1
|
Withey Z, Gweon HS. Longitudinal bacterial community dynamics and sodium hypochlorite intervention in a newly built university building. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175349. [PMID: 39122041 DOI: 10.1016/j.scitotenv.2024.175349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/05/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
Urbanisation and building advancements have increased microbial growth in indoor environments, altering human interactions with these microorganisms. Restrooms and their sinks harbour diverse bacterial communities, that differ from those found in natural environments, that could have negative implications for human health. Over two and a half years, this study examined the diversity, temporal dynamics, and resilience of bacterial communities in restroom sink P-traps in a newly built university building. Structured into two phases, the first phase consisted of continuous monitoring of bacterial community dynamics for two years (n = 352), while the second phase involved an intervention with sodium hypochlorite (bleach) and subsequent sampling (n = 132). In the first phase, we show that sink communities converge, becoming more compositionally similar to other sinks within the building. Bacterial families such as Rhodocyclaceae and Flavobacteriaceae dominated across the sinks, and others such as Comamonadaceae, Moraxellaceae and Enterbacteriaceae were highly prevalent. When comparing bacterial structure and composition to other sinks located on the university campus, the mean bacterial dissimilarity decreased over time, indicating compositional similarity, particularly with the newer buildings on campus. The second phase demonstrated resilience by the bacterial sink communities. Following bleach treatments, a distinct increase in Acinetobacter was observed. However, by the fourth week after bleach invention, bacterial communities had re-established to levels observed prior to treatment. This study had the unique opportunity to sample a newly built building before occupancy and for the subsequent two and a half years. The findings provide crucial insights into the development and resilience of sink P-trap bacterial communities in restrooms, laying the groundwork for more targeted approaches to disinfection strategies.
Collapse
Affiliation(s)
- Zoe Withey
- School of Biological Sciences, University of Reading, Reading, UK
| | - Hyun S Gweon
- School of Biological Sciences, University of Reading, Reading, UK; UK Centre for Ecology & Hydrology, Wallingford, Oxfordshire OX10 8BB, UK.
| |
Collapse
|
2
|
Kwon JH, Advani SD, Branch-Elliman W, Braun BI, Cheng VCC, Chiotos K, Douglas P, Gohil SK, Keller SC, Klein EY, Krein SL, Lofgren ET, Merrill K, Moehring RW, Monsees E, Perri L, Scaggs Huang F, Shelly MA, Skelton F, Spivak ES, Sreeramoju PV, Suda KJ, Ting JY, Weston GD, Yassin MH, Ziegler MJ, Mody L. A call to action: the SHEA research agenda to combat healthcare-associated infections. Infect Control Hosp Epidemiol 2024; 45:1-18. [PMID: 39448369 PMCID: PMC11518679 DOI: 10.1017/ice.2024.125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 10/26/2024]
Affiliation(s)
- Jennie H. Kwon
- Washington University School of Medicine in St. Louis, St. Louis, MI, USA
| | | | - Westyn Branch-Elliman
- VA Boston Healthcare System, VA National Artificial Intelligence Institute (NAII), Harvard Medical School, Boston, MA, USA
| | | | | | - Kathleen Chiotos
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Peggy Douglas
- Washington State Department of Health, Seattle, WA, USA
| | - Shruti K. Gohil
- University of California Irvine School of Medicine, UCI Irvine Health, Irvine, CA, USA
| | - Sara C. Keller
- Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Eili Y. Klein
- Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Sarah L. Krein
- VA Ann Arbor Healthcare System, University of Michigan, Ann Arbor, MI, USA
| | - Eric T. Lofgren
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, USA
| | | | | | - Elizabeth Monsees
- Children’s Mercy Kansas City, University of Missouri-Kansas City School of Medicine, Kansas City, MI, USA
| | - Luci Perri
- Infection Control Results, Wingate, NC, USA
| | - Felicia Scaggs Huang
- University of Cincinnati College of Medicine, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Mark A. Shelly
- Geisinger Commonwealth School of Medicine, Danville, PA, USA
| | - Felicia Skelton
- Michael E. DeBakey VA Medical Center, Baylor College of Medicine, Houston, TX, USA
| | - Emily S. Spivak
- University of Utah Health, Salt Lake City Veterans Affairs Healthcare System, Salt Lake City, UT, USA
| | | | - Katie J. Suda
- University of Pittsburgh School of Medicine, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | | | | | - Mohamed H. Yassin
- University of Pittsburgh School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew J. Ziegler
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Lona Mody
- University of Michigan, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Holcomb DA, Riner D, Cowan B, Salah Z, Jennings WC, Mattioli MC, Murphy JL. Chlorine Inactivation of Elizabethkingia spp. in Water. Emerg Infect Dis 2024; 30:2174-2177. [PMID: 39320337 PMCID: PMC11431903 DOI: 10.3201/eid3010.240917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024] Open
Abstract
We performed chlorine inactivation experiments for Elizabethkingia anophelis and E. meningoseptica bacterial strains from clinical and environmental sources. Free chlorine concentration × contact time values <0.04 mg·min/L achieved 99.9% inactivation of Elizabethkingia species, indicating chlorine susceptibility. Measures to control biofilm producing pathogens in plumbing are needed to prevent Elizabethkingia bacterial infections.
Collapse
|
4
|
Vanstokstraeten R, Gordts B, Verbraeken N, Blommaert L, Moretti M, De Geyter D, Wybo I. Evaluation of a peracetic-acid-based sink drain disinfectant on the intensive care unit of a tertiary care centre in Belgium. J Hosp Infect 2024; 154:45-52. [PMID: 39341282 DOI: 10.1016/j.jhin.2024.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/28/2024] [Accepted: 09/15/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Sink drains in hospitals are notorious reservoirs of bacteria, hosting both planktonic micro-organisms and biofilms within the siphon. Disinfectants based on peracetic acid are both non-corrosive and effective in eliminating biofilm and planktonic micro-organisms, presenting a potential solution for decontaminating sink drains. AIM To examine the effectiveness of Clinell Drain Disinfectant, a peracetic-acid-based disinfectant, in the intensive care unit (ICU) of UZ Brussel. METHODS All 10 sinks in one of the ICU subunits known to be heavily contaminated were treated with Clinell Drain Disinfectant for one month. Throughout the treatment period, bacterial growth in the P-traps was systematically monitored qualitatively (using eSwab) and quantitatively (employing a sterile catheter and syringe) on various selective agar plates, processed and incubated in the WASPLab system. Matrix-assisted laser desorption/ionization time-of-flight mass spectroscopy was used to identify all morphologically distinct colonies. FINDINGS At baseline, most of the sink drains were colonized by high concentrations of multidrug-resistant micro-organisms, primarily VIM-producing P. aeruginosa. The cultures taken immediately after decontamination yielded negative results, with only a very few exceptions. Nonetheless, it was observed that the biofilm in the upper section of the drain system remained unaffected, and within two days it was capable of recolonizing the liquid in the P-traps at a concentration >100,000 cfu/mL. After one month, this disinfecting protocol did not result in a lasting decontamination of the sink drains. CONCLUSION This study demonstrated the disinfectant's efficacy in decontaminating the P-trap liquid.
Collapse
Affiliation(s)
- R Vanstokstraeten
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium.
| | - B Gordts
- Dialex Biomedica, Bilzen, Belgium
| | - N Verbraeken
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - L Blommaert
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - M Moretti
- Department of Internal Medicine and Infectious Disease, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - D De Geyter
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| | - I Wybo
- Department of Microbiology and Infection Control, Vrije Universiteit Brussel (VUB), Universitair Ziekenhuis Brussel (UZ Brussel), Brussels, Belgium
| |
Collapse
|
5
|
Rickard H, Cloutman-Green E, Ciric L. A microbiological survey approach to understanding the virulence factors of Pseudomonas species in healthcare sinks. J Hosp Infect 2024; 151:84-91. [PMID: 38992838 DOI: 10.1016/j.jhin.2024.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND Hospital water is involved in both the prevention and spread of healthcare-associated infections (HCAIs). Handwashing is key to reducing the transmission of pathogens, yet numerous outbreaks have been found to be caused by organisms within sinks, taps and showers. Pseudomonas aeruginosa and increasingly non-aeruginosa Pseudomonas cause waterborne HCAI, however, little is known about the virulence potential of Pseudomonas species found within hospital environments. METHODS Swabs were taken from 62 sinks within two newly opened wards at Great Ormond Street Hospital, samples were taken before and after the wards opened to understand the impact of patient occupancy on sink micro-organisms. Culturable bacteria were identified by MALDI-TOF and virulence factors assessed through phenotypic methods. RESULTS A total of 106 bacterial isolates were recovered including 24 Pseudomonas isolates. Of these 25% were identified as P. oleovorans, 21% P. aeruginosa, 17% P. composti, 13% P. alicalipha, 8% P. monteilii, 4% P. putida, 4% P. stutzeri and 8% could only be identified to genus level by MALDI-TOF. Differences were seen in both the number of Pseudomonas isolates and virulence production between the two wards, overall 25% of the Pseudomonas isolates produced pigment, 58% were capable of haemolysis, 87.5% were able to swim, 83.3% were capable of twitching motility, 33.3% produced alkaline protease and 8.3% produced gelatinase. CONCLUSIONS Results suggest that patients may be back-contaminating sinks with colonizing organisms which has ongoing implications for infection prevention and control. Additionally, this work highlights the ability of non-aeruginosa Pseudomonas to produce virulence factors traditionally associated with P. aeruginosa.
Collapse
Affiliation(s)
- H Rickard
- Healthy Infrastructure Research Group, Department of Civil, Environmental and Geomatic Engineering, University College London, London, UK.
| | - E Cloutman-Green
- Healthy Infrastructure Research Group, Department of Civil, Environmental and Geomatic Engineering, University College London, London, UK; Camelia Botnar Laboratories, Department of Microbiology, Great Ormond Street Hospital NHS Foundation Trust, London, UK
| | - L Ciric
- Healthy Infrastructure Research Group, Department of Civil, Environmental and Geomatic Engineering, University College London, London, UK
| |
Collapse
|
6
|
Liu Y, Liu J, Wu X, Jiang E. Risk Factors for Central Nervous System Infections After Craniotomy. J Multidiscip Healthc 2024; 17:3637-3648. [PMID: 39100899 PMCID: PMC11296514 DOI: 10.2147/jmdh.s476125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/14/2024] [Indexed: 08/06/2024] Open
Abstract
The central nervous system (CNS) is less prone to infection owing to protection from the brain-blood barrier. However, craniotomy destroys this protection and increases the risk of infection in the brain of patients who have undergone craniotomy. CNS infection after craniotomy significantly increases the patient's mortality rate and disability. Controlling the occurrence of intracranial infection is very important for post-craniotomy patients. CNS infection after craniotomy is caused by several factors such as preoperative, intraoperative, and post-operative factors. Craniotomy may lead to postsurgical intracranial infection, which is mainly associated with surgery duration, infratentorial (posterior fossa) surgery, cerebrospinal fluid leakage, drainage tube placement, unregulated use of antibiotics, glucocorticoid use, age, diabetes, and other systemic infections. Understanding the risk factors of CNS infection after craniotomy can benefit reducing the incidence of intracranial infectious diseases. This will also provide the necessary guidance and evidence in clinical practice for planning to control intracranial infection in patients with craniotomy.
Collapse
Affiliation(s)
- Yufeng Liu
- Department of Cardiovascular Medicine, Luoyang Central Hospital affiliated to Zhengzhou University, Luoyang, Henan, 471000, People’s Republic of China
| | - Jie Liu
- Department of Cardiovascular Medicine, Luoyang Central Hospital affiliated to Zhengzhou University, Luoyang, Henan, 471000, People’s Republic of China
| | - Xiaoyan Wu
- Department of Cardiovascular Medicine, Luoyang Central Hospital affiliated to Zhengzhou University, Luoyang, Henan, 471000, People’s Republic of China
| | - Enshe Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Henan University, Kaifeng, Henan, 475004, People’s Republic of China
- Institute of Nursing and Health, Henan University, Kaifeng, Henan, 475004, People’s Republic of China
| |
Collapse
|
7
|
Norville P, Otter JA. The requirement to move towards standardization of wastewater sampling. J Hosp Infect 2024; 149:88-89. [PMID: 38685412 DOI: 10.1016/j.jhin.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024]
Affiliation(s)
- P Norville
- School of Pharmacy, Cardiff University, Cardiff, UK.
| | - J A Otter
- Directorate of Infection, Guy's and St. Thomas' NHS Foundation Trust, St Thomas' Hospital, London, UK; National Institute for Healthcare Research Health Protection Research Unit in HCAI and AMR, Imperial College London and Public Health England, Hammersmith Hospital, London, UK
| |
Collapse
|
8
|
Bourdin T, Benoit MÈ, Prévost M, Charron D, Quach C, Déziel E, Constant P, Bédard E. Disinfection of sink drains to reduce a source of three opportunistic pathogens, during Serratia marcescens clusters in a neonatal intensive care unit. PLoS One 2024; 19:e0304378. [PMID: 38865328 PMCID: PMC11168660 DOI: 10.1371/journal.pone.0304378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/10/2024] [Indexed: 06/14/2024] Open
Abstract
OBJECTIVE Evaluate the effects of five disinfection methods on bacterial concentrations in hospital sink drains, focusing on three opportunistic pathogens (OPs): Serratia marcescens, Pseudomonas aeruginosa and Stenotrophomonas maltophilia. DESIGN Over two years, three sampling campaigns were conducted in a neonatal intensive care unit (NICU). Samples from 19 sink drains were taken at three time points: before, during, and after disinfection. Bacterial concentration was measured using culture-based and flow cytometry methods. High-throughput short sequence typing was performed to identify the three OPs and assess S. marcescens persistence after disinfection at the genotypic level. SETTING This study was conducted in a pediatric hospitals NICU in Montréal, Canada, which is divided in an intensive and intermediate care side, with individual rooms equipped with a sink. INTERVENTIONS Five treatments were compared: self-disinfecting drains, chlorine disinfection, boiling water disinfection, hot tap water flushing, and steam disinfection. RESULTS This study highlights significant differences in the effectiveness of disinfection methods. Chlorine treatment proved ineffective in reducing bacterial concentration, including the three OPs. In contrast, all other drain interventions resulted in an immediate reduction in culturable bacteria (4-8 log) and intact cells (2-3 log). Thermal methods, particularly boiling water and steam treatments, exhibited superior effectiveness in reducing bacterial loads, including OPs. However, in drains with well-established bacterial biofilms, clonal strains of S. marcescens recolonized the drains after heat treatments. CONCLUSIONS Our study supports thermal disinfection (>80°C) for pathogen reduction in drains but highlights the need for additional trials and the implementation of specific measures to limit biofilm formation.
Collapse
Affiliation(s)
| | | | | | | | - Caroline Quach
- CHU Sainte-Justine, Université de Montréal, Montréal, QC, Canada
| | - Eric Déziel
- INRS-Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
| | | | | |
Collapse
|
9
|
Butler J, Morgan S, Jones L, Upton M, Besinis A. Evaluating the antibacterial efficacy of a silver nanocomposite surface coating against nosocomial pathogens as an antibiofilm strategy to prevent hospital infections. Nanotoxicology 2024; 18:410-436. [PMID: 39051684 DOI: 10.1080/17435390.2024.2379809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/27/2024]
Abstract
Antimicrobial nanocoatings may be a means of preventing nosocomial infections, which account for significant morbidity and mortality. The role of hospital sink traps in these infections is also increasingly appreciated. We describe the preparation, material characterization and antibacterial activity of a pipe cement-based silver nanocoating applied to unplasticized polyvinyl chloride, a material widely used in wastewater plumbing. Three-dimensional surface topography imaging and scanning electron microscopy showed increased roughness in all surface finishes versus control, with grinding producing the roughest surfaces. Silver stability within nanocoatings was >99.89% in deionized water and bacteriological media seeded with bacteria. The nanocoating exhibited potent antibiofilm (99.82-100% inhibition) and antiplanktonic (99.59-99.99% killing) activity against three representative bacterial species and a microbial community recovered from hospital sink traps. Hospital sink trap microbiota were characterized by sequencing the 16S rRNA gene, revealing the presence of opportunistic pathogens from genera including Pseudomonas, Enterobacter and Clostridioides. In a benchtop model sink trap system, nanocoating antibiofilm activity against this community remained significant after 11 days but waned following 25 days. Silver nanocoated disks in real-world sink traps in two university buildings had a limited antibiofilm effect, even though in vitro experiments using microbial communities recovered from the same traps demonstrated that the nanocoating was effective, reducing biofilm formation by >99.6% and killing >98% of planktonic bacteria. We propose that conditioning films forming in the complex conditions of real-world sink traps negatively impact nanocoating performance, which may have wider relevance to development of antimicrobial nanocoatings that are not tested in the real-world.
Collapse
Affiliation(s)
- James Butler
- School of Engineering, Computing and Mathematics, Faculty of Science and Engineering, University of Plymouth, Plymouth, United Kingdom
| | - Sian Morgan
- School of Engineering, Computing and Mathematics, Faculty of Science and Engineering, University of Plymouth, Plymouth, United Kingdom
| | - Lewis Jones
- Clinical Microbiology, University Hospitals Plymouth NHS Trust, Plymouth, United Kingdom
| | - Mathew Upton
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Plymouth, United Kingdom
| | - Alexandros Besinis
- School of Engineering, Computing and Mathematics, Faculty of Science and Engineering, University of Plymouth, Plymouth, United Kingdom
- Peninsula Dental School, Faculty of Health, University of Plymouth, Plymouth, United Kingdom
| |
Collapse
|
10
|
Lucassen R, van Leuven N, Bockmühl D. Biological and Synthetic Surfactants Increase Class I Integron Prevalence in Ex Situ Biofilms. Microorganisms 2024; 12:712. [PMID: 38674656 PMCID: PMC11052139 DOI: 10.3390/microorganisms12040712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
The role of biocides in the spread of antimicrobial resistance (AMR) has been addressed but only a few studies focus on the impact of surfactants on microbial diversity and AMR, although they are common constituents of cleaners, disinfectants, and personal care products and are thus released into the environment in large quantities. In this study, we used a static ex situ biofilm model to examine the development of four biofilms exposed to surfactants and analyzed the biofilms for their prevalence of class I integrons as a proxy for the overall abundance of AMR in a sample. We furthermore determined the shift in bacterial community composition by high-resolution melt analysis and 16S ribosomal RNA (16S rRNA) gene sequencing. Depending on the initial intrinsic prevalence of class I integrons in the respective ex situ biofilm, benzalkonium chloride, alkylbenzene sulfonate, and cocamidopropyl betaine increased its prevalence by up to 6.5× on average. For fatty alcohol ethoxylate and the biosurfactants sophorolipid and rhamnolipid, the mean increase did not exceed 2.5-fold. Across all surfactants, the increase in class I integrons was accompanied by a shift in bacterial community composition. Especially benzalkonium chloride, cocamidopropyl betaine, and alkylbenzene sulfonate changed the communities, while fatty alcohol ethoxylate, sophorolipid, and rhamnolipid had a lower effect on the bacterial biofilm composition.
Collapse
Affiliation(s)
| | | | - Dirk Bockmühl
- Faculty of Life Sciences, Rhine-Waal University of Applied Sciences, Marie-Curie-Str. 1, 47533 Kleve, Germany; (R.L.); (N.v.L.)
| |
Collapse
|
11
|
Maillard JY, Centeleghe I. How biofilm changes our understanding of cleaning and disinfection. Antimicrob Resist Infect Control 2023; 12:95. [PMID: 37679831 PMCID: PMC10483709 DOI: 10.1186/s13756-023-01290-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/15/2023] [Indexed: 09/09/2023] Open
Abstract
Biofilms are ubiquitous in healthcare settings. By nature, biofilms are less susceptible to antimicrobials and are associated with healthcare-associated infections (HAI). Resistance of biofilm to antimicrobials is multifactorial with the presence of a matrix composed of extracellular polymeric substances and eDNA, being a major contributing factor. The usual multispecies composition of environmental biofilms can also impact on antimicrobial efficacy. In healthcare settings, two main types of biofilms are present: hydrated biofilms, for example, in drains and parts of some medical devices and equipment, and environmental dry biofilms (DSB) on surfaces and possibly in medical devices. Biofilms act as a reservoir for pathogens including multi-drug resistant organisms and their elimination requires different approaches. The control of hydrated (drain) biofilms should be informed by a reduction or elimination of microbial bioburden together with measuring biofilm regrowth time. The control of DSB should be measured by a combination of a reduction or elimination in microbial bioburden on surfaces together with a decrease in bacterial transfer post-intervention. Failure to control biofilms increases the risk for HAI, but biofilms are not solely responsible for disinfection failure or shortcoming. The limited number of standardised biofilm efficacy tests is a hindrance for end users and manufacturers, whilst in Europe there are no approved standard protocols. Education of stakeholders about biofilms and ad hoc efficacy tests, often academic in nature, is thus paramount, to achieve a better control of biofilms in healthcare settings.
Collapse
Affiliation(s)
- Jean-Yves Maillard
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB, Wales, UK.
| | - Isabella Centeleghe
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB, Wales, UK
| |
Collapse
|
12
|
van Leuven N, Zinn MK, Lucassen R, Lipski A, Flemming HC, Bockmühl D. High resolution ITS amplicon melting analysis as a tool to analyse microbial communities of household biofilms in ex-situ models. J Microbiol Methods 2023; 212:106806. [PMID: 37567416 DOI: 10.1016/j.mimet.2023.106806] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Biofilms are the most common growth types of microorganisms. These complex communities usually consist of different species and are embedded in an extracellular matrix containing polymers, proteins and DNA. This matrix offers protection against different (a)biotic environmental factors and generally increases resistances. Higher resistances against antibiotics are one of the main reasons why biofilms are often associated with healthcare settings. Nevertheless, they are also found in domestic settings, mostly in humid places with abundant nutrients like dishwashers or washing machines. Biofilms in these areas show individual compositions and are influenced for example by temperature, frequency of use or the age of the device. In this study, we introduce a model for the ex-situ cultivation of domestic biofilms from household appliances. Furthermore, we tested the ability of high resolution melting analysis (HRMA) as a tool for analysing these biofilms. Our goal was to maintain a high amount of complexity in the ex-situ biofilms that is characterized by the melting behavior of the contained DNA. Dishwasher and washing machine biofilms were sampled in private households and cultivated for 10 d. After DNA extraction, 16S rDNA was sequenced and melting behavior of the bacterial Internal Transcribed Spacer (ITS) region was analysed. Additionally, testing for independence of continuous new sampling, storage of cultivated biofilms in glycerol stocks and following recultivation of them was done up to three times. Our results show that a high level of complexity could be maintained in the ex-situ biofilms after 10 d of cultivation, although in general the bacterial diversity slightly decreased compared to the original biofilm in most cases. Recultivation of a similar biofilm from glycerol stocks was possible as well with some impact by various factors. Differences in the bacterial composition of biofilms could clearly made visible by HRMA although it was not possible to match peaks to a specific phylogenetic group. Still, HRMA proved to be a less costly and time consuming alternative to sequencing for the characterization of biofilms.
Collapse
Affiliation(s)
- Nicole van Leuven
- Rhine-Waal University of Applied Sciences, Faculty of Life Sciences, Kleve, Germany; University of Bonn, Food Microbiology and Hygiene, Bonn, Germany
| | - Marc-Kevin Zinn
- Rhine-Waal University of Applied Sciences, Faculty of Life Sciences, Kleve, Germany; University of Duisburg-Essen, Biofilm Centre, Essen, Germany
| | - Ralf Lucassen
- Rhine-Waal University of Applied Sciences, Faculty of Life Sciences, Kleve, Germany
| | - André Lipski
- University of Bonn, Food Microbiology and Hygiene, Bonn, Germany
| | | | - Dirk Bockmühl
- Rhine-Waal University of Applied Sciences, Faculty of Life Sciences, Kleve, Germany.
| |
Collapse
|
13
|
Butler J, Kelly SD, Muddiman KJ, Besinis A, Upton M. Hospital sink traps as a potential source of the emerging multidrug-resistant pathogen Cupriavidus pauculus: characterization and draft genome sequence of strain MF1. J Med Microbiol 2022; 71. [PMID: 35113779 PMCID: PMC8941954 DOI: 10.1099/jmm.0.001501] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Introduction.Cupriavidus pauculus is historically found in soil and water but has more recently been reported to cause human infection and death. Hospital sink traps can serve as a niche for bacterial persistence and a platform for horizontal gene transfer, with evidence of dissemination of pathogens in hospital plumbing systems driving nosocomial infection. Gap Statement. This paper presents the first C. pauculus strain isolated from a hospital sink trap. There are only six genome assemblies available on NCBI for C. pauculus; two of these are PacBio/Illumina hybrids. This paper presents the first ONT/Illumina hybrid assembly, with five contigs. The other assemblies available consist of 37, 38, 111 and 227 contigs. This paper also presents data on biofilm formation and lethal dose in Galleria mellonella; there is little published information describing these aspects of virulence. Aim. The aims were to identify the isolate found in a hospital sink trap, characterize its genome, and assess whether it could pose a risk to human health. Methodology. The genome was sequenced, and a hybrid assembly of short and long reads produced. Antimicrobial susceptibility was determined by the broth microdilution method. Virulence was assessed by measuring in vitro biofilm formation compared to Pseudomonas aeruginosa and in vivo lethality in Galleria mellonella larvae. Results. The isolate was confirmed to be a strain of C. pauculus, with a 6.8 Mb genome consisting of 6468 coding sequences and an overall G+C content of 63.9 mol%. The genome was found to contain 12 antibiotic resistance genes, 8 virulence factor genes and 33 metal resistance genes. The isolate can be categorized as resistant to meropenem, amoxicillin, amikacin, gentamicin and colistin, but susceptible to cefotaxime, cefepime, imipenem and ciprofloxacin. Clear biofilm formation was seen in all conditions over 72 h and exceeded that of P. aeruginosa when measured at 37 °C in R2A broth. Lethality in G. mellonella larvae over 48 h was relatively low. Conclusion. The appearance of a multidrug-resistant strain of C. pauculus in a known pathogen reservoir within a clinical setting should be considered concerning. Further work should be completed to compare biofilm formation and in vivo virulence between clinical and environmental strains, to determine how easily environmental strains may establish human infection. Infection control teams and clinicians should be aware of the emerging nature of this pathogen and further work is needed to minimize the impact of contaminated hospital plumbing systems on patient outcomes.
Collapse
Affiliation(s)
- James Butler
- School of Engineering, Computing and Mathematics, Faculty of Science and Engineering, University of Plymouth, Plymouth PL4 8AA, UK
| | - Sean D Kelly
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Plymouth PL4 8AA, UK
| | - Katie J Muddiman
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Plymouth PL4 8AA, UK
| | - Alexandros Besinis
- School of Engineering, Computing and Mathematics, Faculty of Science and Engineering, University of Plymouth, Plymouth PL4 8AA, UK.,Peninsula Dental School, Faculty of Health, University of Plymouth, Plymouth PL4 8AA, UK
| | - Mathew Upton
- School of Biomedical Sciences, Faculty of Health, University of Plymouth, Plymouth PL4 8AA, UK
| |
Collapse
|
14
|
van der Zwet W, Nijsen I, Jamin C, van Alphen L, von Wintersdorff C, Demandt A, Savelkoul P. Role of the environment in transmission of Gram-negative bacteria in two consecutive outbreaks in a haematology-oncology department. Infect Prev Pract 2022; 4:100209. [PMID: 35295671 PMCID: PMC8918851 DOI: 10.1016/j.infpip.2022.100209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/09/2022] [Indexed: 12/18/2022] Open
Affiliation(s)
- W.C. van der Zwet
- Dept. Medical Microbiology, Maastricht University Medical Center, Maastricht, the Netherlands
- Corresponding author.
| | - I.E.J. Nijsen
- Dept. Medical Microbiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - C. Jamin
- Dept. Medical Microbiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - L.B. van Alphen
- Dept. Medical Microbiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - C.J.H. von Wintersdorff
- Dept. Medical Microbiology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - A.M.P. Demandt
- Dept. Haematology, Maastricht University Medical Center, Maastricht, the Netherlands
| | - P.H.M. Savelkoul
- Dept. Medical Microbiology, Maastricht University Medical Center, Maastricht, the Netherlands
| |
Collapse
|
15
|
Eveillard M, Lemarié C. Re: 'A prospective multicentre surveillance study to investigate the risk associated with contaminated sinks in the intensive care unit' by Valentin et al. Clin Microbiol Infect 2021; 27:1367-1368. [PMID: 33975006 DOI: 10.1016/j.cmi.2021.04.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 04/16/2021] [Indexed: 10/21/2022]
Affiliation(s)
- Matthieu Eveillard
- Laboratoire de bactériologie, Département des agents infectieux, Centre hospitalier universitaire, Angers, France; Centre de Recherche en Cancérologie et Immunologie Nantes-Angers Inserm, Université de Nantes, Université d'Angers, Angers, Nantes, France.
| | - Carole Lemarié
- Laboratoire de bactériologie, Département des agents infectieux, Centre hospitalier universitaire, Angers, France
| |
Collapse
|