus-specific CD8+ T cells exhibit robust cytotoxic traits during cHCV infection. Discussion Altogether, our findings suggest that cHCV infection promotes cytotoxicity in CD8+ T cells regardless of virus specificity. The immunological changes caused by cHCV infection in CD8+ T cells may contribute to worsening the ongoing hepatic damage caused by HCV infection or exacerbate the immune response to possible co-infections. Our data provide a resource to groups exploring the underlying mechanisms of HCV-specific T cell spontaneous and treatment-induced resolution to inform the development of effective vaccines against HCV infection.
Collapse
Affiliation(s)
- Ana C. Maretti-Mira
- USC Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Matthew P. Salomon
- USC Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Angela M. Hsu
- USC Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Chikako Matsuba
- USC Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Lucy Golden-Mason
- USC Research Center for Liver Diseases, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Division of Gastrointestinal and Liver Diseases, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|