1
|
Gouveia MIM, do Socorro Nascimento Falcão Sarges E, Dos Reis HS, Sardinha DM, Dos Santos PAS, Ribeiro LR, Silva MJA, de Melo MVH, Quaresma AJPG, Brasiliense DM, Lima LNGC, Lima KVB, Rodrigues YC. Unveiling the molecular epidemiology of Pseudomonas aeruginosa in lung infections among cystic fibrosis patients in the Brazilian Amazon. BMC Microbiol 2025; 25:203. [PMID: 40205346 PMCID: PMC11984257 DOI: 10.1186/s12866-025-03920-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/20/2025] [Indexed: 04/11/2025] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is a major pathogen in cystic fibrosis (CF), where chronic and intermittent infections significantly affect patient outcomes. This study aimed to investigate the molecular epidemiology of P. aeruginosa in CF patients from the Brazilian Amazon, focusing on genotypic diversity, resistance profiles, and virulence factors. METHODS A cross-sectional study included 72 P. aeruginosa isolates from 44 CF patients treated at a regional reference center between 2018 and 2019. Antimicrobial susceptibility patterns were determined using VITEK-2 system and Kirby-Bauer disk diffusion. Virulotypes were defined by molecular detection of exoS, exoU, exoT, exoY, algU, and algD genes. Genetic diversity was assessed using multilocus sequence typing (MLST). Demographic data, clinical severity, and spirometry results were also collected. RESULTS Among the patients, 54.55% experienced intermittent infections, while 45.45% had chronic infections. Chronic infections were associated with older age, lower FEV1, and reduced Shwachman-Kulczycki scores. Multidrug resistance was observed in 15.3% of isolates, particularly against ciprofloxacin and piperacillin/tazobactam. The exoU gene was present in 55.56% of isolates, an uncommon finding in CF populations. High genetic diversity was evident, with 37 sequence types (STs), including 14 novel STs. High-risk clones (HRCs) constituted 25% of isolates, with ST274 being the most prevalent (12.5%). Longitudinal analysis revealed transient colonization in intermittent infections, while chronic infections were dominated by stable clones. CONCLUSION This study highlights the molecular and clinical dynamics of P. aeruginosa in CF patients from the Brazilian Amazon. Chronic infections were linked to severe lung impairment , while intermittent infections were dominated by HRCs. These findings underscore the need for robust genotypic surveillance to mitigate the burden of P. aeruginosa in CF populations.
Collapse
Affiliation(s)
- Maria Isabel Montoril Gouveia
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua, PA, 67030-000, Brazil
- Bacteriology and Mycology Section, Evandro Chagas Institute (SEBAC/IEC), Ministry of Health, Ananindeua, PA, 67030-000, Brazil
| | | | - Herald Souza Dos Reis
- Bacteriology and Mycology Section, Evandro Chagas Institute (SEBAC/IEC), Ministry of Health, Ananindeua, PA, 67030-000, Brazil
| | - Danielle Melo Sardinha
- Bacteriology and Mycology Section, Evandro Chagas Institute (SEBAC/IEC), Ministry of Health, Ananindeua, PA, 67030-000, Brazil
| | - Pabllo Antonny Silva Dos Santos
- Bacteriology and Mycology Section, Evandro Chagas Institute (SEBAC/IEC), Ministry of Health, Ananindeua, PA, 67030-000, Brazil
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Belém, PA, 66087-662, Brazil
| | - Layana Rufino Ribeiro
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua, PA, 67030-000, Brazil
- Bacteriology and Mycology Section, Evandro Chagas Institute (SEBAC/IEC), Ministry of Health, Ananindeua, PA, 67030-000, Brazil
| | - Marcos Jessé Abrahão Silva
- Bacteriology and Mycology Section, Evandro Chagas Institute (SEBAC/IEC), Ministry of Health, Ananindeua, PA, 67030-000, Brazil
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Belém, PA, 66087-662, Brazil
| | - Marcos Vinicios Hino de Melo
- Bacteriology and Mycology Section, Evandro Chagas Institute (SEBAC/IEC), Ministry of Health, Ananindeua, PA, 67030-000, Brazil
| | - Ana Judith Pires Garcia Quaresma
- Bacteriology and Mycology Section, Evandro Chagas Institute (SEBAC/IEC), Ministry of Health, Ananindeua, PA, 67030-000, Brazil
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Belém, PA, 66087-662, Brazil
| | - Danielle Murici Brasiliense
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua, PA, 67030-000, Brazil
- Bacteriology and Mycology Section, Evandro Chagas Institute (SEBAC/IEC), Ministry of Health, Ananindeua, PA, 67030-000, Brazil
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Belém, PA, 66087-662, Brazil
| | - Luana Nepomuceno Godim Costa Lima
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua, PA, 67030-000, Brazil
- Bacteriology and Mycology Section, Evandro Chagas Institute (SEBAC/IEC), Ministry of Health, Ananindeua, PA, 67030-000, Brazil
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Belém, PA, 66087-662, Brazil
| | - Karla Valéria Batista Lima
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua, PA, 67030-000, Brazil.
- Bacteriology and Mycology Section, Evandro Chagas Institute (SEBAC/IEC), Ministry of Health, Ananindeua, PA, 67030-000, Brazil.
- Program in Parasitic Biology in the Amazon Region (PPGBPA), State University of Pará (UEPA), Belém, PA, 66087-662, Brazil.
| | - Yan Corrêa Rodrigues
- Program in Epidemiology and Health Surveillance (PPGEVS), Evandro Chagas Institute (IEC), Ministry of Health, Ananindeua, PA, 67030-000, Brazil.
- Bacteriology and Mycology Section, Evandro Chagas Institute (SEBAC/IEC), Ministry of Health, Ananindeua, PA, 67030-000, Brazil.
| |
Collapse
|
2
|
Mahmud MN, Momoshed M, Ahamed Talukder MF, Ferdous J, Koly FA, Islam S. Exploring the occurrence of Pseudomonas aeruginosa and comprehensive whole genome analysis of the bcsir_p4_s20 strain from municipal wastewater in Chattogram. World J Microbiol Biotechnol 2025; 41:112. [PMID: 40148700 DOI: 10.1007/s11274-025-04328-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
Various studies reported the existence of multidrug-resistant (MDR) Pseudomonas aeruginosa in environmental samples, including hospital wastewater, municipal wastewater, and surface water. In this study, we investigated the impact of untreated municipal wastewater transmitting antibiotic-resistant P. aeruginosa strains in wastewater networks of Chattogram City, Bangladesh, through antibiotic susceptibility profiles and whole-genome sequencing (WGS) of the MDR P. aeruginosa bcsir_p4_s20. Forty-two P. aeruginosa isolates were identified from eight locations using polymerase chain reaction (PCR), targeting the oprI and oprL genes, and antibiotic susceptibility was determined against 11 antibiotics by the disc diffusion method. Resistant isolates were identified at all locations, with the highest resistance frequency displayed towards meropenem, cefepime, and colistin. The WGS of bcsir_p4_s20 was performed using the NextSeq 2000 platform. Several bioinformatics tools, like FastQC, Trimmomatic, SPAdes, and Prokka, were used for quality evaluation, low-quality read and adapter filtration, de novo assembly, and functional annotation. Comprehensive Antibiotic Resistance Database (CARD), AMRFinderPlus, and virulence factor database (VFDB) were employed to determine resistance genes and virulence factors. The strain belongs to the O7 serogroup and sequence type ST357. The analysis identified antibiotic resistance genes (blaPDC-11, sul1, and others) that cause resistance through efflux pump and inactivation mechanisms, and virulent genes responsible for adherence (flagella, type IV pili), enzyme (phospholipase C), iron uptake (pyoverdine), secretion system (exoT, exoU), and toxin (toxA) secretion. Therefore, municipal wastewater is a potential reservoir for MDR P. aeruginosa, and establishing wastewater treatment plants (WWTPs) at the primary source points before discharging it to the wastewater network is suggested to mitigate the risk of outbreaks.
Collapse
Affiliation(s)
- Md Nuruddin Mahmud
- Department of Microbiology, University of Chittagong, Chattogram, Bangladesh
| | - Momthahena Momoshed
- Department of Microbiology, University of Chittagong, Chattogram, Bangladesh
| | | | - Jannatul Ferdous
- Industrial Microbiology Research Division, BCSIR Chattogram Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Chattogram, 4220, Bangladesh
| | - Farjana Akter Koly
- Industrial Microbiology Research Division, BCSIR Chattogram Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Chattogram, 4220, Bangladesh
| | - Saiful Islam
- Industrial Microbiology Research Division, BCSIR Chattogram Laboratories, Bangladesh Council of Scientific and Industrial Research (BCSIR), Chattogram, 4220, Bangladesh.
| |
Collapse
|
3
|
Flores-Vega VR, Partida-Sanchez S, Ares MA, Ortiz-Navarrete V, Rosales-Reyes R. High-risk Pseudomonas aeruginosa clones harboring β-lactamases: 2024 update. Heliyon 2025; 11:e41540. [PMID: 39850428 PMCID: PMC11754179 DOI: 10.1016/j.heliyon.2024.e41540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/22/2024] [Accepted: 12/26/2024] [Indexed: 01/25/2025] Open
Abstract
Carbapenem-resistant Pseudomonas aeruginosa is defined by the World Health Organization as a "high priority" in developing new antimicrobials. Indeed, the emergence and spread of multidrug-resistant (MDR) or extensively drug-resistant (XDR) bacteria increase the morbidity and mortality risk of infected patients. Genomic variants of P. aeruginosa that display phenotypes of MDR/XDR have been defined as high-risk global clones. In this mini-review, we describe some international high-risk clones that carry β-lactamase genes that can produce chronic colonization and increase infected patients' morbidity and mortality rates.
Collapse
Affiliation(s)
- Verónica Roxana Flores-Vega
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Santiago Partida-Sanchez
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Miguel A. Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Vianney Ortiz-Navarrete
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Mexico City, Mexico
| | - Roberto Rosales-Reyes
- Unidad de Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
4
|
Xie X, Liu Z, Huang J, Wang X, Tian Y, Xu P, Zheng G. Molecular epidemiology and carbapenem resistance mechanisms of Pseudomonas aeruginosa isolated from a hospital in Fujian, China. Front Microbiol 2024; 15:1431154. [PMID: 39301190 PMCID: PMC11410579 DOI: 10.3389/fmicb.2024.1431154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/05/2024] [Indexed: 09/22/2024] Open
Abstract
The worldwide spread of Pseudomonas aeruginosa, especially carbapenem-resistant P. aeruginosa (CRPA), poses a serious threat to global public health. In this research, we collected and studied the clinical prevalence, molecular epidemiology, and resistance mechanisms of CRPA in Fujian, China. Among 167 non-duplicated P. aeruginosa isolates collected during 2019-2021, strains from respiratory specimens and wound secretions of older males in the intensive care unit dominated. Ninety-eight isolates (58.7 %) were resistant to at least one tested antibiotic, among which 70 strains were carbapenem-resistant. Moleclar typing of the CRPA isolates revealed they were highly divergent, belonging to 46 different sequence types. It is noteworthy that two previously reported high risk clones, ST1971 specific to China and the globally prevalent ST357, were found. Several carbapenem resistance-related characteristics were also explored in 70 CRPA isolates. Firstly, carbapenemase was phenotypically positive in 22.9 % of CRPA, genetically predominant by metallo-β-lactamase (MBL) and co-carrige of different carbapenemase genes. Then, mutations of the carbapenem-specific porins oprD and opdP were commonly observed, with frequencies of 97.1% and 100.0%, respectively. Furthermore, the biofilm formation and relative transcription levels of 8 multidrug efflux pump genes were also found to be increased in 48.6 % and 72.9 % of CRPA isolates compared to the reference strain PAO1. These findings will help fill the data gaps in molecular characteristics of CRPA on the southeastern coast of China and emphasize the urgent need for data-based specific stewardship for antipseudomonal practices to prevent the dissemination of CRPA.
Collapse
Affiliation(s)
- Xueqin Xie
- Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
- Provincial Key Laboratory of Functional and Clinical Translational Medicine of Universities in Fujian, Xiamen Medical College, Xiamen, China
- Institute of Respiratory Disease, Xiamen Medical College, Xiamen, China
| | - Zhou Liu
- Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
- Provincial Key Laboratory of Functional and Clinical Translational Medicine of Universities in Fujian, Xiamen Medical College, Xiamen, China
- Institute of Respiratory Disease, Xiamen Medical College, Xiamen, China
| | - Jingyan Huang
- Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
| | - Xueting Wang
- Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
| | - Yuting Tian
- Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
| | - Pinying Xu
- Department of Basic Medical Science, Xiamen Medical College, Xiamen, China
| | - Gangsen Zheng
- Xiamen Key Laboratory of Genetic Testing, Department of Laboratory Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
| |
Collapse
|
5
|
Badillo-Larios NS, Turrubiartes-Martínez EA, Layseca-Espinosa E, González-Amaro R, Pérez-González LF, Niño-Moreno P. Interesting Cytokine Profile Caused by Clinical Strains of Pseudomonas aeruginosa MDR Carrying the exoU Gene. Int J Microbiol 2024; 2024:2748842. [PMID: 38974708 PMCID: PMC11227949 DOI: 10.1155/2024/2748842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 07/09/2024] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen in HAIs with two facets: the most studied is the high rate of antimicrobial resistance, and the less explored is the long list of virulence factors it possesses. This study aimed to characterize the virulence genes carried by strains as well as the profile of cytokines related to inflammation, according to the resistance profile presented. This study aims to identify the virulence factors associated with MDR strains, particularly those resistant to carbapenems, and assess whether there is a cytokine profile that correlates with these characteristics. As methodology species were identified by classical microbiological techniques and confirmed by molecular biology, resistance levels were determined by the minimum inhibitory concentration and identification of MDR strains. Virulence factor genotyping was performed using PCR. In addition, biofilm production was assessed using crystal violet staining. Finally, the strains were cocultured with PBMC, and cell survival and the cytokines IL-1β, IL-6, IL-10, IL-8, and TNF-α were quantified using flow cytometry. Bacteremia and nosocomial pneumonia in adults are the most frequent types of infection. In the toxigenic aspect, genes corresponding to the type III secretion system were present in at least 50% of cases. In addition, PBMC exposed to strains of four different categories according to their resistance and toxicity showed a differential pattern of cytokine expression, a decrease in IL-10, IL-6, and IL-8, and an over-secretion of IL-1b. In conclusion, the virulence genes showed a differentiated appearance for the two most aggressive exotoxins of T3SS (exoU and exoS) in multidrug-resistant strains. Moreover, the cytokine profile displays a low expression of cytokines with anti-inflammatory and proinflammatory effects in strains carrying the exoU gene.
Collapse
Affiliation(s)
- Nallely S. Badillo-Larios
- Center of Research in Health Sciences and BiomedicineFaculty of MedicineAutonomous University of San Luis Potosi, San Luis Potosi, Mexico
| | - Edgar Alejandro Turrubiartes-Martínez
- Center of Research in Health Sciences and BiomedicineFaculty of MedicineAutonomous University of San Luis Potosi, San Luis Potosi, Mexico
- Laboratory of Hematology, Faculty of Chemical SciencesAutonomous University of San Luis Potosi, San Luis Potosi, Mexico
| | - Esther Layseca-Espinosa
- Center of Research in Health Sciences and BiomedicineFaculty of MedicineAutonomous University of San Luis Potosi, San Luis Potosi, Mexico
- Faculty of MedicineAutonomous University of San Luis Potosi, San Luis Potosi, Mexico
| | - Roberto González-Amaro
- Center of Research in Health Sciences and BiomedicineFaculty of MedicineAutonomous University of San Luis Potosi, San Luis Potosi, Mexico
- Faculty of MedicineAutonomous University of San Luis Potosi, San Luis Potosi, Mexico
| | - Luis Fernando Pérez-González
- Faculty of MedicineAutonomous University of San Luis Potosi, San Luis Potosi, Mexico
- Central Hospital Dr. Ignacio Morones Prieto, San Luis Potosi, Mexico
| | - Perla Niño-Moreno
- Center of Research in Health Sciences and BiomedicineFaculty of MedicineAutonomous University of San Luis Potosi, San Luis Potosi, Mexico
- Genetics LaboratoryFaculty of Chemical SciencesAutonomous University of San Luis Potosi, San Luis Potosi, Mexico
| |
Collapse
|
6
|
Aroca Molina KJ, Gutiérrez SJ, Benítez-Campo N, Correa A. Genomic Differences Associated with Resistance and Virulence in Pseudomonas aeruginosa Isolates from Clinical and Environmental Sites. Microorganisms 2024; 12:1116. [PMID: 38930498 PMCID: PMC11205572 DOI: 10.3390/microorganisms12061116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/05/2024] [Accepted: 04/13/2024] [Indexed: 06/28/2024] Open
Abstract
Pseudomonas aeruginosa is a pathogen that causes healthcare-associated infections (HAIs) worldwide. It is unclear whether P. aeruginosa isolated from the natural environment has the same pathogenicity and antimicrobial resistance potential as clinical strains. In this study, virulence- and resistance-associated genes were compared in 14 genomic sequences of clinical and environmental isolates of P. aeruginosa using the VFDB, PATRIC, and CARD databases. All isolates were found to share 62% of virulence genes related to adhesion, motility, secretion systems, and quorum sensing and 72.9% of resistance genes related to efflux pumps and membrane permeability. Our results indicate that both types of isolates possess conserved genetic information associated with virulence and resistance mechanisms regardless of the source. However, none of the environmental isolates were associated with high-risk clones (HRCs). These clones (ST235 and ST111) were found only in clinical isolates, which have an impact on human medical epidemiology due to their ability to spread and persist, indicating a correlation between the clinical environment and increased virulence. The genomic variation and antibiotic susceptibility of environmental isolates of P. aeruginosa suggest potential biotechnological applications if obtained from sources that are under surveillance and investigation to limit the emergence and spread of antibiotic resistant strains.
Collapse
Affiliation(s)
- Kelly J. Aroca Molina
- Department of Biology, Faculty of Natural and Exact Sciences, Universidad del Valle, Cali 760042, Colombia; (K.J.A.M.); (S.J.G.)
| | - Sonia Jakeline Gutiérrez
- Department of Biology, Faculty of Natural and Exact Sciences, Universidad del Valle, Cali 760042, Colombia; (K.J.A.M.); (S.J.G.)
| | - Neyla Benítez-Campo
- Department of Biology, Faculty of Natural and Exact Sciences, Universidad del Valle, Cali 760042, Colombia; (K.J.A.M.); (S.J.G.)
| | - Adriana Correa
- Department of Basic Sciences, Universidad Santiago de Cali, Cali 760035, Colombia;
| |
Collapse
|
7
|
Talat A, Khan F, Khan AU. Genome analyses of colistin-resistant high-risk bla NDM-5 producing Klebsiella pneumoniae ST147 and Pseudomonas aeruginosa ST235 and ST357 in clinical settings. BMC Microbiol 2024; 24:174. [PMID: 38769479 PMCID: PMC11103832 DOI: 10.1186/s12866-024-03306-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/15/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Colistin is a last-resort antibiotic used in extreme cases of multi-drug resistant (MDR) Gram-negative bacterial infections. Colistin resistance has increased in recent years and often goes undetected due to the inefficiency of predominantly used standard antibiotic susceptibility tests (AST). To address this challenge, we aimed to detect the prevalence of colistin resistance strains through both Vitek®2 and broth micro-dilution. We investigated 1748 blood, tracheal aspirate, and pleural fluid samples from the Intensive Care Unit (ICU), Neonatal Intensive Care Unit (NICU), and Tuberculosis and Respiratory Disease centre (TBRD) in an India hospital. Whole-genome sequencing (WGS) of extremely drug-resitant (XDR) and pan-drug resistant (PDR) strains revealed the resistance mechanisms through the Resistance Gene Identifier (RGI.v6.0.0) and Snippy.v4.6.0. Abricate.v1.0.1, PlasmidFinder.v2.1, MobileElementFinder.v1.0.3 etc. detected virulence factors, and mobile genetic elements associated to uncover the pathogenecity and the role of horizontal gene transfer (HGT). RESULTS This study reveals compelling insights into colistin resistance among global high-risk clinical isolates: Klebsiella pneumoniae ST147 (16/20), Pseudomonas aeruginosa ST235 (3/20), and ST357 (1/20). Vitek®2 found 6 colistin-resistant strains (minimum inhibitory concentrations, MIC = 4 μg/mL), while broth microdilution identified 48 (MIC = 32-128 μg/mL), adhering to CLSI guidelines. Despite the absence of mobile colistin resistance (mcr) genes, mechanisms underlying colistin resistance included mgrB deletion, phosphoethanolamine transferases arnT, eptB, ompA, and mutations in pmrB (T246A, R256G) and eptA (V50L, A135P, I138V, C27F) in K. pneumoniae. P. aeruginosa harbored phosphoethanolamine transferases basS/pmrb, basR, arnA, cprR, cprS, alongside pmrB (G362S), and parS (H398R) mutations. Both strains carried diverse clinically relevant antimicrobial resistance genes (ARGs), including plasmid-mediated blaNDM-5 (K. pneumoniae ST147) and chromosomally mediated blaNDM-1 (P. aeruginosa ST357). CONCLUSION The global surge in MDR, XDR and PDR bacteria necessitates last-resort antibiotics such as colistin. However, escalating resistance, particularly to colistin, presents a critical challenge. Inefficient colistin resistance detection methods, including Vitek2, alongside limited surveillance resources, accentuate the need for improved strategies. Whole-genome sequencing revealed alarming colistin resistance among K. pneumoniae and P. aeruginosa in an Indian hospital. The identification of XDR and PDR strains underscores urgency for enhanced surveillance and infection control. SNP analysis elucidated resistance mechanisms, highlighting the complexity of combatting resistance.
Collapse
Affiliation(s)
- Absar Talat
- Medical Microbiology and Molecular Biology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India
| | - Fatima Khan
- Microbiology Department, JNMC and Hospital, Aligarh Muslim University, Aligarh, 202002, India
| | - Asad U Khan
- Medical Microbiology and Molecular Biology Lab, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
8
|
Matsumoto T, Yuasa A, Matsuda H, Ainiwaer D, Yonemoto N. Burden of Antimicrobial Resistance in Japan: A Systematic Literature Review and Meta-Analysis. Infect Dis Ther 2024; 13:1105-1125. [PMID: 38662332 PMCID: PMC11098996 DOI: 10.1007/s40121-024-00960-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/11/2024] [Indexed: 04/26/2024] Open
Abstract
INTRODUCTION Antimicrobial resistance (AMR) is one of the most serious public health challenges worldwide, including in Japan. However, there is limited evidence assessing the AMR burden in Japan. Thus, this systematic literature review (SLR) and meta-analysis (MA) were conducted to assess the clinical and economic burden of AMR in Japan. METHODS Comprehensive literature searches were performed on EMBASE, MEDLINE, the Cochrane Library, and ICHUSHI between 2012 and 2022 following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines. MA estimated a pooled effect between the two comparative arms (AMR vs. non-AMR). The results were reported in measures of odds ratios (ORs) for in-hospital mortality and in standardized mean differences (SMDs) for length of stay (LOS) and direct medical costs. RESULTS Literature searches identified 1256 de-duplicated records, of which 56 observational studies (English, n = 35; Japanese, n = 21) were included. Of note, twenty-two studies (39.3%) compared the AMR group with non-AMR group. In the SLR, in-hospital mortality, LOS, and direct medical costs were higher in the AMR group compared to the non-AMR group. Eight studies were selected for the MA. In the AMR group, the pooled estimate showed a statistically higher in-hospital mortality [random effect (RE)-OR 2.25, 95% CI 1.34-3.79; I2 = 89%; τ2 = 0.2257, p < 0.01], LOS (RE-SMD 0.37, 95% CI - 0.09-0.84; I2 = 99%; τ2 = 0.3600, p < 0.01), and direct medical cost (RE-SMD 0.53, 95% CI 0.43-0.62; I2 = 0.0%; τ2 = 0.0, p = 0.88) versus the non-AMR group. CONCLUSION Our study presents an overview of the clinical and economic burden of AMR in Japan. Patients with AMR infections experience significantly higher in-hospital mortality, LOS, and direct medical costs compared with patients without AMR infections.
Collapse
Affiliation(s)
- Tetsuya Matsumoto
- Department of Infectious Diseases, School of Medicine, International University of Health and Welfare, Narita, Japan
| | - Akira Yuasa
- Japan Access & Value, Pfizer Japan Inc., Shinjuku Bunka Quint Building, 3-22-7, Yoyogi, Shibuya-ku, Tokyo, 151-8589, Japan.
| | - Hiroyuki Matsuda
- Real World Evidence Solutions & HEOR, IQVIA Solutions Japan G.K., Tokyo, Japan
| | - Dilinuer Ainiwaer
- Real World Evidence Solutions & HEOR, IQVIA Solutions Japan G.K., Tokyo, Japan
| | - Naohiro Yonemoto
- Japan Access & Value, Pfizer Japan Inc., Shinjuku Bunka Quint Building, 3-22-7, Yoyogi, Shibuya-ku, Tokyo, 151-8589, Japan
| |
Collapse
|
9
|
Mahmoud SF, Fayez M, Swelum AA, Alswat AS, Alkafafy M, Alzahrani OM, Alsunaini SJ, Almuslem A, Al Amer AS, Yusuf S. Genetic Diversity, Biofilm Formation, and Antibiotic Resistance of Pseudomonas aeruginosa Isolated from Cow, Camel, and Mare with Clinical Endometritis. Vet Sci 2022; 9:vetsci9050239. [PMID: 35622767 PMCID: PMC9147788 DOI: 10.3390/vetsci9050239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/07/2022] [Accepted: 05/13/2022] [Indexed: 01/25/2023] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous opportunistic bacterium that causes diseases in animals and humans. This study aimed to investigate the genetic diversity, antimicrobial resistance, biofilm formation, and virulence and antibiotic resistance genes of P. aeruginosa isolated from the uterus of cow, camel, and mare with clinical endometritis and their drinking water. Among the 180 uterine swabs and 90 drinking water samples analysed, 54 (20%) P. aeruginosa isolates were recovered. Isolates were identified biochemically to the genus level by the automated Vitek 2 system and genetically by the amplification of the gyrB gene and the sequencing of the 16S rRNA gene. Multilocus sequence typing identified ten different sequence types for the P. aeruginosa isolates. The identification of ST2012 was significantly (p ≤ 0.05) higher than that of ST296, ST308, ST111, and ST241. The isolates exhibited significantly (p ≤ 0.05) increased resistance to piperacillin (77.8%), ciprofloxacin (59.3%), gentamicin (50%), and ceftazidime (38.9%). Eight (14.8%) isolates showed resistance to imipenem; however, none of the isolates showed resistance to colistin. Multidrug resistance (MDR) was observed in 24 isolates (44.4%) with a multiple antibiotic resistance index ranging from 0.44 to 0.77. MDR was identified in 30 (33.3%) isolates. Furthermore, 38.8% and 9.2% of the isolates exhibited a positive extended-spectrum-β-lactamase (ESBL) and metallo-β-lactamase (MBL) phenotype, respectively. The most prevalent β-lactamase encoding genes were blaTEM and blaCTX-M, however, the blaIPM gene was not detected in any of the isolates. Biofilm formation was observed in 49 (90.7%) isolates classified as: 11.1% weak biofilm producers; 38.9% moderate biofilm producers; 40.7% strong biofilm producers. A positive correlation was observed between the MAR index and biofilm formation. In conclusion, the results highlighted that farm animals with clinical endometritis could act as a reservoir for MDR and virulent P. aeruginosa. The emergence of ESBLs and MBLs producing P. aeruginosa in different farm animals is a public health concern. Therefore, surveillance programs to monitor and control MDR P. aeruginosa in animals are required.
Collapse
Affiliation(s)
- Samy F. Mahmoud
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia; (S.F.M.); (A.S.A.); (M.A.)
| | - Mahmoud Fayez
- Al-Ahsa Veterinary Diagnostic Laboratory, Ministry of Environment, Water and Agriculture, Al-Ahsa 31982, Saudi Arabia; (S.J.A.); (A.A.); (A.S.A.A.)
- Department of Bacteriology, Veterinary Serum and Vaccine Research Institute, Ministry of Agriculture, Cairo 12618, Egypt
- Correspondence:
| | - Ayman A. Swelum
- Department of Theriogenology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt;
| | - Amal S. Alswat
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia; (S.F.M.); (A.S.A.); (M.A.)
| | - Mohamed Alkafafy
- Department of Biotechnology, College of Science, Taif University, Taif 21944, Saudi Arabia; (S.F.M.); (A.S.A.); (M.A.)
| | - Othman M. Alzahrani
- Department of Biology, College of Science, Taif University, Taif 21944, Saudi Arabia;
| | - Saleem J. Alsunaini
- Al-Ahsa Veterinary Diagnostic Laboratory, Ministry of Environment, Water and Agriculture, Al-Ahsa 31982, Saudi Arabia; (S.J.A.); (A.A.); (A.S.A.A.)
| | - Ahmed Almuslem
- Al-Ahsa Veterinary Diagnostic Laboratory, Ministry of Environment, Water and Agriculture, Al-Ahsa 31982, Saudi Arabia; (S.J.A.); (A.A.); (A.S.A.A.)
| | - Abdulaziz S. Al Amer
- Al-Ahsa Veterinary Diagnostic Laboratory, Ministry of Environment, Water and Agriculture, Al-Ahsa 31982, Saudi Arabia; (S.J.A.); (A.A.); (A.S.A.A.)
| | - Shaymaa Yusuf
- Department of Microbiology, Faculty of Veterinary Medicine, Assiut University, Assiut 71515, Egypt;
| |
Collapse
|
10
|
Pulusu CP, Manivannan B, Raman SS, Singh S, Khamari B, Lama M, Peketi ASK, Datta C, Prasad KN, Nagaraja V, Pradeep BE. Localized outbreaks of Pseudomonas aeruginosa belonging to international high-risk clones in a south Indian hospital. J Med Microbiol 2022; 71. [PMID: 35286253 DOI: 10.1099/jmm.0.001500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. Pseudomonas aeruginosa is now considered as a major bacterial pathogen associated with hospital infections. Frequently, multidrug-resistant (MDR) and extensively drug-resistant (XDR) P. aeruginosa are being encountered. Unusual increase in the P. aeruginosa infections led to the suspicion of outbreaks in the urology ward and cardiothoracic and vascular surgery intensive care unit (CTVS-ICU).Hypothesis. We hypothesize that the localized outbreaks may have originated from environmental sources within the hospital premises. An alternative possibility is the transmission from a previously infected patient or hospital attendant. Understanding the drug-resistance profile and genome characteristics of these clinical samples would determine the likely source of infection and spread.Aim. To perform epidemiological and molecular investigations on the suspected outbreaks of P. aeruginosa in the study centre and identify potential sources of infection.Methodology. Fourteen drug-resistant P. aeruginosa isolated from patients of the urology ward, CTVS-ICU and tap waters collected during the suspected outbreaks were subjected to microbiological and genomic analysis. Comparative genome (CG) analysis of these 14 study genomes with 284 complete P. aeruginosa genomes was performed.Results. Multilocus sequence typing analysis revealed that the isolates belonged to five different sequence types (ST235, ST357, ST639, ST654 and ST1203) and clustered into three distinct groups while two CTVS-ICU isolates remained as singletons. Genome analysis distinguished that the outbreaks in the urology ward and CTVS-ICU are independent, epidemiologically unrelated to each other and with the tap-water isolates.Conclusion. This study highlights the presence of distinct, clonally unrelated, drug-resistant P. aeruginosa within a hospital setting. The genome analysis of the two localized outbreaks revealed their distinct genetic background and phylogenetically unrelated origin. Vigilant screening and effective implementation of infection control measures led to the successful containment of potential environmental reservoirs of P. aeruginosa within the premises.
Collapse
Affiliation(s)
- Chanakya Pachi Pulusu
- AMR Laboratory, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, India
| | - Bhavani Manivannan
- AMR Laboratory, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, India
| | - Sai Suguna Raman
- Infection Control, Sri Sathya Sai Institute of Higher Medical Sciences, Prasanthigram, India
| | - Sanjay Singh
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Balaram Khamari
- AMR Laboratory, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, India
| | - Manmath Lama
- AMR Laboratory, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, India
| | - Arun Sai Kumar Peketi
- AMR Laboratory, Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Puttaparthi, India
| | - Chandreyee Datta
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India
| | - Kashi Nath Prasad
- Department of Microbiology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India.,Department of Microbiology, Apollo Medics Super Speciality Hospital, Lucknow, India
| | - Valakunja Nagaraja
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bengaluru, India.,Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, India
| | | |
Collapse
|
11
|
Reducing the urine collection rate could prevent hospital-acquired horizontal transmission of multidrug-resistant Pseudomonas aeruginosa. J Infect Chemother 2022; 28:786-790. [DOI: 10.1016/j.jiac.2022.02.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/19/2022] [Accepted: 02/23/2022] [Indexed: 11/19/2022]
|
12
|
Chamberlain K, Johnson M, Reid TE, Springer TI. Utilizing in silico and in vitro methods to identify possible binding sites of a novel ligand against Pseudomonas aeruginosa phospholipase toxin ExoU. Biochem Biophys Rep 2022; 29:101188. [PMID: 34984240 PMCID: PMC8693347 DOI: 10.1016/j.bbrep.2021.101188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/07/2021] [Accepted: 12/11/2021] [Indexed: 11/25/2022] Open
Abstract
Multi-drug resistant infections caused by the opportunistic pathogen, Pseudomonas aeruginosa (P. aeruginosa), are a continuing problem that contribute to morbidity and mortality in immunocompromised hosts such as cystic fibrosis (CF), wound and burn patients. The bacterial toxin ExoU is one of four potent toxins that P. aeruginosa secretes into the epithelial cells of hosts. In this study, NMR Saturation Transfer Difference (STD) and in silico Schrödinger Computational Modeling were used to identify a possible binding site of a novel ligand methoctramine targeting ExoU. Future project goals will be to design a structure activity relationship (SAR) study of methoctramine and ExoU and lead to a new drug solving ExoU toxicity P. aeruginosa exerts in the clinical environment. STD-NMR identified a weak binding molecule for ExoU. Schrödinger's SiteMap tool to identify potential binding sites of methoctramine to ExoU. Positively charged protonated amines on methoctramine allows for multiple salt bridge and H-bond interactions. Top ranked druggable site aligns and corresponds to ExoU C-terminus region.
Collapse
Affiliation(s)
- Krista Chamberlain
- Pharmaceutical Sciences Department, School of Pharmacy, Concordia University Wisconsin, Mequon, WI, 53097, USA
| | - Mya Johnson
- Harvard Faculty of Arts and Science, School of Engineering and Applied Sciences, 150 Western Ave, Boston, MA, 02134, USA
| | - Terry-Elinor Reid
- Pharmaceutical Sciences Department, School of Pharmacy, Concordia University Wisconsin, Mequon, WI, 53097, USA
| | - Tzvia I Springer
- Pharmaceutical Sciences Department, School of Pharmacy, Concordia University Wisconsin, Mequon, WI, 53097, USA
| |
Collapse
|
13
|
Diversity and Distribution of Resistance Markers in Pseudomonas aeruginosa International High-Risk Clones. Microorganisms 2021; 9:microorganisms9020359. [PMID: 33673029 PMCID: PMC7918723 DOI: 10.3390/microorganisms9020359] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa high-risk clones are disseminated worldwide and they are common causative agents of hospital-acquired infections. In this review, we will summarize available data of high-risk P. aeruginosa clones from confirmed outbreaks and based on whole-genome sequence data. Common feature of high-risk clones is the production of beta-lactamases and among metallo-beta-lactamases NDM, VIM and IMP types are widely disseminated in different sequence types (STs), by contrast FIM type has been reported in ST235 in Italy, whereas GIM type in ST111 in Germany. In the case of ST277, it is most frequently detected in Brazil and it carries a resistome linked to blaSPM. Colistin resistance develops among P. aeruginosa clones in a lesser extent compared to other resistance mechanisms, as ST235 strains remain mainly susceptible to colistin however, some reports described mcr positive P. aeurigonsa ST235. Transferable quinolone resistance determinants are detected in P. aeruginosa high-risk clones and aac(6′)-Ib-cr variant is the most frequently reported as this determinant is incorporated in integrons. Additionally, qnrVC1 was recently detected in ST773 in Hungary and in ST175 in Spain. Continuous monitoring and surveillance programs are mandatory to track high-risk clones and to analyze emergence of novel clones as well as novel resistance determinants.
Collapse
|
14
|
Wei L, Wu Q, Zhang J, Guo W, Gu Q, Wu H, Wang J, Lei T, Xue L, Zhang Y, Wei X, Zeng X. Prevalence, Virulence, Antimicrobial Resistance, and Molecular Characterization of Pseudomonas aeruginosa Isolates From Drinking Water in China. Front Microbiol 2020; 11:544653. [PMID: 33343513 PMCID: PMC7744469 DOI: 10.3389/fmicb.2020.544653] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 11/02/2020] [Indexed: 01/26/2023] Open
Abstract
Pseudomonas aeruginosa is an important opportunistic pathogen and remains a major threat to the microbial safety of drinking water. There is a lack of comprehensive data on P. aeruginosa contamination in drinking water in China. Therefore, this study aimed to determine the prevalence, genetic diversity, virulence genes, and antimicrobial resistance of P. aeruginosa isolated from mineral water and spring water in China. From January 2013 to January 2014, 314 drinking water samples were collected from 23 cities in China. Of the collected samples, 77 (24.5%) were contaminated with P. aeruginosa, and these comprised 34 raw water (30.4%), 39 activated carbon-filtered water (30.6%), and four final water product (3.9%). A total of 132 P. aeruginosa isolates were obtained, and all of them showed the presence of virulence genes, with the detection rates of ExoU, ExoS, phzM, toxA, and lasB genes being 7.6, 86.3, 95.5, 89.4, and 100%, respectively. All isolates were sensitive to the 14 antibiotics (ciprofloxacin, levofloxacin, ofloxacin, norfloxacin, gentamicin, tobramycin, amikacin, polymyxin B, imipenem, meropenem, aztreonam, ceftazidime, cefepime, and piperacillin/tazobactam) tested. The 132 isolates were categorized into 42 sequence types according to multilocus sequence typing, and ST235 accounted for 8.3% (11) of the total isolates. Thus, this study provides comprehensive data on the prevalence and characteristics of P. aeruginosa in drinking water in China and can aid in developing preventive measures against contamination during the drinking water treatment process.
Collapse
Affiliation(s)
- Lei Wei
- Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Weipeng Guo
- Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qihui Gu
- Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Huiqing Wu
- Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Juan Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Tao Lei
- Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Liang Xue
- Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Youxiong Zhang
- Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xianhu Wei
- Guangdong Provincial Key Laboratory of Microbiology Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Xiaocong Zeng
- Biological Testing and Analysis Department, Guangdong Provincial Institute of Food Inspection, Guangzhou, China
| |
Collapse
|
15
|
Abdelhady ASM, Darwish NM, Abdel-Rahman SM, Abo El Magd NM. The combined antimicrobial activity of citrus honey and fosfomycin on multidrug resistant Pseudomonas aeruginosa isolates. AIMS Microbiol 2020; 6:162-175. [PMID: 32617448 PMCID: PMC7326728 DOI: 10.3934/microbiol.2020011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 06/05/2020] [Indexed: 12/18/2022] Open
Abstract
Infections with Pseudomonas aeruginosa (P. aeruginosa) have become a real fear in hospital-acquired infections, especially in critically ill and immunocompromised patients. Thus, advance of novel anti-infectives is currently pursued. The aim of the present study was to evaluate the antibacterial effect of each of citrus honey and fosfomycin in comparison to the combined effect of both of them on multidrug resistant (MDR) P. aeruginosa. 50 MDR P. aeruginosa isolates were tested for the antibacterial effect of citrus honey. Screening for potential synergistic activity of fosfomycin and honey combinations by E test. Molecular detection of the virulent exoenzyme U (exoU) genotype by conventional PCR was done. The present study found that 50 % (v/v) concentration of citrus honey was sufficient to inhibit the growth of most isolates (33/50, 66%). Minimal inhibitory concentration (MIC) for fosfomycin tested by E test was found to be >128 µg/mL in 50(100%) of MDR P. aeruginosa isolates but after repeating E test with Mueller-Hinton agar (MHA) containing sublethal concentration of citrus honey (29/50,58%) isolates were sensitive. Also, there was a significant correlation between the presence of exoU gene and positive synergy of citrus honey-fosfomycin combination. This study showed that citrus honey has antibacterial effect and synergy with fosfomycin antibiotic against MDR P. aeruginosa isolates. Also, exoU positive genotype is associated with MDR phenotype. In conclusion, our results revealed that the citrus honey-fosfomycin combination showed highly statistically significant effect on MDR P. aeruginosa fosfomycin susceptibility pattern. exoU positive P. aeruginosa isolates were detected mostly in burn unit and ICUs. Also, there was a statistically significant correlation between the presence of exoU gene and positive result of honey-fosfomycin combination E test.
Collapse
Affiliation(s)
- Amira Saied M Abdelhady
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nebal Medhat Darwish
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Safaa M Abdel-Rahman
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nagwa M Abo El Magd
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
16
|
Secondary in-hospital epidemiological investigation after an outbreak of Pseudomonas aeruginosa ST357. J Infect Chemother 2020; 26:257-265. [DOI: 10.1016/j.jiac.2019.09.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 09/04/2019] [Accepted: 09/24/2019] [Indexed: 12/27/2022]
|
17
|
Sawa T, Momiyama K, Mihara T, Kainuma A, Kinoshita M, Moriyama K. Molecular epidemiology of clinically high-risk Pseudomonas aeruginosa strains: Practical overview. Microbiol Immunol 2020; 64:331-344. [PMID: 31965613 DOI: 10.1111/1348-0421.12776] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/07/2020] [Accepted: 01/20/2020] [Indexed: 12/13/2022]
Abstract
In recent years, numerous outbreaks of multidrug-resistant Pseudomonas aeruginosa have been reported across the world. Once an outbreak occurs, besides routinely testing isolates for susceptibility to antimicrobials, it is required to check their virulence genotypes and clonality profiles. Replacing pulsed-field gel electrophoresis DNA fingerprinting are faster, easier-to-use, and less expensive polymerase chain reaction (PCR)-based methods for characterizing hospital isolates. P. aeruginosa possesses a mosaic genome structure and a highly conserved core genome displaying low sequence diversity and a highly variable accessory genome that communicates with other Pseudomonas species via horizontal gene transfer. Multiple-locus variable-number tandem-repeat analysis and multilocus sequence typing methods allow for phylogenetic analysis of isolates by PCR amplification of target genes with the support of Internet-based services. The target genes located in the core genome regions usually contain low-frequency mutations, allowing the resulting phylogenetic trees to infer evolutionary processes. The multiplex PCR-based open reading frame typing (POT) method, integron PCR, and exoenzyme genotyping can determine a genotype by PCR amplifying a specific insertion gene in the accessory genome region using a single or a multiple primer set. Thus, analyzing P. aeruginosa isolates for their clonality, virulence factors, and resistance characteristics is achievable by combining the clonality evaluation of the core genome based on multiple-locus targeting methods with other methods that can identify specific virulence and antimicrobial genes. Software packages such as eBURST, R, and Dendroscope, which are powerful tools for phylogenetic analyses, enable researchers and clinicians to visualize clonality associations in clinical isolates.
Collapse
Affiliation(s)
- Teiji Sawa
- Department of Anesthesiology, School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kyoko Momiyama
- School of Pharmacy, Kyoto Pharmaceutical University, Kyoto, Japan
| | - Toshihito Mihara
- Department of Anesthesiology, School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Atsushi Kainuma
- Department of Anesthesiology, School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Mao Kinoshita
- Department of Anesthesiology, School of Medicine, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kiyoshi Moriyama
- Department of Anesthesiology, School of Medicine, Kyorin University, Tokyo, Japan
| |
Collapse
|
18
|
Sawa T, Kooguchi K, Moriyama K. Molecular diversity of extended-spectrum β-lactamases and carbapenemases, and antimicrobial resistance. J Intensive Care 2020; 8:13. [PMID: 32015881 PMCID: PMC6988205 DOI: 10.1186/s40560-020-0429-6] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/13/2020] [Indexed: 12/16/2022] Open
Abstract
Along with the recent spread of multidrug-resistant bacteria, outbreaks of extended-spectrum β-lactamase (ESBL) and carbapenemase-producing bacteria present a serious challenge to clinicians. β-lactam antibiotics are the most frequently used antibacterial agents and ESBLs, and carbapenemases confer resistance not only to carbapenem antibiotics but also to penicillin and cephem antibiotics. The mechanism of β-lactam resistance involves an efflux pump, reduced permeability, altered transpeptidases, and inactivation by β-lactamases. Horizontal gene transfer is the most common mechanism associated with the spread of extended-spectrum β-lactam- and carbapenem resistance among pathogenic bacterial species. Along with the increase in antimicrobial resistance, many different types of ESBLs and carbapenemases have emerged with different enzymatic characteristics. For example, carbapenemases are represented across classes A to D of the Ambler classification system. Because bacteria harboring different types of ESBLs and carbapenemases require specific therapeutic strategies, it is essential for clinicians to understand the characteristics of infecting pathogens. In this review, we summarize the current knowledge on carbapenem resistance by ESBLs and carbapenemases, such as class A carbapenemases, class C extended-spectrum AmpC (ESAC), carbapenem-hydrolyzing class D β-lactamases (CHDLs), and class B metallo-β-lactamases, with the aim of aiding critical care clinicians in their therapeutic decision making.
Collapse
Affiliation(s)
- Teiji Sawa
- 1Department of Anesthesiology, School of Medicine, Kyoto Prefectural University of Medicine, 465 Kajii-cho, Kamigyo, Kyoto, 602-8566 Japan
| | - Kunihiko Kooguchi
- 2Department of Intensive Care, Kyoto City Hospital, 1-2 Higashitakada-cho, Mibu, Nakagyo, Kyoto, 604-8845 Japan
| | - Kiyoshi Moriyama
- 3Department of Anesthesiology, School of Medicine, Kyorin University, 6-20-2 Shinkawa, Mitaka, Tokyo 181-8611 Japan
| |
Collapse
|
19
|
Pelegrin AC, Saharman YR, Griffon A, Palmieri M, Mirande C, Karuniawati A, Sedono R, Aditianingsih D, Goessens WHF, van Belkum A, Verbrugh HA, Klaassen CHW, Severin JA. High-Risk International Clones of Carbapenem-Nonsusceptible Pseudomonas aeruginosa Endemic to Indonesian Intensive Care Units: Impact of a Multifaceted Infection Control Intervention Analyzed at the Genomic Level. mBio 2019; 10:e02384-19. [PMID: 31719179 PMCID: PMC6851282 DOI: 10.1128/mbio.02384-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 10/04/2019] [Indexed: 12/28/2022] Open
Abstract
Infection control effectiveness evaluations require detailed epidemiological and microbiological data. We analyzed the genomic profiles of carbapenem-nonsusceptible Pseudomonas aeruginosa (CNPA) strains collected from two intensive care units (ICUs) in the national referral hospital in Jakarta, Indonesia, where a multifaceted infection control intervention was applied. We used clinical data combined with whole-genome sequencing (WGS) of systematically collected CNPA to infer the transmission dynamics of CNPA strains and to characterize their resistome. We found that the number of CNPA transmissions and acquisitions by patients was highly variable over time but that, overall, the rates were not significantly reduced by the intervention. Environmental sources were involved in these transmissions and acquisitions. Four high-risk international CNPA clones (ST235, ST823, ST357, and ST446) dominated, but the distribution of these clones changed significantly after the intervention was implemented. Using resistome analysis, carbapenem resistance was explained by the presence of various carbapenemase-encoding genes (blaGES-5, blaVIM-2-8, and blaIMP-1-7-43) and by mutations within the porin OprD. Our results reveal for the first time the dynamics of P. aeruginosa antimicrobial resistance (AMR) profiles in Indonesia and additionally show the utility of WGS in combination with clinical data to evaluate the impact of an infection control intervention. (This study has been registered at www.trialregister.nl under registration no. NTR5541).IMPORTANCE In low-to-middle-income countries such as Indonesia, work in intensive care units (ICUs) can be hampered by lack of resources. Conducting large epidemiological studies in such settings using genomic tools is rather challenging. Still, we were able to systematically study the transmissions of carbapenem-nonsusceptible strains of P. aeruginosa (CNPA) within and between ICUs, before and after an infection control intervention. Our data show the importance of the broad dissemination of the internationally recognized CNPA clones, the relevance of environmental reservoirs, and the mixed effects of the implemented intervention; it led to a profound change in the clonal make-up of CNPA, but it did not reduce the patients' risk of CNPA acquisitions. Thus, CNPA epidemiology in Indonesian ICUs is part of a global expansion of multiple CNPA clones that remains difficult to control by infection prevention measures.
Collapse
Affiliation(s)
- Andreu Coello Pelegrin
- Clinical Unit, bioMérieux, La Balme Les Grottes, France
- Vaccine & Infectious Disease Institute, Laboratory of Medical Microbiology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Yulia Rosa Saharman
- Department of Clinical Microbiology, Faculty of Medicine, Universitas Indonesia/Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | - Mattia Palmieri
- Clinical Unit, bioMérieux, La Balme Les Grottes, France
- Vaccine & Infectious Disease Institute, Laboratory of Medical Microbiology, Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | | | - Anis Karuniawati
- Department of Clinical Microbiology, Faculty of Medicine, Universitas Indonesia/Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Rudyanto Sedono
- Critical Care Division, Department of Anesthesia and Intensive Care, Faculty of Medicine, Universitas Indonesia/Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Dita Aditianingsih
- Critical Care Division, Department of Anesthesia and Intensive Care, Faculty of Medicine, Universitas Indonesia/Dr. Cipto Mangunkusumo General Hospital, Jakarta, Indonesia
| | - Wil H F Goessens
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | | | - Henri A Verbrugh
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Corné H W Klaassen
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Juliëtte A Severin
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
20
|
Javanmardi F, Emami A, Pirbonyeh N, Keshavarzi A, Rajaee M. A systematic review and meta-analysis on Exo-toxins prevalence in hospital acquired Pseudomonas aeruginosa isolates. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2019; 75:104037. [PMID: 31518698 DOI: 10.1016/j.meegid.2019.104037] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 08/26/2019] [Accepted: 09/10/2019] [Indexed: 10/26/2022]
Abstract
INTRODUCTION Pseudomonas aeruginosa (PA) is an opportunistic pathogen that produces widespread and often overwhelming infections. Among different virulence factors, toxins are important bacterial agent which increases PA pathogenesis especially in immunocompromised patients. The aim of this meta-analysis was to determine the prevalence of exotoxin production in PA isolates in the world. Also according to the importance of drug resistance in isolates with more pathogenicity this estimation was conducted in resistant isolates. METHODS A systematic search was conducted in international database like PubMed, Scopus, Web of Science and Embase up to December 2018. Joanna Briggs Institute Checklist was used to evaluate the quality assessment of studies. Random effect model was applied to pool the prevalence data. Stata 13 software was used to analyze the data. RESULTS Total of 58 eligible studies that fulfilled the inclusion criteria of the study were selected for qualitative synthesis. Among exotoxins; the highest prevalence was related to exoT (0.83 (CI95%: 0.64-0.96)). Lowest prevalence rate was seen in exoU with estimated prevalence 0.32 (CI95%: 0.24-0.41). In Carbapenem resistance isolates exoA and exoT had the highest prevalence (1.00 (CI95%: 0.98-1.00)). CONCLUSION This first meta-analysis on PA isolates with toxin potency indicated high prevalence of exotoxin production in clinical isolates of PA which is an alarming point as a clinical aspect. It was found that the ExoT has the most prevalence rate among toxins. The results of simultaneous evaluation of exotoxins and antimicrobial resistance can develop treatment policies against PA infections in hospitals and hospitalized patients.
Collapse
Affiliation(s)
- Fatemeh Javanmardi
- Burn and Wound Healing Research Center, Microbiology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Emami
- Burn and Wound Healing Research Center, Microbiology Department, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Neda Pirbonyeh
- Burn and Wound Healing Research Center, Microbiology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abdolkhalegh Keshavarzi
- Burn and Wound Healing Research Center, Surgical Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahrokh Rajaee
- Burn and Wound Healing Research Center, Microbiology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
21
|
Le-Vo HN, Tran PTB, Le L, Matsumoto Y, Motooka D, Nakamura S, Jones JW, Iida T, Cao V. Complex Class 1 Integron in a Clinical Escherichia coli Strain From Vietnam Carrying Both mcr-1 and bla NDM-1. Front Microbiol 2019; 10:2472. [PMID: 31736911 PMCID: PMC6834847 DOI: 10.3389/fmicb.2019.02472] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/15/2019] [Indexed: 11/13/2022] Open
Abstract
The co-production of MCR and carbapenemase in Enterobacteriaceae has been previously reported. Here, we describe a clinical strain of Escherichia coli from Vietnam carrying both mcr-1 and bla NDM-1. Whole-genome sequencing showed that the genome of this strain consists of a 4,975,832-bp chromosome and four plasmids. The mcr-1 and bla NDM-1 genes are located on IncI2 and IncA/C2-type plasmids, respectively. Genetic analysis revealed the presence of a multidrug-resistant region with the structure of a novel complex class 1 integron including a class 1 integron region bearing two 5' conserved segments and one 3' conserved segment and two complete structures of ISCR1. The complex integron contains aminoglycoside resistance genes aadA2, aadB, strA, strB, and aphA6, quinolone resistance gene qnrA1, extended-spectrum β-lactamase gene bla OXA- 4, and a Tn125-like transposon bearing bla NDM-1. In addition, the dfrA12-gcuF-aadA2-cmlA1-aadA1-qacH gene cassette array belonging to the sul3-type integron was also identified, but the region found downstream of the gene cassette array is the IS440-tet(M)-IS26 element instead of the sul3 gene. The results further support that Enterobacteriaceae isolates co-harboring mcr and bla NDM are widely being distributed. The structural characteristics of the complex integron reveal that ISCR1 elements play an important role in the mobilization of bla NDM-1 and the development of multidrug-resistant regions.
Collapse
Affiliation(s)
- Hong-Ngoc Le-Vo
- Department of Immunology and Microbiology, Pasteur Institute in Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Phuong Thi-Bich Tran
- Department of Immunology and Microbiology, Pasteur Institute in Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Lien Le
- Department of Immunology and Microbiology, Pasteur Institute in Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Yuki Matsumoto
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Daisuke Motooka
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Shota Nakamura
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - James W Jones
- Department of Bacterial and Parasitic Diseases, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Tetsuya Iida
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Department of Bacterial Infections, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Van Cao
- Department of Immunology and Microbiology, Pasteur Institute in Ho Chi Minh City, Ho Chi Minh City, Vietnam
| |
Collapse
|
22
|
High frequency of the exoU+/exoS+ genotype associated with multidrug-resistant "high-risk clones" of Pseudomonas aeruginosa clinical isolates from Peruvian hospitals. Sci Rep 2019; 9:10874. [PMID: 31350412 PMCID: PMC6659710 DOI: 10.1038/s41598-019-47303-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/15/2019] [Indexed: 01/09/2023] Open
Abstract
The type III secretion system of Pseudomonas aeruginosa is an important virulence factor contributing to the cytotoxicity and the invasion process of this microorganism. The current study aimed to determine the presence of the exoU+/exoS+ genotype in P. aeruginosa clinical isolates. The presence of exoS, exoT, exoU and exoY was determined in 189 P. aeruginosa by PCR, and the presence/absence of exoU was analysed according to source infection, clonal relationships, biofilm formation, motility and antimicrobial susceptibility. The gyrA, parC, oprD, efflux pump regulators and β-lactamases genes were also analysed by PCR/sequencing. The exoS, exoT and exoY genes were found in 100% of the isolates. Meanwhile, exoU was present in 43/189 (22.8%) of the isolates, being significantly associated with multidrug resistance, extensively drug resistance as well as with higher level quinolone resistance. However, the presence of β-lactamases, mutations in gyrA and parC, and relevant modifications in efflux pumps and OprD were not significantly associated with exoU+ isolates. MLST analysis of a subset of 25 isolates showed 8 different STs displaying the exoU+/exoS+ genotype. The MDR basis of the exoU+ isolates remain to be elucidated. Furthermore, the clinical implications and spread of exoU+/exoS+ P. aeruginosa isolates need to be established.
Collapse
|