1
|
Zhang Z, Li J, Willis D, Shi S, Tu H, Costa M. Isorhapontigenin Inhibits Cell Growth, Angiogenesis, Migration, and Invasion of Non-Small-Cell Lung Cancer Cells Through NEDD9 Signaling. Int J Mol Sci 2025; 26:4207. [PMID: 40362444 PMCID: PMC12071804 DOI: 10.3390/ijms26094207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/22/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Lung cancer is the leading cause of cancer deaths among American men, even though various treatments are available. The discovery and use of new alternative drugs to treat lung cancers are needed to reduce lung cancer mortality. Phytochemicals are potentially desirable therapeutic agents due to their better safety profiles. Isorhapontigenin (ISO) is an orally bioavailable dietary stilbene. Our studies show that treatment with ISO inhibits human lung cancer cell growth, angiogenesis, invasion, and migration. Neural precursor cell expressed developmentally downregulated 9 (NEDD9), a multi-domain scaffolding protein, regulates various processes crucial for tumorigenesis and metastasis. Our results show that NEDD9 is upregulated in the lung tissues from human lung adenocarcinomas (LUADs) and squamous-cell carcinomas (LUSCs) compared to normal lungs. Overexpression of NEDD9 elevates the invasion and migration of human lung cancer cells. Treatment of human lung cancer cells with ISO decreases NEDD9 protein levels. Our studies have also demonstrated that NEDD9 positively regulates angiogenesis, an essential factor in cancer progression. ISO treatment reduces angiogenesis. Moreover, ISO reduces the protein levels of hypoxia-inducible factor-1α (HIF-1α), a transcription factor critical for angiogenesis. Aberrant high expression of β-Catenin leads to various diseases including cancer. Our results show that ISO treatment reduces the activation of β-Catenin through the downregulation of NEDD9. Studies indicate that ISO decreases NEDD9, causing the suppression of cell growth, angiogenesis, invasion, and migration of human lung cancer cells. ISO is a potent therapeutic agent for lung cancer treatment.
Collapse
MESH Headings
- Humans
- Cell Movement/drug effects
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Lung Neoplasms/drug therapy
- Cell Proliferation/drug effects
- Neovascularization, Pathologic/drug therapy
- Neovascularization, Pathologic/metabolism
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/genetics
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/drug therapy
- Carcinoma, Non-Small-Cell Lung/genetics
- Stilbenes/pharmacology
- Signal Transduction/drug effects
- Cell Line, Tumor
- Neoplasm Invasiveness
- Phosphoproteins/metabolism
- Phosphoproteins/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Gene Expression Regulation, Neoplastic/drug effects
- Angiogenesis
Collapse
Affiliation(s)
| | | | | | | | | | - Max Costa
- Division of Environmental Medicine, Department of Medicine, New York University Grossman School of Medicine, 341 E 25th Street, New York, NY 10010, USA
| |
Collapse
|
2
|
Luo H, Hu B, Gu XR, Chen J, Fan XQ, Zhang W, Wang RT, He XD, Guo W, Dai N, Jian D, Li Q, Xu CX, Jin H. The miR-23a/27a/24 - 2 cluster drives immune evasion and resistance to PD-1/PD-L1 blockade in non-small cell lung cancer. Mol Cancer 2024; 23:285. [PMID: 39736629 DOI: 10.1186/s12943-024-02201-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 12/18/2024] [Indexed: 01/01/2025] Open
Abstract
Programmed cell death protein ligand-1 (PD-L1) and major histocompatibility complex I (MHC-I) are key molecules related to tumor immune evasion and resistance to programmed cell death protein 1 (PD-1)/PD-L1 blockade. Here, we demonstrated that the upregulation of all miRNAs in the miR-23a/27a/24 - 2 cluster was correlated with poor survival, immune evasion and PD-1/PD-L1 blockade resistance in patients with non-small cell lung cancer (NSCLC). The overexpression of all miRNAs in the miR-23a/27a/24 - 2 cluster upregulated PD-L1 expression by targeting Cbl proto-oncogene B (CBLB) and downregulated MHC-I expression by increasing the level of eukaryotic initiation factor 3B (eIF3B) via the targeting of microphthalmia-associated transcription factor (MITF). In addition, we demonstrated that the expression of the miR-23a/27a/24 - 2 cluster of miRNAs is maintained in NSCLC through increased Wnt/β-catenin signaling-regulated interaction of transcription factor 4 (TCF4) and the miR-23a/27a/24 - 2 cluster promoter. Notably, pharmacologic targeting of the eIF3B pathway dramatically increased sensitivity to PD-1/PD-L1 blockade in patients with high expression of the miR-23a/27a/24 - 2 cluster in NSCLC. This effect was achieved by increasing MHC-I expression while maintaining high expression of PD-L1 induced by the miR-23a/27a/24 - 2 cluster. In summary, we elucidate the mechanism by which the miR-23a/27a/24 - 2 cluster miRNAs maintain their own expression and the molecular mechanism by which the miR-23a/27a/24 - 2 cluster miRNAs promote tumor immune evasion and PD-1/PD-L1 blockade resistance. In addition, we provide a novel strategy for the treatment of NSCLC expressing high levels of the miR-23a/27a/24 - 2 cluster.
Collapse
Affiliation(s)
- Hao Luo
- Department of Thoracic Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
- School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Bin Hu
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Medicine School of University of Electronic Science and Technology, Chengdu, China
| | - Xiang-Rong Gu
- Department of Radiology, Daping Hospital, Army Military Medical University, Chongqing, 400042, China
| | - Jing Chen
- School of Medicine, Chongqing University, Chongqing, 400030, China
| | - Xiao-Qing Fan
- Department of Thoracic Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Wei Zhang
- Department of Medical Oncology, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Medicine School of University of Electronic Science and Technology, Chengdu, China
| | - Ren-Tao Wang
- College of Pulmonary and Critical Care Medicine, Chinese PLA General Hospital, Beijing, China
| | - Xian-Dong He
- Department of Thoracic Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Wei Guo
- Department of Thoracic Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Nan Dai
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Dan Jian
- Cancer Center, Daping Hospital, Army Medical University, Chongqing, 400042, China
| | - Qing Li
- The Shapingba Hospital, Chongqing University, Chongqing, 400030, China.
| | - Cheng-Xiong Xu
- School of Medicine, Chongqing University, Chongqing, 400030, China.
| | - Hua Jin
- Department of Thoracic Surgery, Daping Hospital, Army Medical University, Chongqing, 400042, China.
| |
Collapse
|
3
|
Tang L, Xu S, Wei R, Fan G, Zhou J, Wei X, Xu X. Transcription factor 7 like 2 promotes metastasis in hepatocellular carcinoma via NEDD9-mediated activation of AKT/mTOR signaling pathway. Mol Med 2024; 30:108. [PMID: 39060928 PMCID: PMC11282612 DOI: 10.1186/s10020-024-00878-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignant tumors of the digestive system, and the exact mechanism of HCC is still unclear. Transcription factor 7 like 2 (TCF7L2) plays a pivotal role in cell proliferation and stemness maintenance. However, the exact mechanism of TCF7L2 in HCC remains unclear. METHODS Clinical samples and public databases were used to analyze the expression and prognosis of TCF7L2 in HCC. The function of TCF7L2 in HCC was studied in vitro and in vivo. ChIP and luciferase assays were used to explore the molecular mechanism of TCF7L2. The relationship between TCF7L2 and NEDD9 was verified in HCC clinical samples by tissue microarrays. RESULTS The expression of TCF7L2 was upregulated in HCC, and high expression of TCF7L2 was associated with poor prognosis of HCC patients. Overexpression of TCF7L2 promoted the metastasis of HCC in vitro and in vivo, while Knockdown of TCF7L2 showed the opposite effect. Mechanically, TCF7L2 activated neural precursor cell expressed developmentally downregulated protein 9 (NEDD9) transcription by binding to the -1522/-1509 site of the NEDD9 promoter region, thereby increasing the phosphorylation levels of AKT and mTOR. The combination of TCF7L2 and NEDD9 could distinguish the survival of HCC patients. CONCLUSIONS This study demonstrated that TCF7L2 promotes HCC metastasis by activating AKT/mTOR pathway in a NEDD9-dependent manner, suggesting that potential of TCF7L2 and NEDD9 as prognostic markers and therapeutic targets for HCC.
Collapse
Affiliation(s)
- Linsong Tang
- Department of Urology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, Zhejiang, China
| | - Shengjun Xu
- Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, Zhejiang, China
| | - Rongli Wei
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Guanghan Fan
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Junbin Zhou
- Department of Hepatobiliary and Pancreatic Surgery, Lishui People's Hospital, Lishui, Zhejiang, China
| | - Xuyong Wei
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, Zhejiang, China
| | - Xiao Xu
- Institute of Translational Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), School of Clinical Medicine, Hangzhou Medical College, Hangzhou, Zhejiang, China.
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Bertrand JU, Petit V, Aktary Z, de la Grange P, Elkoshi N, Sohier P, Delmas V, Levy C, Larue L. Loss of Dicer in Newborn Melanocytes Leads to Premature Hair Graying and Changes in Integrin Expression. J Invest Dermatol 2024; 144:601-611. [PMID: 37739336 DOI: 10.1016/j.jid.2023.08.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/24/2023]
Abstract
Premature hair graying occurs owing to the depletion of melanocyte stem cells in the hair follicle, which can be accelerated by stress caused by genetic or environmental factors. However, the connection between stress and melanocyte stem cell loss is not fully understood. MicroRNAs are molecules that control gene expression by regulating mRNA stability and translation and are produced by the enzyme Dicer, which is repressed under stress. In this study, using 2 mouse genetic models and human and mouse cell lines, we found that the inactivation of Dicer in melanocytes leads to misplacement of these cells within the hair follicle, resulting in a lack of melanin transfer to keratinocytes in the growing hair and the exhaustion of the melanocyte stem cell pool. We also show that miR-92b, which regulates ItgaV mRNA and protein levels, plays a role in altering melanocyte migration. Overall, our findings suggest that the Dicer-miR92b-ItgaV pathway serves as a major signaling pathway linking stress to premature hair greying.
Collapse
Affiliation(s)
- Juliette U Bertrand
- INSERM U1021, Normal and Pathological Development of Melanocytes, Institut Curie, PSL Research University, Orsay, France; Centre National de la Recherche Scientifique (CNRS) UMR 3347, Univ Paris-Sud, Univ Paris-Saclay, Orsay, France
| | - Valérie Petit
- INSERM U1021, Normal and Pathological Development of Melanocytes, Institut Curie, PSL Research University, Orsay, France; Centre National de la Recherche Scientifique (CNRS) UMR 3347, Univ Paris-Sud, Univ Paris-Saclay, Orsay, France
| | - Zackie Aktary
- INSERM U1021, Normal and Pathological Development of Melanocytes, Institut Curie, PSL Research University, Orsay, France; Centre National de la Recherche Scientifique (CNRS) UMR 3347, Univ Paris-Sud, Univ Paris-Saclay, Orsay, France
| | | | - Nadav Elkoshi
- Department of Human Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Pierre Sohier
- INSERM U1021, Normal and Pathological Development of Melanocytes, Institut Curie, PSL Research University, Orsay, France; Centre National de la Recherche Scientifique (CNRS) UMR 3347, Univ Paris-Sud, Univ Paris-Saclay, Orsay, France
| | - Véronique Delmas
- INSERM U1021, Normal and Pathological Development of Melanocytes, Institut Curie, PSL Research University, Orsay, France; Centre National de la Recherche Scientifique (CNRS) UMR 3347, Univ Paris-Sud, Univ Paris-Saclay, Orsay, France
| | - Carmit Levy
- Department of Human Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel-Aviv, Israel
| | - Lionel Larue
- INSERM U1021, Normal and Pathological Development of Melanocytes, Institut Curie, PSL Research University, Orsay, France; Centre National de la Recherche Scientifique (CNRS) UMR 3347, Univ Paris-Sud, Univ Paris-Saclay, Orsay, France.
| |
Collapse
|
5
|
Pozniak J, Pedri D, Landeloos E, Van Herck Y, Antoranz A, Vanwynsberghe L, Nowosad A, Roda N, Makhzami S, Bervoets G, Maciel LF, Pulido-Vicuña CA, Pollaris L, Seurinck R, Zhao F, Flem-Karlsen K, Damsky W, Chen L, Karagianni D, Cinque S, Kint S, Vandereyken K, Rombaut B, Voet T, Vernaillen F, Annaert W, Lambrechts D, Boecxstaens V, Saeys Y, van den Oord J, Bosisio F, Karras P, Shain AH, Bosenberg M, Leucci E, Paschen A, Rambow F, Bechter O, Marine JC. A TCF4-dependent gene regulatory network confers resistance to immunotherapy in melanoma. Cell 2024; 187:166-183.e25. [PMID: 38181739 DOI: 10.1016/j.cell.2023.11.037] [Citation(s) in RCA: 59] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 08/23/2023] [Accepted: 11/29/2023] [Indexed: 01/07/2024]
Abstract
To better understand intrinsic resistance to immune checkpoint blockade (ICB), we established a comprehensive view of the cellular architecture of the treatment-naive melanoma ecosystem and studied its evolution under ICB. Using single-cell, spatial multi-omics, we showed that the tumor microenvironment promotes the emergence of a complex melanoma transcriptomic landscape. Melanoma cells harboring a mesenchymal-like (MES) state, a population known to confer resistance to targeted therapy, were significantly enriched in early on-treatment biopsies from non-responders to ICB. TCF4 serves as the hub of this landscape by being a master regulator of the MES signature and a suppressor of the melanocytic and antigen presentation transcriptional programs. Targeting TCF4 genetically or pharmacologically, using a bromodomain inhibitor, increased immunogenicity and sensitivity of MES cells to ICB and targeted therapy. We thereby uncovered a TCF4-dependent regulatory network that orchestrates multiple transcriptional programs and contributes to resistance to both targeted therapy and ICB in melanoma.
Collapse
Affiliation(s)
- Joanna Pozniak
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium.
| | - Dennis Pedri
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium; Laboratory for Membrane Trafficking, Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Ewout Landeloos
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium; Department of General Medical Oncology, UZ Leuven, Leuven, Belgium
| | | | - Asier Antoranz
- Laboratory of Translational Cell and Tissue Research, Department of Imaging and Pathology, KU Leuven and UZ Leuven, Leuven, Belgium
| | - Lukas Vanwynsberghe
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Ada Nowosad
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Niccolò Roda
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Samira Makhzami
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Greet Bervoets
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Lucas Ferreira Maciel
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Carlos Ariel Pulido-Vicuña
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - Lotte Pollaris
- Data Mining and Modeling for Biomedicine Group, VIB Center for Inflammation Research, Ghent, Belgium; Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Ruth Seurinck
- Data Mining and Modeling for Biomedicine Group, VIB Center for Inflammation Research, Ghent, Belgium; Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Fang Zhao
- Laboratory of Molecular Tumor Immunology, Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site Essen, Essen, Germany
| | - Karine Flem-Karlsen
- Department of Dermatology, Yale University, 15 York Street, New Haven, CT 05610, USA
| | - William Damsky
- Departments of Dermatology and Pathology, Yale University, 15 York Street, New Haven, CT 05610, USA
| | - Limin Chen
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Despoina Karagianni
- Immune Regulation and Tumor Immunotherapy Group, Cancer Immunology Unit, Research Department of Haematology, UCL Cancer Institute, London WC1E 6DD, UK
| | - Sonia Cinque
- Laboratory for RNA Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Sam Kint
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven, Belgium; KU Leuven Institute for Single Cell Omics (LISCO), KU Leuven, Leuven, Belgium
| | - Katy Vandereyken
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven, Belgium; KU Leuven Institute for Single Cell Omics (LISCO), KU Leuven, Leuven, Belgium
| | - Benjamin Rombaut
- Data Mining and Modeling for Biomedicine Group, VIB Center for Inflammation Research, Ghent, Belgium; Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Thierry Voet
- Laboratory of Reproductive Genomics, Department of Human Genetics, KU Leuven, Leuven, Belgium; KU Leuven Institute for Single Cell Omics (LISCO), KU Leuven, Leuven, Belgium
| | | | - Wim Annaert
- Laboratory for Membrane Trafficking, Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Diether Lambrechts
- Laboratory of Translational Genetics, Center for Cancer Biology, VIB, Leuven, Belgium; Center for Human Genetics, KU Leuven, Leuven, Belgium
| | | | - Yvan Saeys
- Data Mining and Modeling for Biomedicine Group, VIB Center for Inflammation Research, Ghent, Belgium; Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Ghent, Belgium
| | - Joost van den Oord
- Laboratory of Translational Cell and Tissue Research, Department of Pathology, UZ Leuven, Leuven, Belgium
| | - Francesca Bosisio
- Laboratory of Translational Cell and Tissue Research, Department of Pathology, UZ Leuven, Leuven, Belgium
| | - Panagiotis Karras
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium
| | - A Hunter Shain
- Department of Dermatology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Marcus Bosenberg
- Departments of Dermatology, Pathology and Immunobiology, Yale University, New Haven, CT 05610, USA
| | - Eleonora Leucci
- Laboratory for RNA Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Annette Paschen
- Laboratory of Molecular Tumor Immunology, Department of Dermatology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany; German Cancer Consortium (DKTK), Partner Site Essen, Essen, Germany
| | - Florian Rambow
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium; Department of Applied Computational Cancer Research, Institute for AI in Medicine (IKIM), University Hospital Essen, Essen, Germany; University Duisburg-Essen, Essen, Germany.
| | - Oliver Bechter
- Department of General Medical Oncology, UZ Leuven, Leuven, Belgium.
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium; Department of Oncology, KU Leuven, Leuven, Belgium.
| |
Collapse
|
6
|
MicroRNA as a Diagnostic Tool, Therapeutic Target and Potential Biomarker in Cutaneous Malignant Melanoma Detection—Narrative Review. Int J Mol Sci 2023; 24:ijms24065386. [PMID: 36982460 PMCID: PMC10048937 DOI: 10.3390/ijms24065386] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/27/2023] [Accepted: 03/09/2023] [Indexed: 03/16/2023] Open
Abstract
Melanoma is the most serious type of skin cancer, causing a large majority of deaths but accounting for only ~1% of all skin cancer cases. The worldwide incidence of malignant melanoma is increasing, causing a serious socio-economic problem. Melanoma is diagnosed mainly in young and middle-aged people, which distinguishes it from other solid tumors detected mainly in mature people. The early detection of cutaneous malignant melanoma (CMM) remains a priority and it is a key factor limiting mortality. Doctors and scientists around the world want to improve the quality of diagnosis and treatment, and are constantly looking for new, promising opportunities, including the use of microRNAs (miRNAs), to fight melanoma cancer. This article reviews miRNA as a potential biomarker and diagnostics tool as a therapeutic drugs in CMM treatment. We also present a review of the current clinical trials being carried out worldwide, in which miRNAs are a target for melanoma treatment.
Collapse
|
7
|
Zhang Z, Li J, Yan B, Tu H, Huang C, Costa M. Loss of MEG3 and upregulation of miR-145 play an important role in the invasion and migration of Cr(VI)-transformed cells. Heliyon 2022; 8:e10086. [PMID: 36046536 PMCID: PMC9421329 DOI: 10.1016/j.heliyon.2022.e10086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/25/2022] [Accepted: 07/21/2022] [Indexed: 11/30/2022] Open
Abstract
Chronic exposure of human bronchial epithelial BEAS-2B cells to hexavalent chromium (Cr(VI)) causes malignant cell transformation. These transformed cells exhibit increases in migration and invasion. Neuronal precursor of developmentally downregulated protein 9 (NEDD9) is upregulated in Cr(VI)-transformed cells compared to that of passage-matched normal BEAS-2B cells. Knockdown of NEDD9 by its shRNA reduced invasion and migration of Cr(VI)-transformed cells. Maternally expressed gene 3 (MEG3), a long noncoding RNA, was lost and microRNA 145 (miR-145) was upregulated in Cr(VI)-transformed cells. MEG3 was bound to miR-145 and this binding reduced its activity. Overexpression of MEG3 or inhibition of miR-145 decreased invasion and migration of Cr(VI)-transformed cells. Overexpression of MEG3 was able to decrease miR-145 level and NEDD9 protein level in Cr(VI)-transformed cells. Ectopic expression of MEG3 was also shown to reduce β-catenin activation. Inhibition of miR-145 in Cr(VI)-transformed cells decreased Slug, an important transcription factor that regulates epithelial-to-mesenchymal transition (EMT). Inhibition of miR-145 was found to increase MEG3 in Cr(VI)-transformed cells. Further studies showed that mutation of MEG3 at the binding site for miR-145 did not change NEDD9 and failed to decrease invasion and migration. The present study demonstrated that loss of MEG3 and upregulation of miR-145 elevated NEDD9, resulting in activation of β-catenin and further upregulation of EMT, leading to increased invasion and migration of Cr(VI)-transformed cells.
Collapse
Affiliation(s)
- Zhuo Zhang
- Department of Environmental Medicine, New York University Grossman School of Medicine, 341 East 25 Street, New York, New York, 10010, USA
| | - Jingxia Li
- Department of Environmental Medicine, New York University Grossman School of Medicine, 341 East 25 Street, New York, New York, 10010, USA
| | - Bo Yan
- Department of Environmental Medicine, New York University Grossman School of Medicine, 341 East 25 Street, New York, New York, 10010, USA
| | - Huailu Tu
- Department of Environmental Medicine, New York University Grossman School of Medicine, 341 East 25 Street, New York, New York, 10010, USA
| | - Chao Huang
- Department of Environmental Medicine, New York University Grossman School of Medicine, 341 East 25 Street, New York, New York, 10010, USA
| | - Max Costa
- Department of Environmental Medicine, New York University Grossman School of Medicine, 341 East 25 Street, New York, New York, 10010, USA
| |
Collapse
|
8
|
Aass KR, Nedal TMV, Tryggestad SS, Haukås E, Slørdahl TS, Waage A, Standal T, Mjelle R. Paired miRNA- and messenger RNA-sequencing identifies novel miRNA-mRNA interactions in multiple myeloma. Sci Rep 2022; 12:12147. [PMID: 35840794 PMCID: PMC9287335 DOI: 10.1038/s41598-022-16448-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/11/2022] [Indexed: 01/15/2023] Open
Abstract
Multiple myeloma (MM) is an incurable cancer of terminally differentiated plasma cells that proliferate in the bone marrow. miRNAs are promising biomarkers for risk stratification in MM and several miRNAs are shown to have a function in disease pathogenesis. However, to date, surprisingly few miRNA-mRNA interactions have been described for and functionally validated in MM. In this study, we performed miRNA-seq and mRNA-seq on CD138 + cells isolated from bone marrow aspirates of 86 MM patients to identify novel interactions between sRNAs and mRNAs. We detected 9.8% significantly correlated miRNA-mRNA pairs of which 5.17% were positively correlated and 4.65% were negatively correlated. We found that miRNA-mRNA pairs that were predicted by in silico target-prediction algorithms were more negatively correlated than non-target pairs, indicating functional miRNA targeting and that correlation between miRNAs and mRNAs from patients can be used to identify miRNA-targets. mRNAs for negatively correlated miRNA-mRNA target pairs were associated with gene ontology terms such as autophagy, protein degradation and endoplasmic stress response, reflecting important processes in MM. Targets for two specific miRNAs, miR-125b-5p and miR-365b-3p, were functionally validated in MM cell line transfection experiments followed by RNA-sequencing and qPCR. In summary, we identified functional miRNA-mRNA target pairs by correlating miRNA and mRNA data from primary MM cells. We identified several target pairs that are of potential interest for further studies. The data presented here may serve as a hypothesis-generating knowledge base for other researchers in the miRNA/MM field. We also provide an interactive web application that can be used to exploit the miRNA-target interactions as well as clinical parameters associated to these target-pairs.
Collapse
Affiliation(s)
- Kristin Roseth Aass
- grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Gastrosenteret, Prinsesse Kristinas gt. 1, 7491 Trondheim, Norway ,grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgssons gt. 1, 7491 Trondheim, Norway
| | - Tonje Marie Vikene Nedal
- grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Gastrosenteret, Prinsesse Kristinas gt. 1, 7491 Trondheim, Norway ,grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgssons gt. 1, 7491 Trondheim, Norway
| | - Synne Stokke Tryggestad
- grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Gastrosenteret, Prinsesse Kristinas gt. 1, 7491 Trondheim, Norway ,grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgssons gt. 1, 7491 Trondheim, Norway
| | - Einar Haukås
- grid.412835.90000 0004 0627 2891Department of Hematology, Stavanger University Hospital, 4011 Stavanger, Norway
| | - Tobias S. Slørdahl
- grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgssons gt. 1, 7491 Trondheim, Norway ,grid.52522.320000 0004 0627 3560Department of Hematology, St. Olavs University Hospital, 7030 Trondheim, Norway
| | - Anders Waage
- grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgssons gt. 1, 7491 Trondheim, Norway ,grid.52522.320000 0004 0627 3560Department of Hematology, St. Olavs University Hospital, 7030 Trondheim, Norway
| | - Therese Standal
- grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Gastrosenteret, Prinsesse Kristinas gt. 1, 7491 Trondheim, Norway ,grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgssons gt. 1, 7491 Trondheim, Norway ,grid.52522.320000 0004 0627 3560Department of Hematology, St. Olavs University Hospital, 7030 Trondheim, Norway
| | - Robin Mjelle
- grid.5947.f0000 0001 1516 2393Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgssons gt. 1, 7491 Trondheim, Norway ,grid.5947.f0000 0001 1516 2393Bioinformatics Core Facility - BioCore, Norwegian University of Science and Technology NTNU, 7491 Trondheim, Norway
| |
Collapse
|
9
|
Zhou Y, Liu S, Liu C, Yang J, Lin Q, Zheng S, Chen C, Zhou Q, Chen R. Single-cell RNA sequencing reveals spatiotemporal heterogeneity and malignant progression in pancreatic neuroendocrine tumor. Int J Biol Sci 2021; 17:3760-3775. [PMID: 34671197 PMCID: PMC8495381 DOI: 10.7150/ijbs.61717] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 08/22/2021] [Indexed: 01/16/2023] Open
Abstract
Aims: Using Single-cell RNA sequencing (scRNA-seq), we explored the spatiotemporal heterogeneity of pancreatic neuroendocrine tumors (pNETs) and the underlying mechanism for malignant progression. Methods: scRNA-seq was conducted on three tumor tissues (two primary tissues from different sites, one liver metastatic lesion), one normal liver tissue, and peripheral blood mononuclear cells from one patient with a metastatic G2 pNET, followed by bioinformatics analysis and validation in a pNETs cohort. Results: The transcriptome data of 24.544 cells were obtained. We identified subpopulations of functional heterogeneity within malignant cells, immune cells, and fibroblasts. There were intra- and inter-heterogeneities of cell subpopulations for malignant cells, macrophages, T cells, and fibroblasts among all tumor sites. Cell trajectory analysis revealed several hallmarks of carcinogenesis, including the hypoxia pathway, metabolism reprogramming, and aggressive proliferation, which were activated at different stages of tumor progression. Evolutionary analysis based on mitochondrial mutations defined two dominant clones with metastatic capacity. Finally, we developed a gene signature (PCSK1 and SMOC1) defining the metastatic potential of the tumor and its prognostic value was validated in a cohort of thirty G1/G2 patients underwent surgical resection. Conclusions: Our scRNA-seq analysis revealed intra- and intertumor heterogeneities in cell populations, transcriptional states, and intercellular communications among primary and metastatic lesions of pNETs. The single-cell level characterization of the spatiotemporal dynamics of malignant cell progression provided new insights into the search for potential novel prognostic biomarkers of pNETs.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Pancreatic Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Siyang Liu
- Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, and Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Chao Liu
- Department of Pathology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Jiabin Yang
- Department of Pancreatic Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China.,School of Medicine, South China University of Technology, Guangzhou, Guangdong, China
| | - Qing Lin
- Department of Pancreatic Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Shangyou Zheng
- Department of Pancreatic Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Changhao Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, State Key Laboratory of Oncology in South China, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China.,Department of Urology, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China
| | - Quanbo Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, State Key Laboratory of Oncology in South China, Sun Yat-sen Memorial Hospital, Guangzhou, Guangdong, China.,Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Rufu Chen
- Department of Pancreatic Surgery, Department of General Surgery, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| |
Collapse
|
10
|
Motwani J, Eccles MR. Genetic and Genomic Pathways of Melanoma Development, Invasion and Metastasis. Genes (Basel) 2021; 12:1543. [PMID: 34680938 PMCID: PMC8535311 DOI: 10.3390/genes12101543] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 09/27/2021] [Accepted: 09/27/2021] [Indexed: 12/21/2022] Open
Abstract
Melanoma is a serious form of skin cancer that accounts for 80% of skin cancer deaths. Recent studies have suggested that melanoma invasiveness is attributed to phenotype switching, which is a reversible type of cell behaviour with similarities to epithelial to mesenchymal transition. Phenotype switching in melanoma is reported to be independent of genetic alterations, whereas changes in gene transcription, and epigenetic alterations have been associated with invasiveness in melanoma cell lines. Here, we review mutational, transcriptional, and epigenomic alterations that contribute to tumour heterogeneity in melanoma, and their potential to drive melanoma invasion and metastasis. We also discuss three models that are hypothesized to contribute towards aspects of tumour heterogeneity and tumour progression in melanoma, namely the clonal evolution model, the cancer stem cell model, and the phenotype switching model. We discuss the merits and disadvantages of each model in explaining tumour heterogeneity in melanoma, as a precursor to invasion and metastasis.
Collapse
Affiliation(s)
- Jyoti Motwani
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand;
| | - Michael R. Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9016, New Zealand;
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1010, New Zealand
| |
Collapse
|
11
|
Hua S, Feng T, Yin L, Wang Q, Shao X. NEDD9 overexpression: Prognostic and guidance value in acute myeloid leukaemia. J Cell Mol Med 2021; 25:9331-9339. [PMID: 34432355 PMCID: PMC8500976 DOI: 10.1111/jcmm.16870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/22/2021] [Accepted: 08/02/2021] [Indexed: 12/11/2022] Open
Abstract
It has been demonstrated that neural precursor cell expressed developmentally downregulated protein (NEDD) plays crucial roles in tumorigenesis and may serve as potential biomarkers in cancer diagnosis and prognosis. However, few studies systematically investigated the expression of NEDD family members in acute myeloid leukaemia (AML). We systemically determined the expression of NEDD family members in AML and determined their clinical significance. We identified that NEDD9 expression was the only member among NEDD family which was significantly increased in AML. NEDD9 overexpression was more frequently classified as FAB‐M4/M5 (p = 0.008 and 0.013, respectively), hardly as FAB‐M2/M3. Moreover, NEDD9 overexpression was significantly associated with complex karyotype and TP53 mutation. The significant association between NEDD9 overexpression and survival was also observed in whole‐cohort AML and non‐M3 AML patients. Notably, AML patients with NEDD9 overexpression may benefit from hematopoietic stem cell transplantation (HSCT), whereas those cases without NEDD9 overexpression did not. Finally, a total of 822 mRNAs and 31 microRNAs were found to be differentially expressed between two groups. Among the microRNAs, miR‐381 was also identified as a microRNA that could direct target NEDD9. Taken together, our findings demonstrated that NEDD9 overexpression is associated with genetic abnormalities as well as prognosis and might act as a potential biomarker guiding the choice between HSCT and chemotherapy in patients with AML after achieving complete remission.
Collapse
Affiliation(s)
- Shenghao Hua
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, China
| | - Tao Feng
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, China
| | - Lei Yin
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, China
| | - Qi Wang
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, China
| | - Xuejun Shao
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, China
| |
Collapse
|
12
|
Pedri D, Karras P, Landeloos E, Marine JC, Rambow F. Epithelial-to-mesenchymal-like transition events in melanoma. FEBS J 2021; 289:1352-1368. [PMID: 33999497 DOI: 10.1111/febs.16021] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 11/30/2022]
Abstract
Epithelial-to-mesenchymal transition (EMT), a process through which epithelial tumor cells acquire mesenchymal phenotypic properties, contributes to both metastatic dissemination and therapy resistance in cancer. Accumulating evidence indicates that nonepithelial tumors, including melanoma, can also gain mesenchymal-like properties that increase their metastatic propensity and decrease their sensitivity to therapy. In this review, we discuss recent findings, illustrating the striking similarities-but also knowledge gaps-between the biology of mesenchymal-like state(s) in melanoma and mesenchymal state(s) from epithelial cancers. Based on this comparative analysis, we suggest hypothesis-driven experimental approaches to further deepen our understanding of the EMT-like process in melanoma and how such investigations may pave the way towards the identification of clinically relevant biomarkers for prognosis and new therapeutic strategies.
Collapse
Affiliation(s)
- Dennis Pedri
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Belgium.,Laboratory of Membrane Trafficking, Center for Brain and Disease Research, VIB, Leuven, Belgium
| | - Panagiotis Karras
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Belgium
| | - Ewout Landeloos
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Belgium
| | - Jean-Christophe Marine
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Belgium
| | - Florian Rambow
- Laboratory for Molecular Cancer Biology, Center for Cancer Biology, VIB, Leuven, Belgium.,Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Belgium
| |
Collapse
|
13
|
Diana A, Gaido G, Maxia C, Murtas D. MicroRNAs at the Crossroad of the Dichotomic Pathway Cell Death vs. Stemness in Neural Somatic and Cancer Stem Cells: Implications and Therapeutic Strategies. Int J Mol Sci 2020; 21:E9630. [PMID: 33348804 PMCID: PMC7766058 DOI: 10.3390/ijms21249630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Stemness and apoptosis may highlight the dichotomy between regeneration and demise in the complex pathway proceeding from ontogenesis to the end of life. In the last few years, the concept has emerged that the same microRNAs (miRNAs) can be concurrently implicated in both apoptosis-related mechanisms and cell differentiation. Whether the differentiation process gives rise to the architecture of brain areas, any long-lasting perturbation of miRNA expression can be related to the occurrence of neurodevelopmental/neuropathological conditions. Moreover, as a consequence of neural stem cell (NSC) transformation to cancer stem cells (CSCs), the fine modulation of distinct miRNAs becomes necessary. This event implies controlling the expression of pro/anti-apoptotic target genes, which is crucial for the management of neural/neural crest-derived CSCs in brain tumors, neuroblastoma, and melanoma. From a translational point of view, the current progress on the emerging miRNA-based neuropathology therapeutic applications and antitumor strategies will be disclosed and their advantages and shortcomings discussed.
Collapse
Affiliation(s)
- Andrea Diana
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | | | - Cristina Maxia
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| | - Daniela Murtas
- Department of Biomedical Sciences, University of Cagliari, 09042 Monserrato, Italy
| |
Collapse
|
14
|
Peng B, Theng PY, Le MTN. Essential functions of miR-125b in cancer. Cell Prolif 2020; 54:e12913. [PMID: 33332677 PMCID: PMC7848968 DOI: 10.1111/cpr.12913] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/20/2020] [Accepted: 09/07/2020] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are small and highly conserved non-coding RNAs that silence target mRNAs, and compelling evidence suggests that they play an essential role in the pathogenesis of human diseases, especially cancer. miR-125b, which is the mammalian orthologue of the first discovered miRNA lin-4 in Caenorhabditis elegans, is one of the most important miRNAs that regulate various physiological and pathological processes. The role of miR-125b in many types of cancer has been well established, and so here we review the current knowledge of how miR-125b is deregulated in different types of cancer; its oncogenic and/or tumour-suppressive roles in tumourigenesis and cancer progression; and its regulation with regard to treatment response, all of which are underlined in multiple studies. The emerging information that elucidates the essential functions of miR-125b might help support its potentiality as a diagnostic and prognostic biomarker as well as an effective therapeutic tool against cancer.
Collapse
Affiliation(s)
- Boya Peng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biomedical Sciences, School of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.,N.1 Institute for Health, National University of Singapore, Singapore, Singapore
| | - Poh Ying Theng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Minh T N Le
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Biomedical Sciences, School of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong.,N.1 Institute for Health, National University of Singapore, Singapore, Singapore.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, China
| |
Collapse
|
15
|
Lazăr AD, Dinescu S, Costache M. The Non-Coding Landscape of Cutaneous Malignant Melanoma: A Possible Route to Efficient Targeted Therapy. Cancers (Basel) 2020; 12:cancers12113378. [PMID: 33203119 PMCID: PMC7696690 DOI: 10.3390/cancers12113378] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
Considered to be highly lethal if not diagnosed in early stages, cutaneous malignant melanoma is among the most aggressive and treatment-resistant human cancers, and its incidence continues to rise, largely due to ultraviolet radiation exposure, which is the main carcinogenic factor. Over the years, researchers have started to unveil the molecular mechanisms by which malignant melanoma can be triggered and sustained, in order to establish specific, reliable biomarkers that could aid the prognosis and diagnosis of this fatal disease, and serve as targets for development of novel efficient therapies. The high mutational burden and heterogeneous nature of melanoma shifted the main focus from the genetic landscape to epigenetic and epitranscriptomic modifications, aiming at elucidating the role of non-coding RNA molecules in the fine tuning of melanoma progression. Here we review the contribution of microRNAs and lncRNAs to melanoma invasion, metastasis and acquired drug resistance, highlighting their potential for clinical applications as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Andreea D. Lazăr
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania; (A.D.L.); (M.C.)
| | - Sorina Dinescu
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania; (A.D.L.); (M.C.)
- Research Institute of the University of Bucharest, 050663 Bucharest, Romania
- Correspondence:
| | - Marieta Costache
- Department of Biochemistry and Molecular Biology, University of Bucharest, 050095 Bucharest, Romania; (A.D.L.); (M.C.)
- Research Institute of the University of Bucharest, 050663 Bucharest, Romania
| |
Collapse
|
16
|
Liu C, He S, Zhang J, Li S, Chen J, Han C. Silencing TCF4 Sensitizes Melanoma Cells to Vemurafenib Through Inhibiting GLUT3-Mediated Glycolysis. Onco Targets Ther 2020; 13:4905-4915. [PMID: 32581551 PMCID: PMC7269014 DOI: 10.2147/ott.s245531] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Vemurafenib is a selective BRAF inhibitor with significant early effects in melanoma, but resistance will develop with the duration of treatment. Therefore, overcoming vemurafenib resistance can effectively improve the survival rate of melanoma. The transcriptional activity of TCF4 is necessary to maintain the malignant phenotype of cancer cells. However, the effect of TCF4 on melanoma sensitivity to vemurafenib and the underlying mechanism is unclear. Methods Vemurafenib-resistant A375 (A375/Vem) and SK-Mel-28 (SK-Mel-28/Vem) cells were constructed by administering increasing concentrations of vemurafenib, and the expression of TCF4 was examined in parent and vemurafenib-resistant cells. TCF4 loss-function cells models were established in A375/Vem and SK-Mel-28/Vem cells, respectively. Cell survival, clone formation, and cell apoptosis were assessed. The downstream target gene of TCF4 was verified by chromatin immunoprecipitation. Finally, the effect of TCF4 on melanoma cells glycolysis was investigated and were performed. Results TCF4 expression was increased in vemurafenib-resistant melanoma cells, and knocking down TCF4 could promote the sensitivity of melanoma cells to vemurafenib. Mechanism investigation revealed that TCF4 could interact with GLUT3 and silencing TCF4 could inhibit GLUT3 expression. In addition, overexpression of GLUT3 reversed the growth and glycolysis of tumor cells that were inhibited by TCF4 knockdown. Conclusion Our study demonstrates that TCF4 downregulation sensitizes melanoma cells to vemurafenib through inhibiting GLUT3-mediated glycolysis. These findings support TCF4 as an oncogene and provide new mechanism by which TCF4 confers chemotherapy resistance in melanoma.
Collapse
Affiliation(s)
- Can Liu
- Department of Burn and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Siqi He
- Department of Burn and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, People's Republic of China
| | - Jianfei Zhang
- Department of Burn and Plastic Surgery, The Second Affiliated Hospital of South China University, Hengyang, Hunan 421001, People's Republic of China
| | - Shiyan Li
- Department of Burns and Plastic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210008, People's Republic of China
| | - Jian Chen
- Department of Burns and Plastic Surgery, The First Hospital of Putian City, Putian, Fujian 351100, People's Republic of China
| | - Chaofei Han
- Department of Burn and Plastic Surgery, The Third Xiangya Hospital of Central South University, Changsha, Hunan 410013, People's Republic of China
| |
Collapse
|
17
|
Li K, Tang M, Tong S, Wang C, Sun Q, Lv M, Sun X, Wang T, Jin S. BRAFi induced demethylation of miR-152-5p regulates phenotype switching by targeting TXNIP in cutaneous melanoma. Apoptosis 2020; 25:179-191. [PMID: 32056038 DOI: 10.1007/s10495-019-01586-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Treatment of advanced BRAFV600-mutant melanoma using BRAF inhibitors (BRAFi) eventually leads to drug resistance and selects for highly metastatic tumor cells. We compared the most differentially dysregulated miRNA expression profiles of vemurafenib-resistant and highly-metastatic melanoma cell lines obtained from GEO DataSets. We discovered miR-152-5p was a potential regulator mediating melanoma drug resistance and metastasis. Functionally, knockdown of miR-152-5p significantly compromised the metastatic ability of BRAFi-resistant melanoma cells and overexpression of miR-152-5p promoted the formation of slow-cycling phenotype. Furthermore, we explored the cause of how and why miR-152-5p affected metastasis in depth. Mechanistically, miR-152-5p targeted TXNIP which affected metastasis and BRAFi altered the methylation status of MIR152 promoter. Our study highlights the crucial role of miR-152-5p on melanoma metastasis after BRAFi treatment and holds significant implying that discontinuous dosing strategy may improve the benefit of advanced BRAFV600-mutant melanoma patients.
Collapse
Affiliation(s)
- Kezhu Li
- Department of Plastic Surgery, the First Affiliated Hospital of China Medical University, No.155, Nanjing North Street, Shenyang City, 110001, Liaoning, China
| | - Mingrui Tang
- Department of Plastic Surgery, the First Affiliated Hospital of China Medical University, No.155, Nanjing North Street, Shenyang City, 110001, Liaoning, China
| | - Shuang Tong
- Department of Plastic Surgery, the First Affiliated Hospital of China Medical University, No.155, Nanjing North Street, Shenyang City, 110001, Liaoning, China
| | - Chenchao Wang
- Department of Plastic Surgery, the First Affiliated Hospital of China Medical University, No.155, Nanjing North Street, Shenyang City, 110001, Liaoning, China
| | - Qiang Sun
- Department of Plastic Surgery, the First Affiliated Hospital of China Medical University, No.155, Nanjing North Street, Shenyang City, 110001, Liaoning, China
| | - Mengzhu Lv
- Department of Plastic Surgery, the First Affiliated Hospital of China Medical University, No.155, Nanjing North Street, Shenyang City, 110001, Liaoning, China
| | - Xu Sun
- Department of Plastic Surgery, the First Affiliated Hospital of China Medical University, No.155, Nanjing North Street, Shenyang City, 110001, Liaoning, China
| | - Ting Wang
- Department of Plastic Surgery, the First Affiliated Hospital of China Medical University, No.155, Nanjing North Street, Shenyang City, 110001, Liaoning, China
| | - Shifeng Jin
- Department of Plastic Surgery, the First Affiliated Hospital of China Medical University, No.155, Nanjing North Street, Shenyang City, 110001, Liaoning, China.
| |
Collapse
|
18
|
Wang Y, Zeng G, Jiang Y. The Emerging Roles of miR-125b in Cancers. Cancer Manag Res 2020; 12:1079-1088. [PMID: 32104088 PMCID: PMC7024862 DOI: 10.2147/cmar.s232388] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/02/2020] [Indexed: 12/14/2022] Open
Abstract
MicroRNAs (miRNAs) are endogenous, noncoding, single-stranded RNA molecules of 22 nucleotides in length. MiRNAs have both tumor-suppressive properties and oncogenic properties that can control critical processes in tumors. Mature miR-125b originates from miR-125b-1 and miR-125b-2 and leads to the degradation of target mRNAs or the inhibition of translation through binding to the 3′ untranslated regions (3′-UTR) of target mRNAs. Importantly, miR-125b is involved in regulating NF-κB, p53, PI3K/Akt/mTOR, ErbB2, Wnt, and another signaling pathways, thereby controlling cell proliferation, differentiation, metabolism, apoptosis, drug resistance and tumor immunity. This review aims to summarize the recent literature on the role of miR-125b in the regulation of tumorigenesis and to explore its potential clinical application in the diagnosis, prognosis and clinical treatment of tumors.
Collapse
Affiliation(s)
- Ying Wang
- Department of Oncology, The Fifth People's Hospital of Chengdu, Chengdu, People's Republic of China
| | - Guilin Zeng
- Department of Oncology, The Fifth People's Hospital of Chengdu, Chengdu, People's Republic of China
| | - Yicheng Jiang
- Department of Oncology, The People's Hospital of Chongqing Hechuan, Chongqing, People's Republic of China
| |
Collapse
|
19
|
The miRNAs Role in Melanoma and in Its Resistance to Therapy. Int J Mol Sci 2020; 21:ijms21030878. [PMID: 32013263 PMCID: PMC7037367 DOI: 10.3390/ijms21030878] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/20/2020] [Accepted: 01/26/2020] [Indexed: 12/11/2022] Open
Abstract
Melanoma is the less common but the most malignant skin cancer. Since the survival rate of melanoma metastasis is about 10–15%, many different studies have been carried out in order to find a more effective treatment. Although the development of target-based therapies and immunotherapeutic strategies has improved chances for patient survival, melanoma treatment still remains a big challenge for oncologists. Here, we collect recent data about the emerging role of melanoma-associated microRNAs (miRNAs) currently available treatments, and their involvement in drug resistance. We also reviewed miRNAs as prognostic factors, because of their chemical stability and resistance to RNase activity, in melanoma progression. Moreover, despite miRNAs being considered small conserved regulators with the limitation of target specificity, we outline the dual role of melanoma-associated miRNAs, as oncogenic and/or tumor suppressive factors, compared to other tumors.
Collapse
|
20
|
Gajos-Michniewicz A, Czyz M. Role of miRNAs in Melanoma Metastasis. Cancers (Basel) 2019; 11:E326. [PMID: 30866509 PMCID: PMC6468614 DOI: 10.3390/cancers11030326] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 02/28/2019] [Accepted: 03/02/2019] [Indexed: 12/16/2022] Open
Abstract
Tumour metastasis is a multistep process. Melanoma is a highly aggressive cancer and metastasis accounts for the majority of patient deaths. microRNAs (miRNAs) are non-coding RNAs that affect the expression of their target genes. When aberrantly expressed they contribute to the development of melanoma. While miRNAs can act locally in the cell where they are synthesized, they can also influence the phenotype of neighboring melanoma cells or execute their function in the direct tumour microenvironment by modulating ECM (extracellular matrix) and the activity of fibroblasts, endothelial cells, and immune cells. miRNAs are involved in all stages of melanoma metastasis, including intravasation into the lumina of vessels, survival during circulation in cardiovascular or lymphatic systems, extravasation, and formation of the pre-metastatic niche in distant organs. miRNAs contribute to metabolic alterations that provide a selective advantage during melanoma progression. They play an important role in the development of drug resistance, including resistance to targeted therapies and immunotherapies. Distinct profiles of miRNA expression are detected at each step of melanoma development. Since miRNAs can be detected in liquid biopsies, they are considered biomarkers of early disease stages or response to treatment. This review summarizes recent findings regarding the role of miRNAs in melanoma metastasis.
Collapse
Affiliation(s)
- Anna Gajos-Michniewicz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland.
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland.
| |
Collapse
|
21
|
Yang X, Liang R, Liu C, Liu JA, Cheung MPL, Liu X, Man OY, Guan XY, Lung HL, Cheung M. SOX9 is a dose-dependent metastatic fate determinant in melanoma. J Exp Clin Cancer Res 2019; 38:17. [PMID: 30642390 PMCID: PMC6330758 DOI: 10.1186/s13046-018-0998-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/06/2018] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND In this research, we aimed to resolve contradictory results whether SOX9 plays a positive or negative role in melanoma progression and determine whether SOX9 and its closely related member SOX10 share the same or distinct targets in mediating their functions in melanoma. METHODS Immunofluorescence, TCGA database and qPCR were used to analyze the correlation between the expression patterns and levels of SOX9, SOX10 and NEDD9 in melanoma patient samples. AlamarBlue, transwell invasion and colony formation assays in melanoma cell lines were conducted to investigate the epistatic relationship between SOX10 and NEDD9, as well as the effects of graded SOX9 expression levels. Lung metastasis was determined by tail vein injection assay. Live cell imaging was conducted to monitor dynamics of melanoma migratory behavior. RHOA and RAC1 activation assays measured the activity of Rho GTPases. RESULTS High SOX9 expression was predominantly detected in patients with distant melanoma metastases whereas SOX10 was present in the different stages of melanoma. Both SOX9 and SOX10 exhibited distinct but overlapping expression patterns with metastatic marker NEDD9. Accordingly, SOX10 was required for NEDD9 expression, which partly mediated its oncogenic functions in melanoma cells. Compensatory upregulation of SOX9 expression in SOX10-inhibited melanoma cells reduced growth and migratory capacity, partly due to elevated expression of cyclin-dependent kinase inhibitor p21 and lack of NEDD9 induction. Conversely, opposite phenomenon was observed when SOX9 expression was further elevated to a range of high SOX9 expression levels in metastatic melanoma specimens, and that high levels of SOX9 can restore melanoma progression in the absence of SOX10 both in vitro and in vivo. In addition, overexpression of SOX9 can also promote invasiveness of the parental melanoma cells by modulating the expression of various matrix metalloproteinases. SOX10 or high SOX9 expression regulates melanoma mesenchymal migration through the NEDD9-mediated focal adhesion dynamics and Rho GTPase signaling. CONCLUSIONS These results unravel NEDD9 as a common target for SOX10 or high SOX9 to partly mediate their oncogenic events, and most importantly, reconcile previous discrepancies that suboptimal level of SOX9 expression is anti-metastatic whereas high level of SOX9 is metastatic in a heterogeneous population of melanoma.
Collapse
Affiliation(s)
- Xintao Yang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Rui Liang
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Chunxi Liu
- Department of Anesthesiology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang China
| | - Jessica Aijia Liu
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - May Pui Lai Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| | - Xuelai Liu
- Department of Pediatric Surgery, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei China
| | - On Ying Man
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
| | - Xin-Yuan Guan
- Department of Clinical Oncology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hong Lok Lung
- Department of Biology, Faculty of Science, Hong Kong Baptist University, Hong Kong, China
| | - Martin Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, 21 Sassoon Road, Hong Kong, China
| |
Collapse
|
22
|
Bagati A, Bianchi-Smiraglia A, Moparthy S, Kolesnikova K, Fink EE, Lipchick BC, Kolesnikova M, Jowdy P, Polechetti A, Mahpour A, Ross J, Wawrzyniak JA, Yun DH, Paragh G, Kozlova NI, Berman AE, Wang J, Liu S, Nemeth MJ, Nikiforov MA. Melanoma Suppressor Functions of the Carcinoma Oncogene FOXQ1. Cell Rep 2018; 20:2820-2832. [PMID: 28930679 DOI: 10.1016/j.celrep.2017.08.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 08/11/2017] [Accepted: 08/17/2017] [Indexed: 12/13/2022] Open
Abstract
Lineage-specific regulation of tumor progression by the same transcription factor is understudied. We find that levels of the FOXQ1 transcription factor, an oncogene in carcinomas, are decreased during melanoma progression. Moreover, in contrast to carcinomas, FOXQ1 suppresses epithelial-to-mesenchymal transition, invasion, and metastasis in melanoma cells. We find that these lineage-specific functions of FOXQ1 largely depend on its ability to activate (in carcinomas) or repress (in melanoma) transcription of the N-cadherin gene (CDH2). We demonstrate that FOXQ1 interacts with nuclear β-catenin and TLE proteins, and the β-catenin/TLE ratio, which is higher in carcinoma than melanoma cells, determines the effect of FOXQ1 on CDH2 transcription. Accordingly, other FOXQ1-dependent phenotypes can be manipulated by altering nuclear β-catenin or TLE proteins levels. Our data identify FOXQ1 as a melanoma suppressor and establish a mechanism underlying its inverse lineage-specific transcriptional regulation of transformed phenotypes.
Collapse
Affiliation(s)
- Archis Bagati
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | - Sudha Moparthy
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Kateryna Kolesnikova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Emily E Fink
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Brittany C Lipchick
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Masha Kolesnikova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Peter Jowdy
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Anthony Polechetti
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Amin Mahpour
- Department of Cancer Genetics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Jason Ross
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Joseph A Wawrzyniak
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Dong Hyun Yun
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Gyorgy Paragh
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA; Department of Dermatology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | | | - Albert E Berman
- Orekhovich Institute of Biomedical Chemistry, Moscow 119121, Russia
| | - Jianmin Wang
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Michael J Nemeth
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Mikhail A Nikiforov
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Buffalo, NY, USA.
| |
Collapse
|
23
|
Abstract
Although microRNAs (miRNAs) have emerged as potent mediators of melanoma development and progression, a precise understanding of their oncogenic role remains unclear. In this study, we analysed formalin-fixed and paraffin-embedded tissues from two separate melanoma cohorts and from a series of benign melanocytic nevi. Using three different quantification methods [array analysis, quantitative PCR (qPCR) and in-situ hybridization (ISH) quantified by digital image analysis], we found considerable miRNA dysregulation in tumours. Using array analysis, samples mainly clustered according to their biological group (benign vs. malignant) and 77 miRNAs differed significantly between nevi and melanoma samples. Increase of miR-21 and miR-142, and decrease of miR-125b, miR-211, miR-101 and miR-513c in the melanomas were verified in both cohorts using qPCR, whereas the decrease of miR-205 observed with array analysis could not be confirmed using qPCR. ISH with digital quantification showed expression of miR-21 and miR-125b in the melanocytic lesions. miR-21 ISH was increased in melanomas, whereas quantification of miR-125b showed uniform ISH expression across nevi and melanomas. Our results support the important involvement of different miRNAs in melanoma biology and may serve as solid basics for further miRNA investigations in melanoma formalin-fixed and paraffin-embedded tissue. In particular, there is increased expression of miR-21 in melanomas compared with benign nevi.
Collapse
|
24
|
Lin D, Liang Y, Jing X, Chen Y, Lei M, Zeng Z, Zhou T, Wu X, Peng S, Zheng D, Huang K, Yang L, Xiao S, Liu J, Tao E. Microarray analysis of an synthetic α-synuclein induced cellular model reveals the expression profile of long non-coding RNA in Parkinson's disease. Brain Res 2017; 1678:384-396. [PMID: 29137975 DOI: 10.1016/j.brainres.2017.11.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 11/07/2017] [Accepted: 11/08/2017] [Indexed: 01/10/2023]
Abstract
Long non-coding RNAs (lncRNAs) are a new research focus that are reported to influence the pathogenetic process of neurodegenerative disorders. To uncover new disease-associated genes and their relevant mechanisms, we carried out a gene microarray analysis based on a Parkinson's disease (PD) in vitro model induced by α-synuclein oligomers. This cellular model induced by 25 μmol/L α-synuclein oligomers has been confirmed to show the stable, transmissible neurotoxicity of α-synuclein, a typical PD pathological marker. And several differentially expressed lncRNAs and mRNAs were identified in this model, such as G046036, G030771, AC009365.4, RPS14P3, CTB-11I22.1, and G007549. Subsequent ceRNA analysis determined the potential relationships between these lncRNAs and their associated mRNAs and microRNAs. The results of the present study widen our horizon of PD susceptibility genes and provide new pathways towards efficient diagnostic biomarkers and therapeutic targets for PD.
Collapse
Affiliation(s)
- D Lin
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Y Liang
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - X Jing
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Y Chen
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - M Lei
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - Z Zeng
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - T Zhou
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - X Wu
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - S Peng
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - D Zheng
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - K Huang
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - L Yang
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - S Xiao
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - J Liu
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China
| | - E Tao
- Department of Neurology, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, 107 Yanjiang West Road, Guangzhou 510080, China; Guangdong Province Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, 74 Zhongshan 2nd Road, Guangzhou 510080, China.
| |
Collapse
|