1
|
Fiore VF, Almagro J, Fuchs E. Shaping epithelial tissues by stem cell mechanics in development and cancer. Nat Rev Mol Cell Biol 2025:10.1038/s41580-024-00821-0. [PMID: 39881165 DOI: 10.1038/s41580-024-00821-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2024] [Indexed: 01/31/2025]
Abstract
Adult stem cells balance self-renewal and differentiation to build, maintain and repair tissues. The role of signalling pathways and transcriptional networks in controlling stem cell function has been extensively studied, but there is increasing appreciation that mechanical forces also have a crucial regulatory role. Mechanical forces, signalling pathways and transcriptional networks must be coordinated across diverse length and timescales to maintain tissue homeostasis and function. Such coordination between stem cells and neighbouring cells dictates when cells divide, migrate and differentiate. Recent advances in measuring and manipulating the mechanical forces that act upon and are produced by stem cells are providing new insights into development and disease. In this Review, we discuss the mechanical forces involved when epithelial stem cells construct their microenvironment and what happens in cancer when stem cell niche mechanics are disrupted or dysregulated. As the skin has evolved to withstand the harsh mechanical pressures from the outside environment, we often use the stem cells of mammalian skin epithelium as a paradigm for adult stem cells shaping their surrounding tissues.
Collapse
Affiliation(s)
- Vincent F Fiore
- Department of Immunology and Respiratory Diseases Research, Boehringer Ingelheim, Ridgefield, CT, USA.
| | - Jorge Almagro
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
2
|
Qian Y, Wei X, Wang Y, Yin S, Chen J, Dong J. Development of a novel human stratum corneum mimetic phospholipid -vesicle-based permeation assay models for in vitro permeation studies. Drug Dev Ind Pharm 2024; 50:410-419. [PMID: 38497274 DOI: 10.1080/03639045.2024.2331242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 03/05/2024] [Indexed: 03/19/2024]
Abstract
OBJECTIVES To develop and evaluate a novel human stratum corneum (SC) mimetic phospholipid vesicle-based permeation assay (PVPASC) model for in vitro permeation studies. SIGNIFICANCE Due to the increasing restrictions on the use of human and animal skins, artificial skin models have attracted substantial interest in pharmaceuticals and cosmetic industries. In this study, a modified PVPASC model containing both SC lipids and proteins was developed. METHODS The PVPASC model was optimized by altering the lipid composition and adding keratin in the formulation of large liposomes. The barrier properties were monitored by measuring the electrical resistance (ER) and permeability of Rhodamine B (RB). The modified PVPASC model was characterized in terms of the surface topography, solvent influence and storage stability. The permeation studies of the active components in Compound Nanxing Zhitong Plaster (CNZP) were performed to examine the capability of PVPASC in the application of skin penetration. RESULTS The ER and Papp values of RB obtained from the optimized PVPASC model indicated a similar barrier property to porcine ear skin. Scanning electron microscope analysis demonstrated a mimic 'brick-and-mortar' structure. The PVPASC model can be stored for three weeks at -20 °C, and withstand the presence of different receptor medium for 24 h. The permeation studies of the active components demonstrated a good correlation (r2 = 0.9136) of Papp values between the drugs' permeation through the PVPASC model and porcine ear skin. CONCLUSION Keratin contained composite phospholipid vesicle-based permeation assay models have been proven to be potential skin tools in topical/transdermal permeation studies.
Collapse
Affiliation(s)
- Yuerong Qian
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Xuchao Wei
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Yiwei Wang
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
- ANZAC Research Institute, The University of Sydney, Sydney, Australia
| | - Shaoping Yin
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Jun Chen
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
- Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jie Dong
- Jiangsu Provincial Engineering Research Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, PR China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, PR China
| |
Collapse
|
3
|
Liu W, Wang Y, Zhang Y, Zhou M, Gu H, Lu M, Xia Y. Rh family C glycoprotein contributes to psoriatic inflammation through regulating the dysdifferentiation and cytokine secretion of keratinocytes. J Dermatol Sci 2024; 114:2-12. [PMID: 38514279 DOI: 10.1016/j.jdermsci.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/16/2024] [Accepted: 02/27/2024] [Indexed: 03/23/2024]
Abstract
BACKGROUND Keratinocyte dysdifferentiation and proinflammatory cytokine production play a central role in psoriatic inflammation. According to recent studies, the Rh family C glycoprotein (RHCG) enhances cell proliferation and disrupts cell differentiation. However, the specific role of RHCG psoriasis development remains unclear. OBJECTIVE We here explored the effect of RHCG on keratinocytes under psoriatic inflammation. METHODS The cell counting kit‑8 assay was conducted to assess proliferation. RHCG protein expression was assessed through western blotting and enzyme-linked immunosorbent assays. The expression of proinflammatory cytokines and differentiation markers was analyzed through a quantitative reverse-transcription polymerase chain reaction. RESULTS Both RHCG mRNA and protein levels increased in psoriatic skin. Notably, cultured keratinocytes treated with an M5 cocktail, which mimics psoriatic inflammation, exhibited higher RHCG expression. Furthermore, RHCG overexpression promoted keratinocyte proliferation, accompanied by an increase in the production of interleukin (IL)-1β, IL-6, and IL-8, and tumor necrosis factor-α. RHCG overexpression also resulted in higher expression of keratin 17, a differentiation marker. Conversely, RHCG gene knockdown reduced keratinocyte proliferation and cytokine secretion. RHCG inhibition in cells recovered both keratin 1 and loricrin expression. Additionally, RHCG overexpression facilitated the phosphorylation of nuclear factor-kappa B and extracellular signal-regulated protein kinase signaling pathways. Importantly, when these signaling pathways were inhibited, the effect of RHCG on keratinocytes was attenuated. CONCLUSION These findings support the substantial role of RHCG in psoriatic inflammation development and suggest that RHCG serves as a potential target for psoriasis treatment.
Collapse
Affiliation(s)
- Wei Liu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yaqi Wang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yitian Zhang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mingzhu Zhou
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Hanjiang Gu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Mei Lu
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China.
| |
Collapse
|
4
|
SUMI A, CHAMBERS JK, ITO S, KOJIMA K, OMACHI T, DOI M, UCHIDA K. Different expression patterns of p63 and p73 in Felis catus papillomavirus type 2-associated feline Merkel cell carcinomas and other epidermal carcinomas. J Vet Med Sci 2024; 86:39-48. [PMID: 38030281 PMCID: PMC10849848 DOI: 10.1292/jvms.23-0293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/16/2023] [Indexed: 12/01/2023] Open
Abstract
Merkel cell carcinoma (MCC) is a cutaneous neuroendocrine tumor, and more than 90% of feline MCC cases test positive for Felis catus papillomavirus type 2 (FcaPV2). In the present study, basal cell markers p40, p63, and p73 and the stem cell marker SOX2 and cytokeratin 14 (CK14) were immunohistochemically examined in normal fetal, infant, and adult feline skin tissues. The expression of these proteins was examined in tumors positive for FcaPV2, including MCC, basal cell carcinoma (BCC), Bowenoid in situ carcinoma (BISC), and squamous cell carcinoma (SCC). Infant and adult feline skin tissues had mature Merkel cells, which were CK14-, CK18+, CK20+, SOX2+, synaptophysin+ and CD56+, while fetal skin tissue had no mature Merkel cells. MCC was immunopositive for p73, CK18, and SOX2 in 32/32 cases, and immunonegative for CK14 in 31/32 cases and for p40 and p63 in 32/32 cases. These results indicate that MCC exhibits different immunophenotypes from Merkel cells (p73-) and basal cells (p40+, p63+, and SOX2-). In contrast, all 3 BCCs, 1 BISC, and 2 SCCs were immunopositive for the basal cell markers p40, p63, and p73. The life cycle of papillomavirus is closely associated with the differentiation of infected basal cells, which requires the transcription factor p63. Changes in p63 expression in FcaPV2-positive MCC may be associated with unique cytokeratin expression patterns (CK14-, CK18+, and CK20+). Furthermore, SOX2 appears to be involved in Merkel cell differentiation in cats, similar to humans and mice.
Collapse
Affiliation(s)
- Ayumi SUMI
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - James K CHAMBERS
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Soma ITO
- Nippon Institute for Biological Science, Tokyo, Japan
| | - Kazuhiro KOJIMA
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | | | - Masaki DOI
- Diagnostic Laboratory, Patho-Labo, Shizuoka, Japan
| | - Kazuyuki UCHIDA
- Laboratory of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
5
|
Watanabe Y, Katsumura E, Domon T, Ishikawa Y, Oguri R, Takashima M, Meng Q, Kinoshita M, Hashimoto H, Hitomi K. Establishment of transgenic epithelium-specific Cre-recombinase driving medaka (Oryzias latipes) by homology repair mediated knock-in. Biosci Biotechnol Biochem 2023; 87:1285-1294. [PMID: 37607777 DOI: 10.1093/bbb/zbad116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/17/2023] [Indexed: 08/24/2023]
Abstract
Deletion of gene expression in the target tissues and cells is an effective strategy for elucidating the physiological functions of the protein of interest. For tissue-specific and/or inducible gene deletion, the Cre-loxP system has been widely used in various model organisms including medaka (Oryzias latipes). The epithelium is the key tissue, locating at the outermost area and playing a role in barrier to external stimuli. Despite a large genetic toolbox developed in medaka, there is no available Cre-driver line that works in an epithelium-specific manner. Here, we established epithelium-specific Cre-driver lines in medaka using a homology-directed repair mediated knock-in approach with CRISPR/Cas9, targeting each of periplakin and keratin genes. We show that Cre-recombinase is expressed exclusively in the epithelium in the knock-in lines and that it efficiently and specifically induces recombination in the tissues. These Cre-driver lines are useful for studying the functions of proteins expressed in the epithelium.
Collapse
Affiliation(s)
- Yuko Watanabe
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Eri Katsumura
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Tatsuki Domon
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Yuta Ishikawa
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Rina Oguri
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Minami Takashima
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | - Qi Meng
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| | | | | | - Kiyotaka Hitomi
- Graduate School of Pharmaceutical Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
6
|
Gu X, Han Y, Shao Y, Ma W, Shao Z, Wan G, Lu C, Shi S, Lu W. Gene expression changes reveal the impact of the space environment on the skin of International Space Station astronauts. Clin Exp Dermatol 2023; 48:1128-1137. [PMID: 37171787 DOI: 10.1093/ced/llad178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/25/2023] [Accepted: 04/20/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND The various types of ionizing radiation and altered gravity in the space environment present a risk to humans during space missions. Changes in the space environment lead to skin diseases, affecting the status of the aviators to fly. Therefore, it is important to explore the molecular-level changes in the skin during space missions. OBJECTIVES Bioinformatics analysis of gene arrays from hair follicle tissue of 10 astronauts was performed to explore changes in gene expression before, during and after space missions. METHODS First, STEM (Short Time-series Expression Miner) software was used to identify the expression patterns of hair follicle genes of astronauts pre-, in- and postflight. Gene Ontology Enrichment Analysis was then performed to explore the gene functions within the module. Protein-protein interaction network analysis was performed on skin-related genes. The transcriptional regulatory network within the module was constructed using the TRRUST database. The circadian rhythm-related genes within the module were screened using the MSigDB (Molecular Signatures Database). RESULTS Based on differential expression analysis between the two groups, there were 327 differentially expressed genes after the astronauts entered space compared with preflight, and only 54 differentially expressed genes after returning to Earth. This outcome suggests that the expression of most genes can be recovered on return to the ground, but there are a small number of genes whose expression cannot be recovered in a short period of time. Based on time series analysis, 311 genes showed increased expression on entry into space and decreased expression on return to Earth. The genes of this expression pattern were associated with skin development, keratinocyte differentiation and cornification. Ten hub genes were identified as skin-related genes within the module, as well as nine transcription factors and three circadian genes. One hundred and seventy-nine genes decreased in expression after entry into space and increased on return to Earth. By reviewing the literature, we found that four of the genes, CSCD2, HP, CXCR1 and SSTR4, are associated with skin diseases. CONCLUSIONS Through bioinformatics analysis, we found that the space environment affects skin keratinocyte differentiation, leading to skin barrier damage and inflammatory responses, and that this effect was decreased after return to Earth.
Collapse
Affiliation(s)
- Xuefeng Gu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Yuru Han
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yue Shao
- CoBioer Biosciences Co., Ltd, Shanghai, China
| | - Wenhao Ma
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Zeguo Shao
- Medical Instrumentation College, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Guoqing Wan
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Changlian Lu
- Shanghai Key Laboratory of Molecular Imaging, Zhoupu Hospital, Shanghai University of Medicine and Health Sciences, Shanghai, China
- School of Pharmacy, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Shuo Shi
- China COMAC Shanghai Aircraft Design and Research Institute, Shanghai, China
| | - Wenli Lu
- Department of Dermatology, Shanghai Ninth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Laser and Aesthetic Medicine, Shanghai Ninth People's Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Zheng K, Wu J, Ullah S, Cao Y, Jiang Y, Huang X, Jiang J. Proteome changes of dairy calves rumen epithelium from birth to postweaning. Front Genet 2023; 13:1071873. [PMID: 36685817 PMCID: PMC9847510 DOI: 10.3389/fgene.2022.1071873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
Background: Rumen epithelium plays a central role in absorbing, transporting, and metabolizing of short-chain fatty acids. For dairy calves, the growth of rumen papillae greatly enhances the rumen surface area to absorb nutrients. However, the molecular mechanism underlying dairy calves rumen postnatal development remains rarely understood. Results: Here, we firstly describe the histological change of rumen epithelium from birth to day 90 of age. Then, a shotgun approach and bioinformatics analyses were used to investigate and compare proteomic profiles of Holstein calve rumen epithelium on day 0, 30, 60 and 90 of age. A total of 4372 proteins were identified, in which we found 852, 342, 164 and 95 differentially expressed proteins between D0 and D30, between D30 and D60, between D60 and D90, respectively. Finally, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to provide a comprehensive proteomic landscape of dairy calves rumen development at tissue level. Conclusion: To conclude, our data indicated that keratinocyte differentiation, mitochondrion formation, the establishment of urea transport and innate immune system play central roles during rumen epithelium development. Tetrahydrobiopterin (BH4) presents an important role in rumen epithelial keratinization. The biological processes of BH4 biosynthesis and molecular function of nicotinamide adenine dinucleotide phosphate binding participate in mitochondrial cristae formation. The proposed datasets provide a useful basis for future studies to better comprehend dairy calves rumen epithelial development.
Collapse
Affiliation(s)
- Kaizhi Zheng
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Jianliang Wu
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Saif Ullah
- Faculty of Veterinary and Animal Sciences, Lasbela University of Agriculture Water and Marine Sciences, Lasbela, Pakistan
| | - Yang Cao
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yongqing Jiang
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China,*Correspondence: Yongqing Jiang, ; Xin Huang, ; Junfang Jiang,
| | - Xin Huang
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China,*Correspondence: Yongqing Jiang, ; Xin Huang, ; Junfang Jiang,
| | - Junfang Jiang
- Institute of Animal Husbandry and Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou, China,*Correspondence: Yongqing Jiang, ; Xin Huang, ; Junfang Jiang,
| |
Collapse
|
8
|
Long-Term Use of Silybum marianum fruit extract Contributes to Homeostasis in Acne-Prone Skin-A 12-Month Follow-Up International "Real Life" Cohort Study. J Pers Med 2022; 13:jpm13010096. [PMID: 36675757 PMCID: PMC9862999 DOI: 10.3390/jpm13010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Homeostasis in the differentiation programme of sebaceous stem cells has been identified as a key step in comedogenesis and should be a target for acne-prone skin care. OBJECTIVE To report on a multicentre, year-long/real-life use study of a patented natural product containing S. marianum fruit extract proven to modulate molecular actors in the initial steps of comedogenesis. METHODS An open-label multicentric international study, with a 12 month follow-up, included 54 teenage and young adult subjects with mild to moderate facial acne. The study was aimed at reproducing a real-life use context. RESULTS Total lesion count mean was 88.3 at inclusion. There was a sustained, highly significant decrease over the months of clinical lesion counts (45.6% improvement after 6 months and 59.6% at 12 months) and on other efficacy markers, associated with a significant decrease in global microcomedone quantity on cyanoacrylate superficial skin surface biopsies. Importantly, the study protocol allowed the dermatologist to prescribe, if needed as in real life, any of the acne drugs registered in the acne guidelines. The exposure to these acne drugs during the whole year was calculated as a percentage of S. marianum fruit extract/352 days of use and happened to be very limited at less than 4%, which indicates a marginal contribution to the sustained clinical improvement. (Oral and local acne treatments: Lymecycline 1.46%; Doxycycline 0.24%; Adapalene 0.16% or gel association with Benzoyl peroxide 1.17%; Clindamycin 0.04%; Benzoyl peroxide 1.5%; Erythromycin 0.75%). The tolerance with daily S. marianum fruit extract long-term use was good. LIMITATIONS The association with routine prescription acne drugs when needed, even if limited, does not allow a full evaluation of the intrinsic quantitative efficacy of S. marianum fruit extract in lesion reduction. CONCLUSION This open, real-life, year-long multicentre study confirms a previous 48-week proof of concept study and qualifies the use of S. marianum fruit extract as a "field-dermo cosmetic" contributing to homeostasis of acne-prone skin in association with acne drugs.
Collapse
|
9
|
Li X, Xing J, Wang F, Li J, Li J, Hou R, Zhang K. The mRNA Expression Profile of Psoriatic Lesion Distinct from Non-Lesion. Clin Cosmet Investig Dermatol 2022; 15:2035-2043. [PMID: 36193053 PMCID: PMC9526433 DOI: 10.2147/ccid.s385894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 09/13/2022] [Indexed: 11/23/2022]
Abstract
Purpose Psoriasis is a chronic recurring autoimmune skin disease with a complex etiology and chronic progression; however, its molecular mechanisms remain unclear. Patients and Methods We performed transcriptomic analysis to profile the mRNA expression of psoriatic lesions (PL) and non-lesion (NL) tissues from psoriasis patients along with normal skin from healthy donors. RT-qPCR was used to validate the mRNA expression profiles. Results A total of 237 differentially expressed genes were screened and identified by RNA sequencing. GO and KEGG analysis indicated that these DEGs were enriched in the PPAR signaling pathway and intermediate filament cytoskeleton. For PPAR signaling pathway, the expression of five genes, including ADIPOQ, AQP7, PLIN1, FABP4 and LPL, were all significantly decreased in psoriatic lesions compared to normal skin by RT-qPCR. There is a clear difference between psoriatic lesions and non-lesion in the expression of ADIPOQ, AQP7 and LPL. For intermediate filament cytoskeleton, including KRT27, KRT25, KRT71, KRT86 and KRT85 were significantly decreased in the psoriasis lesions, showing agreement with the RNA-seq data. Conclusion This study revealed a significant difference between the mRNA expression profiles of PL, NL tissue and normal skin.
Collapse
Affiliation(s)
- Xinhua Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030009, People's Republic of China
| | - Jianxiao Xing
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030009, People's Republic of China
| | - Fangdi Wang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030009, People's Republic of China
| | - Juan Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030009, People's Republic of China
| | - Junqin Li
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030009, People's Republic of China
| | - Ruixia Hou
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Taiyuan Central Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, 030009, People's Republic of China
| | - Kaiming Zhang
- Shanxi Key Laboratory of Stem Cell for Immunological Dermatosis, Taiyuan Central Hospital, Taiyuan, Shanxi Province, 030009, People's Republic of China
| |
Collapse
|
10
|
Starr I, Seiffert-Sinha K, Sinha AA, Gokcumen O. Evolutionary context of psoriatic immune skin response. Evol Med Public Health 2022; 9:474-486. [PMID: 35154781 PMCID: PMC8830311 DOI: 10.1093/emph/eoab042] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 11/22/2021] [Indexed: 12/18/2022] Open
Abstract
The skin is vital for protecting the body and perceiving external stimuli in the environment. Ability to adapt between environments is in part based on skin phenotypic plasticity, indicating evolved homeostasis between skin and environment. This homeostasis reflects the greater relationship between the body and the environment, and disruptions in this balance may lead to accumulation of susceptibility factors for autoimmune conditions like psoriasis. In this study, we examined the relationship between rapid, lineage-specific evolution of human skin and formation of psoriatic skin responses at the transcriptome level. We collected skin tissue biopsies from individuals with psoriasis and compared gene expression in psoriatic plaques to non-plaque psoriatic skin. We then compared these data with non-psoriatic skin transcriptome data from multiple primate species. We found 67 genes showing human-specific skin expression that are also differentially regulated in psoriatic skin; these genes are significantly enriched for skin barrier function, immunity and neuronal development. We identified six gene clusters with differential expression in the context of human evolution and psoriasis, suggesting underlying regulatory mechanisms in these loci. Human and psoriasis-specific enrichment of neuroimmune genes shows the importance of the ongoing evolved homeostatic relationship between skin and external environment. These results have implications for both evolutionary medicine and public health, using transcriptomic data to acknowledge the importance of an individual’s surroundings on their overall health. The skin is important for protecting the body from the environment and perceiving external stimuli, creating an evolved balance between skin and the environment. We compare skin gene expression in humans with psoriasis to humans and non-human primates without psoriasis to better understand human-specific evolutionary changes in the skin. Our results suggest important evolutionary links between skin perception, human-specific skin development and immune response.
Collapse
Affiliation(s)
- Izzy Starr
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Kristina Seiffert-Sinha
- Department of Dermatology, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Animesh A Sinha
- Department of Dermatology, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - Omer Gokcumen
- Department of Biological Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| |
Collapse
|
11
|
Gross A, Zhou B, Bewersdorf L, Schwarz N, Schacht GM, Boor P, Hoeft K, Hoffmann B, Fuchs E, Kramann R, Merkel R, Leube RE, Strnad P. Desmoplakin Maintains Transcellular Keratin Scaffolding and Protects From Intestinal Injury. Cell Mol Gastroenterol Hepatol 2021; 13:1181-1200. [PMID: 34929421 PMCID: PMC8873596 DOI: 10.1016/j.jcmgh.2021.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Desmosomes are intercellular junctions connecting keratin intermediate filaments of neighboring cells. The cadherins desmoglein 2 (Dsg2) and desmocollin 2 mediate cell-cell adhesion, whereas desmoplakin (Dsp) provides the attachment of desmosomes to keratins. Although the importance of the desmosome-keratin network is well established in mechanically challenged tissues, we aimed to assess the currently understudied function of desmosomal proteins in intestinal epithelia. METHODS We analyzed the intestine-specific villin-Cre DSP (DSPΔIEC) and the combined intestine-specific DSG2/DSPΔIEC (ΔDsg2/Dsp) knockout mice. Cross-breeding with keratin 8-yellow fluorescent protein knock-in mice and generation of organoids was performed to visualize the keratin network. A Dsp-deficient colorectal carcinoma HT29-derived cell line was generated and the role of Dsp in adhesion and mechanical stress was studied in dispase assays, after exposure to uniaxial cell stretching and during scratch assay. RESULTS The intestine of DSPΔIEC mice was histopathologically inconspicuous. Intestinal epithelial cells, however, showed an accelerated migration along the crypt and an enhanced shedding into the lumen. Increased intestinal permeability and altered levels of desmosomal proteins were detected. An inconspicuous phenotype also was seen in ΔDsg2/Dsp mice. After dextran sodium sulfate treatment, DSPΔIEC mice developed more pronounced colitis. A retracted keratin network was seen in the intestinal epithelium of DSPΔIEC/keratin 8-yellow fluorescent protein mice and organoids derived from these mice presented a collapsed keratin network. The level, phosphorylation status, and solubility of keratins were not affected. Dsp-deficient HT29 cells had an impaired cell adhesion and suffered from increased cellular damage after stretch. CONCLUSIONS Our results show that Dsp is required for proper keratin network architecture in intestinal epithelia, mechanical resilience, and adhesion, thereby protecting from injury.
Collapse
Affiliation(s)
- Annika Gross
- Department of Internal Medicine III, University Hospital Aachen, Aachen, Germany
| | - Biaohuan Zhou
- Department of Internal Medicine III, University Hospital Aachen, Aachen, Germany
| | - Lisa Bewersdorf
- Department of Internal Medicine III, University Hospital Aachen, Aachen, Germany
| | - Nicole Schwarz
- Institute of Molecular and Cellular Anatomy, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Gabriel M. Schacht
- Department of Internal Medicine III, University Hospital Aachen, Aachen, Germany
| | - Peter Boor
- Institute of Pathology, Department of Nephrology, University Hospital Aachen, Aachen, Germany
| | - Konrad Hoeft
- Department of Medicine II, University Hospital Aachen, Aachen, Germany
| | - Bernd Hoffmann
- Institute of Biological Information Processing 2, Mechanobiology, Forschungszentrum Jülich, Jülich, Germany
| | - Elaine Fuchs
- Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, Howard Hughes Medical Institute, The Rockefeller University, New York, New York
| | - Rafael Kramann
- Department of Medicine II, University Hospital Aachen, Aachen, Germany,Institute of Experimental Medicine and Systems Biology, Rheinisch-Westfaelische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Rudolf Merkel
- Institute of Biological Information Processing 2, Mechanobiology, Forschungszentrum Jülich, Jülich, Germany
| | - Rudolf E. Leube
- Institute of Molecular and Cellular Anatomy, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University, Aachen, Germany
| | - Pavel Strnad
- Department of Internal Medicine III, University Hospital Aachen, Aachen, Germany,Correspondence Address correspondence to: Pavel Strnad, MD, Department of Internal Medicine III, University Hospital Aachen, Pauwelsstraße 30, D-52074, Aachen, Germany
| |
Collapse
|
12
|
Zhang X, Yin M, Zhang LJ. Keratin 6, 16 and 17-Critical Barrier Alarmin Molecules in Skin Wounds and Psoriasis. Cells 2019; 8:E807. [PMID: 31374826 PMCID: PMC6721482 DOI: 10.3390/cells8080807] [Citation(s) in RCA: 255] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 07/26/2019] [Accepted: 07/28/2019] [Indexed: 12/17/2022] Open
Abstract
Located at the skin surface, keratinocytes (KCs) are constantly exposed to external stimuli and are the first responders to invading pathogens and injury. Upon skin injury, activated KCs secrete an array of alarmin molecules, providing a rapid and specific innate immune response against danger signals. However, dysregulation of the innate immune response of KCs may lead to uncontrolled inflammation and psoriasis pathogenesis. Keratins (KRT) are the major structural intermediate filament proteins in KCs and are expressed in a highly specific pattern at different differentiation stages of KCs. While KRT14-KRT5 is restricted to basal proliferative KCs, and KRT10-KRT1 is restricted to suprabasal differentiated KCs in normal skin epidermis, the wound proximal KCs downregulate KRT10-K1 and upregulate KRT16/KRT17-KRT6 upon skin injury. Recent studies have recognized KRT6/16/17 as key early barrier alarmins and upregulation of these keratins alters proliferation, cell adhesion, migration and inflammatory features of KCs, contributing to hyperproliferation and innate immune activation of KCs in response to an epidermal barrier breach, followed by the autoimmune activation of T cells that drives psoriasis. Here, we have reviewed how keratins are dysregulated during skin injury, their roles in wound repairs and in initiating the innate immune system and the subsequent autoimmune amplification that arises in psoriasis.
Collapse
Affiliation(s)
- Xiaowei Zhang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Meimei Yin
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China
| | - Ling-Juan Zhang
- School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
- Department of Dermatology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
13
|
Castela E, Tulic MK, Rozières A, Bourrat E, Nicolas JF, Kanitakis J, Vabres P, Bessis D, Mazereeuw J, Morice-Picard F, Baty D, Berard F, Lacour JP, Passeron T, Chiaverini C. Epidermolysis bullosa simplex generalized severe induces a T helper 17 response and is improved by apremilast treatment. Br J Dermatol 2018; 180:357-364. [PMID: 29932457 DOI: 10.1111/bjd.16897] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2018] [Indexed: 10/28/2022]
Abstract
BACKGROUND Epidermolysis bullosa simplex generalized severe (EBS-gen sev) is a genetic disorder caused by mutation in the KRT5 or KRT14 genes. Although it is usually considered a mechanical disease, recent data argue for additional inflammatory mechanisms. OBJECTIVES To assess the inflammation in the skin of patients with EBS-gen sev. METHODS A first immunohistochemical retrospective study was performed on frozen skin samples from 17 patients with EBS-gen sev. A second multicentre prospective study was conducted on 10 patients with severe EBS-gen sev. Blister fluid and epidermis were processed for immunochemical analysis and quantitative real-time polymerase chain reaction. Cytokine expression was analysed in blister fluid and compared with that in controls. RESULTS Histological analysis showed a constant dermal perivascular CD4+ lymphocyte infiltrate in skin biopsies of both blister (n = 17) and rubbed skin (n = 5), an epidermal infiltration of neutrophils and eosinophils in 70% of cases, and increased immunostaining for CXCL9 and CXCL10 in blistering skin. High levels of T helper 17 cytokines were detected in lesional skin. Three adult patients with EBS-gen sev were treated with apremilast, with a dramatic improvement of skin blistering and good tolerance. CONCLUSIONS Our study demonstrates the importance of inflammation in patients with EBS-gen sev and underlines the key role for T helper 17 cells in its pathogenesis. In addition, this study provides promising new therapeutic approaches for this disabling disorder.
Collapse
Affiliation(s)
- E Castela
- Department of Dermatology, CHU de Nice, Hôpital Archet 2, 151 Route de Saint Antoine de Ginestière, 06202 Nice CEDEX 2, France.,INSERM U1111-CIRI851, Université Lyon 1, Lyon, France
| | - M K Tulic
- INSERM U1065, Team 12, C3M, Nice, France
| | - A Rozières
- INSERM U1111-CIRI851, Université Lyon 1, Lyon, France
| | - E Bourrat
- MAGEC, Saint-Louis Hospital, Paris, France
| | - J-F Nicolas
- INSERM U1111-CIRI851, Université Lyon 1, Lyon, France.,Department of Allergology and Clinical Immunology, Hospices Civils de Lyon, Lyon, France
| | - J Kanitakis
- Department of Dermatology , Hospices Civils de Lyon, Lyon, France.,Department of Pathology, Hospices Civils de Lyon, Lyon, France
| | - P Vabres
- Department of Dermatology, CHU de Dijon, Dijon, France
| | - D Bessis
- Department of Dermatology, CHU de Montpellier, Montpellier, France
| | | | | | - D Baty
- Scottish Molecular Genetics Consortium, Ninewells Hospital, Dundee, U.K
| | - F Berard
- Department of Allergology and Clinical Immunology, Hospices Civils de Lyon, Lyon, France
| | - J-P Lacour
- Department of Dermatology, CHU de Nice, Hôpital Archet 2, 151 Route de Saint Antoine de Ginestière, 06202 Nice CEDEX 2, France.,CREBHN, CHU de Nice, Nice, France
| | - T Passeron
- Department of Dermatology, CHU de Nice, Hôpital Archet 2, 151 Route de Saint Antoine de Ginestière, 06202 Nice CEDEX 2, France.,INSERM U1065, Team 12, C3M, Nice, France
| | - C Chiaverini
- Department of Dermatology, CHU de Nice, Hôpital Archet 2, 151 Route de Saint Antoine de Ginestière, 06202 Nice CEDEX 2, France.,CREBHN, CHU de Nice, Nice, France
| |
Collapse
|
14
|
Weingarten G, Ben Yaakov A, Dror E, Russ J, Magin TM, Kahn CR, Wertheimer E. Insulin receptor plays a central role in skin carcinogenesis by regulating cytoskeleton assembly. FASEB J 2018; 33:2241-2251. [PMID: 30332298 DOI: 10.1096/fj.201800847r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Diabetes mellitus prevalence is increasing rapidly and is a major cause of mortality and morbidity worldwide. In addition to the known severe complications associated with the disease, in recent years diabetes has been recognized as a major risk factor for cancer. Patients with diabetes experience significantly higher incidence of and higher mortality rates from many types of cancer. However, to date there are no conclusive data on the pathophysiology underlying the association between these two diseases. We previously reported that insulin regulates skin proliferation and differentiation, while IGF1 had different sometimes contrasting effects to those of insulin, suggesting direct involvement of insulin in transformation. To this end, we developed an epidermal skin-specific insulin receptor knockout (SIRKO) mouse, in which the insulin receptor (IR) is inactivated only in skin, with no other metabolic consequences. We found that IR inactivation by itself resulted in a marked decrease in skin tumorigenesis. In the control group 100% of the mice developed tumors, but in the SIRKO group tumor incidence was over 60% lower, and 25% of the SIRKO mice did not develop tumors at all, and the tumors that did develop were smaller and benign in their appearance. Furthermore, IR inactivation in vitro not only prevented cell transformation but also reversed the keratinocyte-transformed phenotype. We found that IR inactivation led to a striking abnormality in the major keratin cytoskeleton filaments structure in both in vivo and in vitro, a change that we were able to link to the decreased transformation potential in IR-null cells. In summary, we identified a unique pathway in which IR regulates cytoskeletal assembly, thus affecting skin transformation, opening a new potential target for cancer treatment and prevention.-Weingarten, G., Ben Yaakov, A., Dror, E., Russ, J., Magin, T. M., Kahn, C. R., Wertheimer, E. Insulin receptor plays a central role in skin carcinogenesis by regulating cytoskeleton assembly.
Collapse
Affiliation(s)
- Galina Weingarten
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Aya Ben Yaakov
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Erez Dror
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jenny Russ
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Thomas M Magin
- Institute of Biology and Sächsischer Inkubator für Klinische Translation (SIKT), University of Leipzig, Leipzig, Germany; and
| | - C Ronald Kahn
- Joslin Diabetes Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Efrat Wertheimer
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
15
|
Sequeira I, Neves JF, Carrero D, Peng Q, Palasz N, Liakath-Ali K, Lord GM, Morgan PR, Lombardi G, Watt FM. Immunomodulatory role of Keratin 76 in oral and gastric cancer. Nat Commun 2018; 9:3437. [PMID: 30143634 PMCID: PMC6109110 DOI: 10.1038/s41467-018-05872-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 07/26/2018] [Indexed: 11/09/2022] Open
Abstract
Keratin 76 (Krt76) is expressed in the differentiated epithelial layers of skin, oral cavity and squamous stomach. Krt76 downregulation in human oral squamous cell carcinomas (OSCC) correlates with poor prognosis. We show that genetic ablation of Krt76 in mice leads to spleen and lymph node enlargement, an increase in regulatory T cells (Tregs) and high levels of pro-inflammatory cytokines. Krt76-/- Tregs have increased suppressive ability correlated with increased CD39 and CD73 expression, while their effector T cells are less proliferative than controls. Loss of Krt76 increases carcinogen-induced tumours in tongue and squamous stomach. Carcinogenesis is further increased when Treg levels are elevated experimentally. The carcinogenesis response includes upregulation of pro-inflammatory cytokines and enhanced accumulation of Tregs in the tumour microenvironment. Tregs also accumulate in human OSCC exhibiting Krt76 loss. Our study highlights the role of epithelial cells in modulating carcinogenesis via communication with cells of the immune system.
Collapse
Affiliation(s)
- Inês Sequeira
- Centre for Stem Cells & Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Joana F Neves
- Department of Experimental Immunobiology, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Dido Carrero
- Centre for Stem Cells & Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Qi Peng
- Immunoregulation Laboratory, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Natalia Palasz
- Centre for Stem Cells & Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Kifayathullah Liakath-Ali
- Centre for Stem Cells & Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.,Department of Molecular and Cellular Physiology and Howard Hughes Medical Institute, Stanford University Medical School, Stanford, 265 Campus Drive, CA, 94305-5453, USA
| | - Graham M Lord
- Department of Experimental Immunobiology, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Peter R Morgan
- Department of Mucosal and Salivary Biology, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Giovanna Lombardi
- Immunoregulation Laboratory, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK
| | - Fiona M Watt
- Centre for Stem Cells & Regenerative Medicine, King's College London, Guy's Hospital, Great Maze Pond, London, SE1 9RT, UK.
| |
Collapse
|
16
|
Brodehl A, Gaertner-Rommel A, Milting H. Molecular insights into cardiomyopathies associated with desmin (DES) mutations. Biophys Rev 2018; 10:983-1006. [PMID: 29926427 DOI: 10.1007/s12551-018-0429-0] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 05/22/2018] [Indexed: 12/15/2022] Open
Abstract
Increasing usage of next-generation sequencing techniques pushed during the last decade cardiogenetic diagnostics leading to the identification of a huge number of genetic variants in about 170 genes associated with cardiomyopathies, channelopathies, or syndromes with cardiac involvement. Because of the biochemical and cellular complexity, it is challenging to understand the clinical meaning or even the relevant pathomechanisms of the majority of genetic sequence variants. However, detailed knowledge about the associated molecular pathomechanism is essential for the development of efficient therapeutic strategies in future and genetic counseling. Mutations in DES, encoding the muscle-specific intermediate filament protein desmin, have been identified in different kinds of cardiac and skeletal myopathies. Here, we review the functions of desmin in health and disease with a focus on cardiomyopathies. In addition, we will summarize the genetic and clinical literature about DES mutations and will explain relevant cell and animal models. Moreover, we discuss upcoming perspectives and consequences of novel experimental approaches like genome editing technology, which might open a novel research field contributing to the development of efficient and mutation-specific treatment options.
Collapse
Affiliation(s)
- Andreas Brodehl
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Georgstrasse 11, 32545, Bad Oeynhausen, Germany.
| | - Anna Gaertner-Rommel
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Georgstrasse 11, 32545, Bad Oeynhausen, Germany
| | - Hendrik Milting
- Erich and Hanna Klessmann Institute for Cardiovascular Research & Development, Heart and Diabetes Centre NRW, Ruhr-University Bochum, Georgstrasse 11, 32545, Bad Oeynhausen, Germany.
| |
Collapse
|
17
|
Luan XR, Chen XL, Tang YX, Zhang JY, Gao X, Ke HP, Lin ZY, Zhang XN. CRISPR/Cas9-Mediated Treatment Ameliorates the Phenotype of the Epidermolytic Palmoplantar Keratoderma-like Mouse. MOLECULAR THERAPY. NUCLEIC ACIDS 2018; 12:220-228. [PMID: 30195761 PMCID: PMC6023945 DOI: 10.1016/j.omtn.2018.05.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 05/07/2018] [Accepted: 05/08/2018] [Indexed: 12/25/2022]
Abstract
CRISPR/Cas9 has been confirmed as a distinctly efficient, simple-to-configure, highly specific genome-editing tool that has been used to treat monogenetic disorders. Epidermolytic palmoplantar keratoderma (EPPK) is a common autosomal dominant keratin disease resulting from dominant-negative mutation of the KRT9 gene, and it has no effective therapy. We performed CRISPR/Cas9-mediated treatment on a knockin (KI) transgenic mouse model that carried a small indel heterozygous mutation of Krt9, c.434delAinsGGCT (p.Tyr144delinsTrpLeu), which caused a humanized EPPK-like phenotype. The mutation within exon 1 of Krt9 generated a novel protospacer adjacent motif site, TGG, for Cas9 recognition and cutting. By delivering lentivirus vectors (LVs) encoding single-guide RNAs (sgRNAs) and Cas9 that targeted Krt9 sequence into HeLa cells engineered to constitutively express wild-type and mutant keratin 9 (K9), we found the sgRNA was highly effective in reducing expression of the mutant K9 protein in vitro. We injected the LV into the fore-paws of adult KI-Krt9 mice three times every 8 days and found that the expression of K9 decreased ∼14.6%. The phenotypic mitigation was revealed by restoration of the abnormal differentiation and aberrant proliferation of the epidermis. Our data are the first to show that CRISPR/Cas9 is a potentially powerful therapeutic option for EPPK and other PPK subtypes.
Collapse
Affiliation(s)
- Xiao-Rui Luan
- Department of Genetics, Research Center for Molecular Medicine, Institute of Cell Biology, Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiao-Ling Chen
- Department of Biological Chemistry, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Yue-Xiao Tang
- Department of Genetics, Research Center for Molecular Medicine, Institute of Cell Biology, Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jin-Yan Zhang
- Department of Genetics, Research Center for Molecular Medicine, Institute of Cell Biology, Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Xiang Gao
- Key Laboratory of Model Animals for Disease Study of The Ministry of Education, Model Animal Research Center of Nanjing University, Nanjing, Jiangsu 210061, China
| | - Hai-Ping Ke
- Department of Biology, Ningbo College of Health Sciences, Ningbo, Zhejiang 315100, China
| | - Zhao-Yu Lin
- Key Laboratory of Model Animals for Disease Study of The Ministry of Education, Model Animal Research Center of Nanjing University, Nanjing, Jiangsu 210061, China
| | - Xian-Ning Zhang
- Department of Genetics, Research Center for Molecular Medicine, Institute of Cell Biology, Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China.
| |
Collapse
|
18
|
The expression pattern of keratin 24 in tissue-engineered dermo-epidermal human skin substitutes in an in vivo model. Pediatr Surg Int 2018; 34:237-244. [PMID: 29039047 DOI: 10.1007/s00383-017-4198-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/21/2017] [Indexed: 02/06/2023]
Abstract
AIMS AND OBJECTIVES The use of autologous tissue-engineered skin substitutes is a promising approach to cover large skin defects in patients. Preclinical investigation is pivotal to test and improve the quality of these bio-engineered substitutes. In the skin, the epidermis, formed mainly by keratinocytes, provides the first physical barrier protecting from the environment. Proper keratinocyte differentiation and, thus, formation of a stratified epidermis is essential for this function. Keratins, the main structural support of keratinocytes, play a vital role regarding differentiation of keratinocytes. Here, we examined the expression pattern of a recently described keratinocyte differentiation marker, namely Keratin 24, in our skin substitutes. MATERIALS AND METHODS Human epidermal keratinocytes, melanocytes, dermal fibroblasts, palmar fibroblasts or sweat gland cells were used to prepare skin substitutes. Fibroblast-containing collagen hydrogels were prepared, and keratinocytes or sweat gland cells and melanocytes were seeded onto the hydrogels. The generated tissue-engineered dermo-epidermal skin analogs were transplanted onto full-thickness skin wounds created on the back of immuno-incompetent rats. The skin substitutes were excised at different time points and histologically examined with regard to Keratin 24 expression. RESULTS We observed the expression of Keratin 24 in keratinocytes of the upper stratum spinosum of the epidermis. In particular, we observed an intensified expression of Keratin 24 13 weeks after transplantation compared to 4 weeks after transplantation. Importantly, we noticed a markedly higher presence of Keratin 24 in more spinous layers if we used palmar fibroblasts or sweat gland cells in our skin substitutes compared non-palmar fibroblasts or epidermal keratinocytes. CONCLUSION Our observations prove that the keratinocyte differentiation marker Keratin 24 is expressed in our dermo-epidermal skin substitutes in a normal pattern. This highlights that our bio-engineered skin analogs mature and reach homeostasis in an in vivo assay. These findings harbor favorable implications regarding future clinical application.
Collapse
|
19
|
Abstract
The evolution of keratins was closely linked to the evolution of epithelia and epithelial appendages such as hair. The characterization of keratins in model species and recent comparative genomics studies have led to a comprehensive scenario for the evolution of keratins including the following key events. The primordial keratin gene originated as a member of the ancient gene family encoding intermediate filament proteins. Gene duplication and changes in the exon-intron structure led to the origin of type I and type II keratins which evolved further by nucleotide sequence modifications that affected both the amino acid sequences of the encoded proteins and the gene expression patterns. The diversification of keratins facilitated the emergence of new and epithelium type-specific properties of the cytoskeleton. In a common ancestor of reptiles, birds, and mammals, a rise in the number of cysteine residues facilitated extensive disulfide bond-mediated cross-linking of keratins in claws. Subsequently, these cysteine-rich keratins were co-opted for an additional function in epidermal follicular structures that evolved into hair, one of the key events in the evolution of mammals. Further diversification of keratins occurred during the evolution of the complex multi-layered organisation of hair follicles. Thus, together with the evolution of other structural proteins, epithelial patterning mechanisms, and development programmes, the evolution of keratins underlied the evolution of the mammalian integument.
Collapse
Affiliation(s)
- Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria.
| | - Florian Ehrlich
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Watt SM, Pleat JM. Stem cells, niches and scaffolds: Applications to burns and wound care. Adv Drug Deliv Rev 2018; 123:82-106. [PMID: 29106911 DOI: 10.1016/j.addr.2017.10.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/19/2017] [Accepted: 10/22/2017] [Indexed: 12/11/2022]
Abstract
The importance of skin to survival, and the devastating physical and psychological consequences of scarring following reparative healing of extensive or difficult to heal human wounds, cannot be disputed. We discuss the significant challenges faced by patients and healthcare providers alike in treating these wounds. New state of the art technologies have provided remarkable insights into the role of skin stem and progenitor cells and their niches in maintaining skin homeostasis and in reparative wound healing. Based on this knowledge, we examine different approaches to repair extensive burn injury and chronic wounds, including full and split thickness skin grafts, temporising matrices and scaffolds, and composite cultured skin products. Notable developments include next generation skin substitutes to replace split thickness skin autografts and next generation gene editing coupled with cell therapies to treat genodermatoses. Further refinements are predicted with the advent of bioprinting technologies, and newly defined biomaterials and autologous cell sources that can be engineered to more accurately replicate human skin architecture, function and cosmesis. These advances will undoubtedly improve quality of life for patients with extensive burns and difficult to heal wounds.
Collapse
Affiliation(s)
- Suzanne M Watt
- Stem Cell Research, Nuffield Division of Clinical Laboratory Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9BQ, UK.
| | - Jonathan M Pleat
- Department of Plastic and Reconstructive Surgery, North Bristol NHS Trust and University of Bristol, Westbury on Trym, Bristol BS9 3TZ, UK.
| |
Collapse
|
21
|
Jiang M, Li B, Zhang J, Hu L, Dang E, Wang G. Vascular endothelial growth factor driving aberrant keratin expression pattern contributes to the pathogenesis of psoriasis. Exp Cell Res 2017; 360:310-319. [DOI: 10.1016/j.yexcr.2017.09.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Revised: 09/13/2017] [Accepted: 09/15/2017] [Indexed: 12/24/2022]
|