1
|
Yoon S, Chen B. Biomimetic Elastomer-Clay Nanocomposite Hydrogels with Control of Biological Chemicals for Soft Tissue Engineering and Wound Healing. ACS APPLIED BIO MATERIALS 2025; 8:2492-2505. [PMID: 39976353 PMCID: PMC11921026 DOI: 10.1021/acsabm.4c01944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 02/21/2025]
Abstract
Resilient hydrogels are of great interest in soft tissue applications, such as soft tissue engineering and wound healing, with their biomimetic mechanical and hydration properties. A critical aspect in designing hydrogels for healthcare is their functionalities to control the surrounding biological environments to optimize the healing process. Herein, we have created an elastomer-clay nanocomposite hydrogel system with biomimetic mechanical behavior and sustained drug delivery of bioactive components and malodorous diamine-controlling properties. These hydrogels were prepared by a combined approach of melt intercalation of poly(ethylene glycol) and montmorillonite clay, followed by in situ cross-linking with a branched poly(glycerol sebacate) prepolymer. The hydration, vapor transmission, and surface wettability of the hydrogels were readily controlled by varying the clay content. Their mechanical properties were also modulated to mimic the Young's moduli (ranging between 12.6 and 105.2 kPa), as well as good flexibility and stretchability of soft tissues. A porous scaffold with interconnected pore structures as well as full and instant shape recovery was fabricated from a selected nanocomposite to demonstrate its potential applications as soft tissue scaffolds and wound healing materials. Biodegradability and biocompatibility were tested in vitro, showing controllable degradation kinetics with clay and no evidence of cytotoxicity. With the high surface area and absorption capacity of the clay, sustained drug delivery of a proangiogenic agent of 17β-estradiol as a model drug and the ability to control the malodorous diamines were both achieved. This elastomer-clay nanocomposite hydrogel system with a three-dimensional interconnected porous scaffold architecture and controllable hydration, mechanical, and biodegradable properties, as well as good biocompatibility and the ability to control the biological chemical species of the surrounding environments, has great potential in soft tissue engineering and wound healing.
Collapse
Affiliation(s)
- Sungkwon Yoon
- School of
Mechanical and Aerospace Engineering, Queen’s
University Belfast, Stranmillis Road, Belfast BT9 5AH, United Kingdom
- Department
of Materials Science and Engineering, University
of Sheffield, Mappin
Street, Sheffield S1 3JD, United Kingdom
| | - Biqiong Chen
- School of
Mechanical and Aerospace Engineering, Queen’s
University Belfast, Stranmillis Road, Belfast BT9 5AH, United Kingdom
| |
Collapse
|
2
|
Zhou Y, Zhou Y, Hu J, Xiao Y, Zhou Y, Yu L. Prognostic, oncogenic roles, and pharmacogenomic features of AMD1 in hepatocellular carcinoma. Cancer Cell Int 2024; 24:398. [PMID: 39695661 DOI: 10.1186/s12935-024-03593-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND AMD1 is the gene encoding S-adenosylmethionine decarboxylase 1. How AMD1 affects the prognosis of hepatocellular carcinoma (HCC) patients is unclear. METHODS Using the Cancer Genome Atlas (TCGA) liver hepatocellular carcinoma datasets, gene enrichment and immunological traits were compared between groups with high and low AMD1 expression. After altering AMD1 expression in HCC cells, cell viability, the clonal formation rate, and migration and invasion ability were detected. Univariate Cox regression analysis and Pearson correlation were used to screen for AMD1-related genes (ARGs). Multidimensional bioinformatic algorithms were utilized to establish a risk score model for ARGs. RESULTS AMD1 expression was notably increased in the majority of cancer types. High AMD1 expression was associated with adverse outcomes and poorer immunotherapy response in HCC patients. AMD1 exhibited higher expression levels in HCC cell lines. The efficient inhibition of HCC cell proliferation, migration, and invasion in vitro can be achieved through the downregulation of AMD1. The AMD1-related risk score was constructed with the expression of 9 ARGs, and demonstrated high predictive efficacy in multiple validation cohorts. Patients with high risk scores exhibited greater resistance to classical chemotherapy drugs. The nomogram, which consists of age, stage, and the AMD1-related risk score, was used to calculate the probability of survival for each individual. CONCLUSION The present study indicates that AMD1 functions as a potential role in HCC progression and may serve as a therapeutic target in HCC. This study constructed a novel AMD1-related scoring system for predicting the prognosis and treatment responsiveness of patients with HCC, enabling the prediction of prognosis and identification of potential treatment targets.
Collapse
Affiliation(s)
- Youliang Zhou
- Department of Medical Insurance, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310015, Zhejiang, China
| | - Yi Zhou
- Department of Orthopedic, Yuhuan Hospital of Traditional Chinese Medicine, Taizhou, 317600, Zhejiang, China
| | - Jiabin Hu
- Department of Surgery, Yuhuan Hospital of Traditional Chinese Medicine, Taizhou, 317600, Zhejiang, China
| | - Yao Xiao
- Department of Medical Insurance, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310015, Zhejiang, China
| | - Yan Zhou
- Department of Pediatrics, The Yuhuan Branch of The First Affiliated Hospital with Wenzhou Medical University, Taizhou, 317600, Zhejiang, China.
| | - Liping Yu
- Department of Medical Insurance, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310015, Zhejiang, China.
| |
Collapse
|
3
|
Rashid MH, Yellarthi SPK, Yellarthi PK, Didugu BGL, Mamillapalli A. Combined assessment of lysine and N-acetyl cadaverine levels assist as a potential biomarker of the smoker periodontitis. Amino Acids 2024; 56:41. [PMID: 38851640 PMCID: PMC11162398 DOI: 10.1007/s00726-024-03396-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/16/2024] [Indexed: 06/10/2024]
Abstract
Periodontitis is an inflammatory condition of supporting structures of teeth leading to attachment and bone loss. Cigarette smoking is the single most important and modifiable risk factor with 5 to 20-fold susceptibility for periodontal diseases. Reverse smoking is a peculiar habit of smoking where the lit end is kept inside the mouth, which is predominant in the northern coastal districts of Andhra Pradesh. Polyamines are biologically active amines involved in tissue regeneration and modulation of inflammation. The study aimed to evaluate polyamines and check their utility as a marker in detection of periodontitis among different groups. Total polyamine levels showed significant increase in reverse smokers with periodontitis when compared to the other groups. Qualitative analysis by thin layer chromatography showed three polyamine bands with varying intensity among the different groups. Mass spectrometric and NMR analyses of the three bands identified them as N1, N8-diacetyl spermidine, N-acetyl cadaverine and lysine. Most significantly elevated levels of lysine was observed in the smoker and reverse smoker periodontitis groups when compared to healthy and non-smoker periodontitis groups. The significantly elevated levels of N-acetyl cadaverine could be responsible for the more destruction of periodontium in the reverse smoker group. Antioxidant potential decreased significantly in different smoker periodontitis groups. The present study suggests that the quantitative analysis of salivary polyamines, lysine and N-acetyl cadaverine can aid as an easy noninvasive diagnostic method for assessing the periodontal status, especially in smokers.
Collapse
Affiliation(s)
- Md Haroon Rashid
- Department of Biotechnology, School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530 045, India
| | - Sandhya Pavan Kumar Yellarthi
- Department of Periodontics and Oral Implantology, GITAM Dental College and Hospital, Visakhapatnam, Andhra Pradesh, 530 045, India
| | - Pavan Kumar Yellarthi
- Department of Oral Medicine and Radiology, GITAM Dental College and Hospital, Visakhapatnam, Andhra Pradesh, 530 045, India
| | - Brinda Goda Lakshmi Didugu
- Department of Biotechnology, School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530 045, India
| | - Anitha Mamillapalli
- Department of Biotechnology, School of Science, GITAM (Deemed to be University), Visakhapatnam, Andhra Pradesh, 530 045, India.
| |
Collapse
|
4
|
Bachmann AS, VanSickle EA, Michael J, Vipond M, Bupp CP. Bachmann-Bupp syndrome and treatment. Dev Med Child Neurol 2024; 66:445-455. [PMID: 37469105 PMCID: PMC10796844 DOI: 10.1111/dmcn.15687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/24/2023] [Accepted: 05/26/2023] [Indexed: 07/21/2023]
Abstract
Bachmann-Bupp syndrome (BABS) is a neurodevelopmental disorder characterized by developmental delay, hypotonia, and varying forms of non-congenital alopecia. The condition is caused by 3'-end mutations of the ornithine decarboxylase 1 (ODC1) gene, which produce carboxy (C)-terminally truncated variants of ODC, a pyridoxal 5'-phosphate-dependent enzyme. C-terminal truncation of ODC prevents its ubiquitin-independent proteasomal degradation and leads to cellular accumulation of ODC enzyme that remains catalytically active. ODC is the first rate-limiting enzyme that converts ornithine to putrescine in the polyamine pathway. Polyamines (putrescine, spermidine, spermine) are aliphatic molecules found in all forms of life and are important during embryogenesis, organogenesis, and tumorigenesis. BABS is an ultra-rare condition with few reported cases, but it serves as a convincing example for drug repurposing therapy. α-Difluoromethylornithine (DFMO, also known as eflornithine) is an ODC inhibitor with a strong safety profile in pediatric use for neuroblastoma and other cancers as well as West African sleeping sickness (trypanosomiasis). Patients with BABS have been treated with DFMO and have shown improvement in hair growth, muscle tone, and development.
Collapse
Affiliation(s)
- André S Bachmann
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
- International Center for Polyamine Disorders, Grand Rapids, MI, USA
| | - Elizabeth A VanSickle
- International Center for Polyamine Disorders, Grand Rapids, MI, USA
- Corewell Health, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Julianne Michael
- International Center for Polyamine Disorders, Grand Rapids, MI, USA
- Corewell Health, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Marlie Vipond
- International Center for Polyamine Disorders, Grand Rapids, MI, USA
- Corewell Health, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| | - Caleb P Bupp
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI, USA
- International Center for Polyamine Disorders, Grand Rapids, MI, USA
- Corewell Health, Helen DeVos Children's Hospital, Grand Rapids, MI, USA
| |
Collapse
|
5
|
Calabrese E, Hayes AW, Pressman P, Kapoor R, Dhawan G, Calabrese V, Agathokleous E. Polyamines and hormesis: Making sense of a dose response dichotomy. Chem Biol Interact 2023; 386:110748. [PMID: 37816449 DOI: 10.1016/j.cbi.2023.110748] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/08/2023] [Accepted: 09/22/2023] [Indexed: 10/12/2023]
Abstract
The diverse biological effects of polyamines (putrescine, spermidine and spermine) were reviewed in the context of hormesis in an integrative manner for the first time. The findings illustrate that each of these polyamines commonly induces hormetic dose responses in a wide range of biological models and types of cells for multiple endpoints in numerous plant species and animal models. Plant research emphasized preconditioning experimental studies in which the respective polyamines conferred some protection against the damaging effects of a broad range of environmental stressors such as drought, salinity, cold/heat, heavy metals and UV-damage in an hormetic manner. Polyamine-based animal hormesis studies emphasized biomedical endpoints such as longevity and neuroprotection. These findings have important biological and biomedical implications and should guide experimental designs of low dose investigations.
Collapse
Affiliation(s)
- Edward Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA, 01003, USA.
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, FL, USA.
| | - Peter Pressman
- University of Maine, 5728 Fernald Hall, Room 201, Orono, ME, 04469, USA.
| | - Rachna Kapoor
- Saint Francis Hospital and Medical Center, Hartford, CT, USA.
| | | | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, School of Medicine University of Catania, Via Santa Sofia 97, Catania, 95123, Italy.
| | - Evgenios Agathokleous
- School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| |
Collapse
|
6
|
Manchanda M, Torres M, Inuossa F, Bansal R, Kumar R, Hunt M, Wheelock CE, Bachar-Wikstrom E, Wikstrom JD. Metabolic Reprogramming and Reliance in Human Skin Wound Healing. J Invest Dermatol 2023; 143:2039-2051.e10. [PMID: 37061123 DOI: 10.1016/j.jid.2023.02.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 01/18/2023] [Accepted: 02/01/2023] [Indexed: 04/17/2023]
Abstract
Impaired skin wound healing is a significant global health issue, especially among the elderly. Wound healing is a well-orchestrated process involving the sequential phases of inflammation, proliferation, and tissue remodeling. Although wound healing is a highly dynamic and energy-requiring process, the role of metabolism remains largely unexplored. By combining transcriptomics and metabolomics of human skin biopsy samples, we mapped the core bioenergetic and metabolic changes in normal acute as well as chronic wounds in elderly subjects. We found upregulation of glycolysis, the tricarboxylic acid cycle, glutaminolysis, and β-oxidation in the later stages of acute wound healing and in chronic wounds. To ascertain the role of these metabolic pathways on wound healing, we targeted each pathway in a wound healing assay as well as in a human skin explant model using metabolic inhibitors and stimulants. Enhancement or inhibition of glycolysis and, to a lesser extent, glutaminolysis had a far greater impact on wound healing than similar manipulations of oxidative phosphorylation and fatty acid β-oxidation. These findings increase the understanding of wound metabolism and identify glycolysis and glutaminolysis as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Mansi Manchanda
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Monica Torres
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden; Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Farydah Inuossa
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Ritu Bansal
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Rahul Kumar
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, India
| | - Matthew Hunt
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Craig E Wheelock
- Research Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden; Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Stockholm, Sweden; Gunma University Initiative for Advanced Research (GIAR), Gunma University, Maebashi, Japan
| | - Etty Bachar-Wikstrom
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Jakob D Wikstrom
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden; Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
7
|
Hunt M, Torres M, Bachar-Wikström E, Wikström JD. Multifaceted roles of mitochondria in wound healing and chronic wound pathogenesis. Front Cell Dev Biol 2023; 11:1252318. [PMID: 37771375 PMCID: PMC10523588 DOI: 10.3389/fcell.2023.1252318] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/28/2023] [Indexed: 09/30/2023] Open
Abstract
Mitochondria are intracellular organelles that play a critical role in numerous cellular processes including the regulation of metabolism, cellular stress response, and cell fate. Mitochondria themselves are subject to well-orchestrated regulation in order to maintain organelle and cellular homeostasis. Wound healing is a multifactorial process that involves the stringent regulation of several cell types and cellular processes. In the event of dysregulated wound healing, hard-to-heal chronic wounds form and can place a significant burden on healthcare systems. Importantly, treatment options remain limited owing to the multifactorial nature of chronic wound pathogenesis. One area that has received more attention in recent years is the role of mitochondria in wound healing. With regards to this, current literature has demonstrated an important role for mitochondria in several areas of wound healing and chronic wound pathogenesis including metabolism, apoptosis, and redox signalling. Additionally, the influence of mitochondrial dynamics and mitophagy has also been investigated. However, few studies have utilised patient tissue when studying mitochondria in wound healing, instead using various animal models. In this review we dissect the current knowledge of the role of mitochondria in wound healing and discuss how future research can potentially aid in the progression of wound healing research.
Collapse
Affiliation(s)
- Matthew Hunt
- Dermatology and Venerology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Monica Torres
- Dermatology and Venerology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Etty Bachar-Wikström
- Dermatology and Venerology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Jakob D. Wikström
- Dermatology and Venerology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
8
|
Xu C, Mi Z, Dong Z, Chen X, Ji G, Kang H, Li K, Zhao B, Wang F. Platelet-Derived Exosomes Alleviate Knee Osteoarthritis by Attenuating Cartilage Degeneration and Subchondral Bone Loss. Am J Sports Med 2023; 51:2975-2985. [PMID: 37551685 DOI: 10.1177/03635465231188122] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
BACKGROUND Osteoarthritis (OA) is the most prevalent chronic degenerative joint disease among the aged population. However, current treatments for OA are limited to alleviating symptoms, with no therapies that prevent and regenerate cartilage deterioration. PURPOSE To assess the effects of platelet-derived exosomes (Plt-exos) on OA and then to explore the potential molecular mechanism. STUDY DESIGN Controlled laboratory study. METHODS Exosomes derived from human apheresis platelets were isolated and identified. The effects of Plt-exos in protecting chondrocytes under interleukin 1β stimulation were evaluated by analyzing the proliferation and migration in human primary chondrocytes. RNA sequencing was later performed in vitro for primary chondrocytes to reveal the underlying mechanisms of Plt-exo treatment. Anterior cruciate ligament transection was used to construct an OA mice model, and intra-articular injection of Plt-exos was given once a week for 6 weeks. Mice were sacrificed 4 weeks after the last injection. Histologic and immunohistochemistry staining and micro-computed tomography analysis were performed to assess alterations of articular cartilage and subchondral bone. RESULTS Plt-exos significantly promoted proliferation and migration of chondrocytes within a dose-dependent manner, as well as dramatically promoted cartilage regeneration and attenuated abnormal tibial subchondral bone remodeling, thus slowing the progression of OA. After being treated with Plt-exos, 1797 genes were differentially expressed in chondrocytes (923 upregulated and 874 downregulated genes). Functional enrichment results and hub genes were mainly involved in anti-inflammatory effects, mediating cell adhesion, stimulating cartilage repair, promoting anabolism, and inhibiting catabolism. CONCLUSION Our results demonstrated that Plt-exos promoted chondrocyte proliferation and migration in vitro, as well as attenuated cartilage degeneration, improved the microarchitecture of subchondral bone, and retarded OA progression in vivo. CLINICAL RELEVANCE Our study illustrated that the administered Plt-exos could alleviate knee OA by attenuating cartilage degeneration and subchondral bone loss, possibly serving as a novel promising treatment for OA in the future.
Collapse
Affiliation(s)
- Chenyue Xu
- Hebei Medical University Third Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Ziyue Mi
- Clinical Transfusion Research Center, Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, Sichuan, China
| | - Zhenyue Dong
- Hebei Medical University Third Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Xiaobo Chen
- Hebei Medical University Third Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Gang Ji
- Hebei Medical University Third Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Huijun Kang
- Hebei Medical University Third Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Kehan Li
- Hebei Medical University Third Affiliated Hospital, Shijiazhuang, Hebei, China
| | - Bo Zhao
- Hebei Medical University, Shijiazhuang, Hebei, China
| | - Fei Wang
- Hebei Medical University Third Affiliated Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
9
|
Uemura T, Uchida M, Nakamura M, Shimekake M, Sakamoto A, Terui Y, Higashi K, Ishii I, Kashiwagi K, Igarashi K. A search for acrolein scavengers among food components. Amino Acids 2023; 55:509-518. [PMID: 36752871 DOI: 10.1007/s00726-023-03248-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 02/01/2023] [Indexed: 02/09/2023]
Abstract
Brain stroke is a major cause of being bedridden for elderly people, and preventing stroke is important for maintaining quality of life (QOL). Acrolein is a highly reactive aldehyde and causes tissue damage during stroke. Decreasing acrolein toxicity ameliorates tissue injury during brain stroke. In this study, we tried to identify food components which decrease acrolein toxicity. We found that 2-furanmethanethiol, cysteine methyl and ethyl esters, alliin, lysine and taurine decreased acrolein toxicity. These compounds neutralized acrolein by direct interaction. However, the interaction between acrolein and taurine was not so strong. Approximately 30 mM taurine was necessary to interact with 10 μM acrolein, and 2 g/kg taurine was necessary to decrease the size of mouse brain infarction. Taurine also slightly increased polyamine contents, which are involved in decrease in the acrolein toxicity. Mitochondrial potential damage by acrolein was also protected by taurine. Our results indicate that daily intake of foods containing 2-furanmethanethiol, cysteine methyl and ethyl esters, alliin, lysine and taurine may prevent severe injury in brain stroke and improve the quality of life for elderly people.
Collapse
Affiliation(s)
- Takeshi Uemura
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, 1-8-15 Inohana, Chuo-Ku, Chiba, 260-0856, Japan
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
- Department of Pharmaceutical Sciences, Josai University, Sakado, Saitama, Japan
| | - Masashi Uchida
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Mizuho Nakamura
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, 1-8-15 Inohana, Chuo-Ku, Chiba, 260-0856, Japan
| | - Momo Shimekake
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Akihiko Sakamoto
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba, Japan
| | - Yusuke Terui
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba, Japan
| | - Kyohei Higashi
- Faculty of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan
| | - Itsuko Ishii
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Keiko Kashiwagi
- Faculty of Pharmacy, Chiba Institute of Science, Choshi, Chiba, Japan
| | - Kazuei Igarashi
- Amine Pharma Research Institute, Innovation Plaza at Chiba University, 1-8-15 Inohana, Chuo-Ku, Chiba, 260-0856, Japan.
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan.
| |
Collapse
|
10
|
Yang C, Qiu M, Zhang Z, Song X, Yang L, Xiong X, Hu C, Pen H, Chen J, Xia B, Du H, Li Q, Jiang X, Yu C. Galacto-oligosaccharides and Xylo-oligosaccharides Affect Meat Flavor by Altering the Cecal Microbiome, Metabolome, and Transcriptome of Chickens. Poult Sci 2022; 101:102122. [PMID: 36167016 PMCID: PMC9513281 DOI: 10.1016/j.psj.2022.102122] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 05/31/2022] [Accepted: 08/02/2022] [Indexed: 12/19/2022] Open
Abstract
Studies have shown that prebiotics can affect meat quality; however, the underlying mechanisms remain poorly understood. This study aimed to investigate whether prebiotics affect the flavor of chicken meat via the gut microbiome and metabolome. The gut content was collected from chickens fed with or without prebiotics (galacto-oligosaccharides or xylo-oligosaccharides) and subjected to microbiome and metabolome analyses, whereas transcriptome sequencing was performed using chicken breast. Prebiotic supplementation yielded a slight improvement that was not statistically significant in the growth and production performance of chickens. Moreover, treatment with prebiotics promoted fat synthesis and starch hydrolysis, thus increasing meat flavor by enhancing lipase and α-amylase activity in the blood of broiler chickens. The prebiotics altered the proportions of microbiota in the gut at different levels, especially microbiota in the phyla Bacteroidetes and Firmicutes, such as members of the Alistipes, Bacteroides, and Faecalibacterium genera. Furthermore, the prebiotics altered the content of cecal metabolites related to flavor substances, including 8 types of lysophosphatidylcholine (lysoPC) and 4 types of amino acid. Differentially expressed genes (DEGs) induced by prebiotics were significantly involved in fatty acid accumulation processes, such as lipolysis in adipocytes and the adipocytokine signaling pathway. Changes in gut microbiota were correlated with metabolites, for example, Bacteroidetes and Firmicutes were positively and negatively correlated with lysoPC, respectively. Finally, DEGs interacted with cecal metabolites, especially meat-flavor-related amino acids and their derivatives. The findings of this study integrated and incorporated associations among the gut microbiota, metabolites, and transcriptome, which suggests that prebiotics affect the flavor of chicken meat.
Collapse
Affiliation(s)
- Chaowu Yang
- Sichuan Animal Science Academy, Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Mohan Qiu
- Sichuan Animal Science Academy, Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Zengrong Zhang
- Sichuan Animal Science Academy, Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Xiaoyan Song
- Sichuan Animal Science Academy, Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Li Yang
- Sichuan Animal Science Academy, Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Xia Xiong
- Sichuan Animal Science Academy, Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Chenming Hu
- Sichuan Animal Science Academy, Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Han Pen
- Sichuan Animal Science Academy, Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Jialei Chen
- Sichuan Animal Science Academy, Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Bo Xia
- Sichuan Animal Science Academy, Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Huarui Du
- Sichuan Animal Science Academy, Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Qingyun Li
- Sichuan Animal Science Academy, Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Xiaosong Jiang
- Sichuan Animal Science Academy, Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, China
| | - Chunlin Yu
- Sichuan Animal Science Academy, Animal Breeding and Genetics Key Laboratory of Sichuan Province, Chengdu 610066, China.
| |
Collapse
|
11
|
Wilkinson HN, Reubinoff B, Shveiky D, Hardman MJ, Menachem-Zidon OB. Epithelial arginase-1 is a key mediator of age-associated delayed healing in vaginal injury. Front Endocrinol (Lausanne) 2022; 13:927224. [PMID: 36034415 PMCID: PMC9410732 DOI: 10.3389/fendo.2022.927224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 07/22/2022] [Indexed: 11/30/2022] Open
Abstract
Pelvic organ prolapse is a disorder that substantially affects the quality of life of millions of women worldwide. The greatest risk factors for prolapse are increased parity and older age, with the largest group requiring surgical intervention being post-menopausal women over 65. Due to ineffective healing in the elderly, prolapse recurrence rates following surgery remain high. Therefore, there is an urgent need to elucidate the cellular and molecular drivers of poor healing in pelvic floor dysfunction to allow effective management and even prevention. Recent studies have uncovered the importance of Arginase 1 for modulating effective healing in the skin. We thus employed novel in vitro and in vivo vaginal injury models to determine the specific role of Arginase 1 in age-related vaginal repair. Here we show, for the first time, that aged rat vaginal wounds have reduced Arginase 1 expression and delayed healing. Moreover, direct inhibition of Arginase 1 in human vaginal epithelial cells also led to delayed scratch-wound closure. By contrast, activation of Arginase 1 significantly accelerated healing in aged vaginal wounds in vivo, to rates comparable to those in young animals. Collectively, these findings reveal a new and important role for Arginase 1 in mediating effective vaginal repair. Targeting age-related Arginase 1 deficiency is a potential viable therapeutic strategy to promote vaginal healing and reduce recurrence rate after surgical repair of pelvic organ prolapse.
Collapse
Affiliation(s)
- Holly N. Wilkinson
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, United Kingdom
- *Correspondence: Ofra Ben Menachem-Zidon, ; Holly N. Wilkinson,
| | - Benjamin Reubinoff
- The Hadassah Human Embryonic Stem Cell Research Center and the Goldyne Savad Institute of Gene Therapy, Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Obstetrics and Gynecology, Hadassah – Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
| | - David Shveiky
- Department of Obstetrics and Gynecology, Hadassah – Hebrew University Medical Center, Ein Kerem, Jerusalem, Israel
- Section of Female Pelvic Medicine & Reconstructive Surgery, Department of Obstetrics & Gynecology, Hadassah Medical Center, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Matthew J. Hardman
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Ofra Ben Menachem-Zidon
- The Hadassah Human Embryonic Stem Cell Research Center and the Goldyne Savad Institute of Gene Therapy, Medical Center and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- *Correspondence: Ofra Ben Menachem-Zidon, ; Holly N. Wilkinson,
| |
Collapse
|
12
|
Szondi DC, Wong JK, Vardy LA, Cruickshank SM. Arginase Signalling as a Key Player in Chronic Wound Pathophysiology and Healing. Front Mol Biosci 2021; 8:773866. [PMID: 34778380 PMCID: PMC8589187 DOI: 10.3389/fmolb.2021.773866] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/14/2021] [Indexed: 01/05/2023] Open
Abstract
Arginase (ARG) represents an important evolutionarily conserved enzyme that is expressed by multiple cell types in the skin. Arg acts as the mediator of the last step of the urea cycle, thus providing protection against excessive ammonia under homeostatic conditions through the production of L-ornithine and urea. L-ornithine represents the intersection point between the ARG-dependent pathways and the urea cycle, therefore contributing to cell detoxification, proliferation and collagen production. The ARG pathways help balance pro- and anti-inflammatory responses in the context of wound healing. However, local and systemic dysfunctionalities of the ARG pathways have been shown to contribute to the hindrance of the healing process and the occurrence of chronic wounds. This review discusses the functions of ARG in macrophages and fibroblasts while detailing the deleterious implications of a malfunctioning ARG enzyme in chronic skin conditions such as leg ulcers. The review also highlights how ARG links with the microbiota and how this impacts on infected chronic wounds. Lastly, the review depicts chronic wound treatments targeting the ARG pathway, alongside future diagnosis and treatment perspectives.
Collapse
Affiliation(s)
- Denis C Szondi
- Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Jason K Wong
- Blond McIndoe Laboratories, Division of Cell Matrix Biology and Regenerative Medicine, Manchester Academic Health Science Centre, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Leah A Vardy
- Skin Research Institute of Singapore, ASTAR, Singapore, Singapore
| | - Sheena M Cruickshank
- Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
13
|
Crompton RA, Williams H, Campbell L, Hui Kheng L, Saville C, Ansell DM, Reid A, Wong J, Vardy LA, Hardman MJ, Cruickshank SM. An Epidermal-Specific Role for Arginase1 during Cutaneous Wound Repair. J Invest Dermatol 2021; 142:1206-1216.e8. [PMID: 34710388 DOI: 10.1016/j.jid.2021.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/03/2021] [Accepted: 09/10/2021] [Indexed: 10/20/2022]
Abstract
Nonhealing wounds are a major area of unmet clinical need remaining problematic to treat. Improved understanding of prohealing mechanisms is invaluable. The enzyme arginase1 (ARG1) is involved in prohealing responses, with its role in macrophages best characterized. ARG1 is also expressed by keratinocytes; however, ARG1 function in these critical wound repair cells is not understood. We characterized ARG1 expression in keratinocytes during normal cutaneous repair and reveal de novo temporal and spatial expression at the epidermal wound edge. Interestingly, epidermal ARG1 expression was decreased in both human and murine delayed healing wounds. We therefore generated a keratinocyte-specific ARG1-null mouse model (K14-cre;Arg1fl/fl) to explore arginase function. Wound repair, linked to changes in keratinocyte proliferation, migration, and differentiation, was significantly delayed in K14-cre;Arg1fl/fl mice. Similarly, using the arginase inhibitor N(omega)-hydroxy-nor-L-arginine, human in vitro and ex vivo models further confirmed this finding, revealing the importance of the downstream polyamine pathway in repair. Indeed, restoring the balance in ARG1 activity through the addition of putrescine proved beneficial in wound closure. In summary, we show that epidermal ARG1 plays, to our knowledge, a previously unreported intrinsic role in cutaneous healing, highlighting epidermal ARG1 and the downstream mediators as potential targets for the therapeutic modulation of wound repair.
Collapse
Affiliation(s)
- Rachel A Crompton
- Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Helen Williams
- Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Laura Campbell
- Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Lim Hui Kheng
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Charis Saville
- Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - David M Ansell
- Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom; Faculty of Life Sciences, School of Chemistry and Bioscience, University of Bradford, Bradford, United Kingdom
| | - Adam Reid
- Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Jason Wong
- Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Leah A Vardy
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Matthew J Hardman
- Centre for Atherothrombosis and Metabolic Disease, Hull York Medical School, University of Hull, Hull, United Kingdom
| | - Sheena M Cruickshank
- Lydia Becker Institute of Immunology and Inflammation, Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
14
|
Yang L, Li X, Luo Y, Yang T, Wang H, Shi L, Feng M, Xie W. Weighted gene co-expression network analysis of the association between upregulated AMD1, EN1 and VGLL1 and the progression and poor prognosis of breast cancer. Exp Ther Med 2021; 22:1030. [PMID: 34373716 PMCID: PMC8343771 DOI: 10.3892/etm.2021.10462] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 03/10/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the most prevalent malignancy among females, but the molecular mechanisms involved in its pathogenesis and progression have remained to be fully elucidated. The aim of the present study was to identify novel potential therapeutic targets for breast cancer. The dataset GSE76275 was downloaded from the Gene Expression Omnibus database and weighted gene co-expression network analysis (WGCNA) was performed to identify hub genes. Furthermore, the dataset GSE25055, containing gene expression data and clinical information, was downloaded to validate the expression and survival association of these hub genes. In addition, the datasets GSE25065 and GSE42568 were used to validate the association between hub gene expression levels and clinical features. Immunohistochemistry (IHC), reverse transcription-quantitative PCR, as well as proliferation, migration, invasion and apoptosis assays, were used to verify gene expression and function. A total of 4,052 genes were selected for WGCNA and 18 modules were established; the red module was identified as the key module, as it had a strong positive correlation with the tumor grade. Survival analyses of hub genes [S-adenosylmethionine decarboxylase proenzyme (AMD1), homeobox protein engrailed-1 (EN1) and vestigial-like protein (VGLL1)] indicated that higher levels of gene expression were associated with poor prognosis of patients with breast cancer. This association was based on survival analysis of GSE25055 using the Kaplan-Meier plotter tool. Expression validation revealed that the upregulation of hub genes was associated with advanced tumor grade and malignant molecular subtype (basal-like). IHC results from the Human Protein Atlas also demonstrated that protein expression levels of the hub genes were higher in tumor tissues compared with those in adjacent normal tissues. Furthermore, the expression levels of AMD1, EN1 and VGLL1 were strongly correlated with each other. These results demonstrated that AMD1 is highly expressed in breast cancer tissues and cells and AMD1 knockdown decreased the proliferation and metastatic potential, while increasing apoptosis of breast cancer cells. These results suggested that AMD1, EN1 and VGLL1 are likely to contribute to breast cancer progression and unfavorable prognosis.
Collapse
Affiliation(s)
- Lijie Yang
- Department of Gastrointestinal Surgery, Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Clinical Cancer Study Center of Hubei Province, Key Laboratory of Tumor Biological Behavior of Hubei, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Xuanfei Li
- Department of Gastrointestinal Surgery, Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Clinical Cancer Study Center of Hubei Province, Key Laboratory of Tumor Biological Behavior of Hubei, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yixing Luo
- Department of Emergency, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Tiecheng Yang
- Department of Gastrointestinal Surgery, Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Clinical Cancer Study Center of Hubei Province, Key Laboratory of Tumor Biological Behavior of Hubei, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Huaqiao Wang
- Department of Gastrointestinal Surgery, Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Clinical Cancer Study Center of Hubei Province, Key Laboratory of Tumor Biological Behavior of Hubei, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Liwen Shi
- Department of Gastrointestinal Surgery, Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Clinical Cancer Study Center of Hubei Province, Key Laboratory of Tumor Biological Behavior of Hubei, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Maohui Feng
- Department of Gastrointestinal Surgery, Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Clinical Cancer Study Center of Hubei Province, Key Laboratory of Tumor Biological Behavior of Hubei, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Wei Xie
- Department of Gastrointestinal Surgery, Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Clinical Cancer Study Center of Hubei Province, Key Laboratory of Tumor Biological Behavior of Hubei, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
15
|
Rahim AB, Lim HK, Tan CYR, Jia L, Leo VI, Uemura T, Hardman-Smart J, Common JEA, Lim TC, Bellanger S, Paus R, Igarashi K, Yang H, Vardy LA. The Polyamine Regulator AMD1 Upregulates Spermine Levels to Drive Epidermal Differentiation. J Invest Dermatol 2021; 141:2178-2188.e6. [PMID: 33984347 DOI: 10.1016/j.jid.2021.01.039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 01/15/2021] [Accepted: 01/27/2021] [Indexed: 12/29/2022]
Abstract
Maintaining tissue homeostasis depends on a balance between cell proliferation, differentiation, and apoptosis. Within the epidermis, the levels of the polyamines putrescine, spermidine, and spermine are altered in many different skin conditions, yet their role in epidermal tissue homeostasis is poorly understood. We identify the polyamine regulator, Adenosylmethionine decarboxylase 1 (AMD1), as a crucial regulator of keratinocyte (KC) differentiation. AMD1 protein is upregulated on differentiation and is highly expressed in the suprabasal layers of the human epidermis. During KC differentiation, elevated AMD1 promotes decreased putrescine and increased spermine levels. Knockdown or inhibition of AMD1 results in reduced spermine levels and inhibition of KC differentiation. Supplementing AMD1-knockdown KCs with exogenous spermidine or spermine rescued aberrant differentiation. We show that the polyamine shift is critical for the regulation of key transcription factors and signaling proteins that drive KC differentiation, including KLF4 and ZNF750. These findings show that human KCs use controlled changes in polyamine levels to modulate gene expression to drive cellular behavior changes. Modulation of polyamine levels during epidermal differentiation could impact skin barrier formation or can be used in the treatment of hyperproliferative skin disorders.
Collapse
Affiliation(s)
- Anisa B Rahim
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Hui Kheng Lim
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Christina Yan Ru Tan
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Li Jia
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Vonny Ivon Leo
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Takeshi Uemura
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Jonathan Hardman-Smart
- Centre for Dermatology Research, School of Biology, University of Manchester, Manchester, United Kingdom; NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom; St John's Institute of Dermatology, King's College London, London, United Kingdom
| | - John E A Common
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Thiam Chye Lim
- Division of Plastic, Reconstructive & Aesthetic Surgery, Department of Surgery, National University Hospital, National University of Singapore, Singapore, Singapore
| | - Sophie Bellanger
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore
| | - Ralf Paus
- Centre for Dermatology Research, School of Biology, University of Manchester, Manchester, United Kingdom; NIHR Manchester Biomedical Research Centre, Manchester, United Kingdom; Dr Phillip Frost Department of Dermatology and Cutaneous Surgery, Miller School of Medicine, University of Miami, Miami, Florida, USA
| | - Kazuei Igarashi
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Leah A Vardy
- Skin Research Institute of Singapore, Agency for Science, Technology and Research (A∗STAR), Singapore, Singapore.
| |
Collapse
|
16
|
Ito D, Ito H, Ideta T, Kanbe A, Ninomiya S, Shimizu M. Systemic and topical administration of spermidine accelerates skin wound healing. Cell Commun Signal 2021; 19:36. [PMID: 33752688 PMCID: PMC7986284 DOI: 10.1186/s12964-021-00717-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/01/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The skin wound healing process is regulated by various cytokines, chemokines, and growth factors. Recent reports have demonstrated that spermine/spermidine (SPD) promote wound healing through urokinase-type plasminogen activator (uPA)/uPA receptor (uPAR) signaling in vitro. Here, we investigated whether the systemic and topical administration of SPD would accelerate the skin wound-repair process in vivo. METHODS A skin wound repair model was established using C57BL/6 J mice. SPD was mixed with white petrolatum for topical administration. For systemic administration, SPD mixed with drinking water was orally administered. Changes in wound size over time were calculated using digital photography. RESULTS Systemic and topical SPD treatment significantly accelerated skin wound healing. The administration of SPD promoted the uPA/uPAR pathway in wound sites. Moreover, topical treatment with SPD enhanced the expression of IL-6 and TNF-α in wound sites. Scratch and cell proliferation assays revealed that SPD administration accelerated scratch wound closure and cell proliferation in vitro. CONCLUSION These results indicate that treatment with SPD promotes skin wound healing through activation of the uPA/uPAR pathway and induction of the inflammatory response in wound sites. The administration of SPD might contribute to new effective treatments to accelerate skin wound healing. Video Abstract.
Collapse
Affiliation(s)
- Daisuke Ito
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Yanagido, Gifu City, 501-1194 Japan
| | - Hiroyasu Ito
- Department of Joint Research Laboratory of Clinical Medicine, Fujita Health University School of Medicine, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi City, 470-1192 Japan
| | - Takayasu Ideta
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, Yanagido, Gifu City, 501-1194 Japan
| | - Ayumu Kanbe
- Department of Clinical Laboratory, Gifu University Hospital, Yanagido, Gifu City, 501-1194 Japan
| | - Soranobu Ninomiya
- Department of Informative Clinical Medicine, Gifu University Graduate School of Medicine, Yanagido, Gifu City, 501-1194 Japan
| | - Masahito Shimizu
- Department of Gastroenterology, Gifu University Graduate School of Medicine, Yanagido, Gifu City, 501-1194 Japan
| |
Collapse
|