1
|
Rajesh A, Ju EDE, Oxford KA, Harman RM, Van de Walle GR. The mesenchymal stromal cell secretome promotes tissue regeneration and increases macrophage infiltration in acute and methicillin-resistant Staphylococcus aureus-infected skin wounds in vivo. Cytotherapy 2024; 26:1400-1410. [PMID: 38944795 DOI: 10.1016/j.jcyt.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/05/2024] [Accepted: 06/05/2024] [Indexed: 07/01/2024]
Abstract
BACKGROUND AIMS The prevalence of chronic wounds continues to be a burden in human medicine. Methicillin-resistant Staphylococcus aureus (MRSA) is commonly isolated from infected wounds. MRSA infections primarily delay healing by impairing local immune cell functions. This study aimed to investigate the potential of mesenchymal stromal cell (MSC)-secreted bioactive factors, defined as the secretome, to improve innate immune responses in vivo. MSCs were isolated from the bone marrow of horses, which serve as valuable translational models for wound healing. The MSC secretome, collected as conditioned medium (CM), was evaluated in vivo using mouse models of acute and MRSA-infected skin wounds. METHODS Punch biopsies were used to create two full-thickness skin wounds on the back of each mouse. Acute wounds were treated daily with control medium or bone marrow-derived MSC (BM-MSC) CM. The antibiotic mupirocin was administered as a positive control for the MRSA-infected wound experiments. Wounds were photographed daily, and wound images were measured to determine the rate of closure. Trichrome staining was carried out to examine wound tissue histologically, and immunofluorescence antibody binding was used to assess immune cell infiltration. Wounds in the MRSA-infected model were swabbed for quantification of bacterial load. RESULTS Acute wounds treated with BM-MSC CM showed accelerated wound closure compared with controls, as illustrated by enhanced granulation tissue formation and resolution, increased vasculature and regeneration of hair follicles. This treatment also led to increased neutrophil and macrophage infiltration. Chronic MRSA-infected wounds treated with BM-MSC CM showed reduced bacterial load accompanied by better resolution of granulation tissue formation and increased infiltration of pro-healing M2 macrophages compared with control-treated infected wounds. CONCLUSIONS Collectively, our findings indicate that BM-MSC CM exerts pro-healing, immunomodulatory and anti-bacterial effects on wound healing in vivo, validating further exploration of the MSC secretome as a novel treatment option to improve healing of both acute and chronic wounds, especially those infected with antibiotic-resistant bacteria.
Collapse
Affiliation(s)
- Aarthi Rajesh
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Esther Da Eun Ju
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Kelly A Oxford
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA.
| |
Collapse
|
2
|
Zhang Y, Li R, Zou G, Guo Y, Wu R, Zhou Y, Chen H, Zhou R, Lavigne R, Bergen PJ, Li J, Li J. Discovery of Antimicrobial Lysins from the "Dark Matter" of Uncharacterized Phages Using Artificial Intelligence. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404049. [PMID: 38899839 PMCID: PMC11348152 DOI: 10.1002/advs.202404049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/29/2024] [Indexed: 06/21/2024]
Abstract
The rapid rise of antibiotic resistance and slow discovery of new antibiotics have threatened global health. While novel phage lysins have emerged as potential antibacterial agents, experimental screening methods for novel lysins pose significant challenges due to the enormous workload. Here, the first unified software package, namely DeepLysin, is developed to employ artificial intelligence for mining the vast genome reservoirs ("dark matter") for novel antibacterial phage lysins. Putative lysins are computationally screened from uncharacterized Staphylococcus aureus phages and 17 novel lysins are randomly selected for experimental validation. Seven candidates exhibit excellent in vitro antibacterial activity, with LLysSA9 exceeding that of the best-in-class alternative. The efficacy of LLysSA9 is further demonstrated in mouse bloodstream and wound infection models. Therefore, this study demonstrates the potential of integrating computational and experimental approaches to expedite the discovery of new antibacterial proteins for combating increasing antimicrobial resistance.
Collapse
Affiliation(s)
- Yue Zhang
- National Key Laboratory of Agricultural MicrobiologyKey Laboratory of Environment Correlative DietologyCollege of Biomedicine and HealthShenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryCollege of Food Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Runze Li
- National Key Laboratory of Agricultural MicrobiologyKey Laboratory of Environment Correlative DietologyCollege of Biomedicine and HealthShenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryCollege of Food Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Geng Zou
- National Key Laboratory of Agricultural MicrobiologyKey Laboratory of Environment Correlative DietologyCollege of Biomedicine and HealthShenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryCollege of Food Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Yating Guo
- National Key Laboratory of Agricultural MicrobiologyKey Laboratory of Environment Correlative DietologyCollege of Biomedicine and HealthShenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhan430070China
- College of Veterinary MedicineHuazhong Agricultural UniversityWuhan430070China
| | - Renwei Wu
- National Key Laboratory of Agricultural MicrobiologyKey Laboratory of Environment Correlative DietologyCollege of Biomedicine and HealthShenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhan430070China
- College of Veterinary MedicineHuazhong Agricultural UniversityWuhan430070China
| | - Yang Zhou
- National Key Laboratory of Agricultural MicrobiologyKey Laboratory of Environment Correlative DietologyCollege of Biomedicine and HealthShenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhan430070China
| | - Huanchun Chen
- National Key Laboratory of Agricultural MicrobiologyKey Laboratory of Environment Correlative DietologyCollege of Biomedicine and HealthShenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhan430070China
- College of Veterinary MedicineHuazhong Agricultural UniversityWuhan430070China
| | - Rui Zhou
- National Key Laboratory of Agricultural MicrobiologyKey Laboratory of Environment Correlative DietologyCollege of Biomedicine and HealthShenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhan430070China
- College of Veterinary MedicineHuazhong Agricultural UniversityWuhan430070China
| | - Rob Lavigne
- Department of BiosystemsLaboratory of Gene TechnologyKU LeuvenLeuven3001Belgium
| | - Phillip J. Bergen
- Monash Biomedicine Discovery InstituteDepartment of MicrobiologyFaculty of MedicineNursing and Health SciencesMonash UniversityMelbourne3800Australia
| | - Jian Li
- Monash Biomedicine Discovery InstituteDepartment of MicrobiologyFaculty of MedicineNursing and Health SciencesMonash UniversityMelbourne3800Australia
| | - Jinquan Li
- National Key Laboratory of Agricultural MicrobiologyKey Laboratory of Environment Correlative DietologyCollege of Biomedicine and HealthShenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhan430070China
- Hubei Hongshan LaboratoryCollege of Food Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
- College of Veterinary MedicineHuazhong Agricultural UniversityWuhan430070China
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureGenome Analysis Laboratory of the Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhen518000China
| |
Collapse
|
3
|
Banerjee SK, Thurlow LR, Kannan K, Richardson AR. Glucose transporter 1 is essential for the resolution of methicillin-resistant S. aureus skin and soft tissue infections. Cell Rep 2024; 43:114486. [PMID: 38990718 PMCID: PMC11323221 DOI: 10.1016/j.celrep.2024.114486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/03/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024] Open
Abstract
Skin/soft tissue infections (SSTIs) caused by methicillin-resistant Staphylococcus aureus (MRSA) pose a major healthcare burden. Distinct inflammatory and resolution phases comprise the host immune response to SSTIs. Resolution is a myeloid PPARγ-dependent anti-inflammatory phase that is essential for the clearance of MRSA. However, the signals activating PPARγ to induce resolution remain unknown. Here, we demonstrate that myeloid glucose transporter 1 (GLUT-1) is essential for the onset of resolution. MRSA-challenged macrophages are unsuccessful in generating an oxidative burst or immune radicals in the absence of GLUT-1 due to a reduction in the cellular NADPH pool. This translates in vivo as a significant reduction in lipid peroxidation products required for the activation of PPARγ in MRSA-infected mice lacking myeloid GLUT-1. Chemical induction of PPARγ during infection circumvents this GLUT-1 requirement and improves resolution. Thus, GLUT-1-dependent oxidative burst is essential for the activation of PPARγ and subsequent resolution of SSTIs.
Collapse
Affiliation(s)
- Srijon K Banerjee
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Lance R Thurlow
- Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-7450, USA
| | - Kartik Kannan
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, USA
| | - Anthony R Richardson
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, 450 Technology Drive, Pittsburgh, PA 15219, USA.
| |
Collapse
|
4
|
Shan J, Wu X, Che J, Gan J, Zhao Y. Reactive Microneedle Patches with Antibacterial and Dead Bacteria-Trapping Abilities for Skin Infection Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309622. [PMID: 38582511 PMCID: PMC11186059 DOI: 10.1002/advs.202309622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/18/2024] [Indexed: 04/08/2024]
Abstract
Bacterial skin infections are highly prevalent and pose a significant public health threat. Current strategies are primarily focused on the inhibition of bacterial activation while disregarding the excessive inflammation induced by dead bacteria remaining in the body and the effect of the acidic microenvironment during therapy. In this study, a novel dual-functional MgB2 microparticles integrated microneedle (MgB2 MN) patch is presented to kill bacteria and eliminate dead bacteria for skin infection management. The MgB2 microparticles not only can produce a local alkaline microenvironment to promote the proliferation and migration of fibroblasts and keratinocytes, but also achieve >5 log bacterial inactivation. Besides, the MgB2 microparticles effectively mitigate dead bacteria-induced inflammation through interaction with lipopolysaccharide (LPS). With the incorporation of these MgB2 microparticles, the resultant MgB2 MN patches effectively kill bacteria and capture dead bacteria, thereby mitigating these bacteria-induced inflammation. Therefore, the MgB2 MN patches show good therapeutic efficacy in managing animal bacterial skin infections, including abscesses and wounds. These results indicate that reactive metal borides-integrated microneedle patches hold great promise for the treatment of clinical skin infections.
Collapse
Affiliation(s)
- Jingyang Shan
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Key Laboratory of Organic Electronics and Information DisplaysJiangsu Key Laboratory for BiosensorsInstitute of Advanced Materials (IAM)Nanjing University of Posts and TelecommunicationsNanjing210023China
| | - Xiangyi Wu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Junyi Che
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Jingjing Gan
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| |
Collapse
|
5
|
Wang H, Liu J, Peng Z, Wang Q, Wei J, Li Y. Construction of a Novel Semiautomated Electrochemical Sensor Array Platform and Its Application in Multiplexed Monitoring of Antibiotic Therapy. ACS Sens 2024; 9:1349-1358. [PMID: 38437790 DOI: 10.1021/acssensors.3c02346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
At present, traditional analytical methods suffer from issues such as complex operation, expensive equipment, and a lengthy testing time. Electrochemical sensors have shown great advantages and application potential as an alternative solution. In this study, we proposed a novel semiautomated electrochemical sensor array (SAESA) platform. The sensor array was fabricated using screen-printed technology with a tubular design where all electrodes were printed on the inner wall. The integration of the tubular sensor array with a pipet allows for a semiautomated process including sampling and rinsing, which simplifies operation and reduces overall time. Each working electrode in the tubular sensor array underwent distinct decoration to get specific sensing responses toward the target analytes in a mixture environment (e.g., blood samples). To demonstrate the applicability of the developed sensing platform for simultaneous multianalyte detection, we chose antibiotic treatment for inflammatory infection as a model scenario and continuously measured three biomarkers, namely, tigecycline (TGC), procalcitonin (PCT), and alanine aminotransferase (ALT). The detection limits were 0.3 μM, 0.3 ng/L, and 2.76 U/L, respectively. The developed semiautomated electrochemical sensor array exhibits characteristics such as rapid and simple operation, portability, good selectivity, and excellent stability.
Collapse
Affiliation(s)
- Heyu Wang
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
| | - Jiang Liu
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Zhengchun Peng
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qiqin Wang
- Institute of Pharmaceutical Analysis, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jun Wei
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yingchun Li
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
- Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Harbin Institute of Technology, Shenzhen 518055, China
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
6
|
Köksal Karayildirim Ç, Şahiner A, Çalişkan S, Soylu FE, Gökhan A, Eroğlu E, Uyanikgil Y, Karayildirim T. Isolation, Identification, and Antimicrobial Evaluation of Secondary Metabolite from Serratia marcescens via an In Vivo Epicutaneous Infection Model. ACS OMEGA 2024; 9:8397-8404. [PMID: 38405438 PMCID: PMC10882681 DOI: 10.1021/acsomega.3c09522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 02/27/2024]
Abstract
Microbial secondary metabolites, which play a pivotal role in struggling with infectious diseases, are the new source for controlling bacterial contaminations and possess a strong antimicrobial potential. The present study is designed to evaluate the in vitro and in vivo bactericidal activities of prodigiosin against Staphylococcus aureus. For this purpose, Serratia marcescens was used to produce prodigiosin. Characterization of the prodigiosin was carried out using NMR. In addition, bioautographic detection of prodigiosin was detected by TLC. Antibacterial assays, in vivo epicutaneous infection tests, swap analyses, and histopathological examinations were determined. The results revealed that prodigiosin was detected by NMR and TLC. According to antimicrobial susceptibility tests, prodigiosin is an efficient bactericidal compound that demonstrated strong antibacterial activity toward S. aureus. In vivo, animal studies determined that the strong inhibition of S. aureus-caused epidermal infection occurs by prodigiosin at 48 h. Histopathological results showed that S. aureus + prodigiosin skin sections consist of improved and healthy tissues without any infection area compared with the S. aureus and control groups. The in vivo study verified the antibacterial results with swap analyses, and histopathological findings showed that prodigiosin is a promising microbial metabolite effective against S. aureus infection. This study proved that prodigiosin with excellent bioactivity exhibited antibacterial properties, which might possess massive potential for new therapeutic approaches using micro-organisms.
Collapse
Affiliation(s)
- Çinel Köksal Karayildirim
- Department
of Biology, Science Faculty, Ege University, İzmir 35100, Turkey
- Laboratory
Animals Research Center, Ege University, İzmir 35100, Turkey
| | - Aslı Şahiner
- Department
of Biology, Science Faculty, Ege University, İzmir 35100, Turkey
| | - Sennur Çalişkan
- Department
of Biology, Science Faculty, Ege University, İzmir 35100, Turkey
| | - Fahri Emrah Soylu
- Laboratory
Animals Research Center, Ege University, İzmir 35100, Turkey
| | - Aylin Gökhan
- Department
of Histology and Embryology, School of Medicine, Ege University, Izmir 35040, Turkey
| | - Ebru Eroğlu
- Department
of Histology and Embryology, School of Medicine, Ege University, Izmir 35040, Turkey
| | - Yiğit Uyanikgil
- Department
of Histology and Embryology, School of Medicine, Ege University, Izmir 35040, Turkey
| | - Tamer Karayildirim
- Department
of Chemistry, Science Faculty, Ege University, Izmir 35100, Turkey
| |
Collapse
|
7
|
Zeleke B, Mekonnen Z, Bireda M, Yitbarek M, Dendir A. Phytochemical screening and antimicrobial activity of Polygala sadebeckiana Gürke extracts on bacterial isolates from Wound samples of patients with "Shimetere". BMC Complement Med Ther 2024; 24:72. [PMID: 38302996 PMCID: PMC10835914 DOI: 10.1186/s12906-024-04371-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/23/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Modern medicine is not the choice of patients with "shimetere" in the Gurage community owing to their perception of 'parenteral medication use severely aggravates the disease'. For this reason, the root part of Polygala sadebeckiana Gürke is commonly utilized as traditional medicine in the management of the disease. The aim of this study was to evaluate the antimicrobial activity of Polygala sadebeckiana Gürke extract on bacterial isolates from wound samples of patients with "Shimetere". METHODS The agar well diffusion method was used to evaluate antibacterial activity, and the agar dilution method was utilized to determine minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MICs). The crude extract was tested against isolated bacteria at concentrations of 25, 50, 75 and 100 mg/mL in triplicate (3x). The positive controls were azithromycin (15 µg) and cloxacillin disk (5 µg), and the negative control was dimethylsulfoxide (5%). The group mean comparisons were made using one-way ANOVA at a significance level of p < 0.05, and the results are presented as the mean ± standard deviation. The presence of secondary metabolites from crude extract was checked by standard testing procedures. RESULTS S. aureus and S. pyrogen were the two identified bacteria from 9 (60%) and 3 (20%) wound samples, respectively. All identified bacterial strains were susceptible to the reference antibiotics. Tannins and saponins were the most abundant secondary metabolites found in the crude extracts. The average inhibition zones of the plant extracts with 100, 75, 50 and 25 mg/mL concentrations were 27, 20.33, 15.25, and 11.96 mm (p < 0.000) for S. aureus and 30.02, 24.50, 19.07, and 15.77 mm (p < 0.000) for S. pyrogen bacteria, respectively. The MIC and MBC of the crude extract were 1.67 and 10 mg/mL for S. aureus and 0.98 and 4 mg/mL for S. pyrogen. CONCLUSION Polygala sadebeckiana Gürke contained significant tannins and saponins as secondary metabolites and had antibacterial activities against isolated bacteria (S. aureus and S. pyrogen) from "Shimetere". The potential mechanism of antibacterial action of the plant extract was cell wall synthesis inhibition.
Collapse
Affiliation(s)
- Bereket Zeleke
- Department of Pharmacy, College of Medicine and Health Science, Wolkite University, Wolkite, Ethiopia.
| | - Zebene Mekonnen
- Department of Nursing, College of Medicine and Health Science, Wolkite University, Wolkite, Ethiopia
| | - Meskele Bireda
- School of Medicine, College of Medicine and Health Science, Wolkite University, Wolkite, Ethiopia
| | - Melaku Yitbarek
- School of Medicine, College of Medicine and Health Science, Wolkite University, Wolkite, Ethiopia
| | - Andamlak Dendir
- Department of Public Health, College of Medicine and Health Science, Wolkite University, Wolkite, Ethiopia
| |
Collapse
|
8
|
Benin BM, Hillyer T, Crugnale AS, Fulk A, Thomas CA, Crowder MW, Smith MA, Shin WS. Taxifolin as a Metallo-β-Lactamase Inhibitor in Combination with Augmentin against Verona Imipenemase 2 Expressing Pseudomonas aeruginosa. Microorganisms 2023; 11:2653. [PMID: 38004664 PMCID: PMC10673258 DOI: 10.3390/microorganisms11112653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/26/2023] Open
Abstract
Among the various mechanisms that bacteria use to develop antibiotic resistance, the multiple expression of β-lactamases is particularly problematic, threatening public health and increasing patient mortality rates. Even if a combination therapy-in which a β-lactamase inhibitor is administered together with a β-lactam antibiotic-has proven effective against serine-β-lactamases, there are no currently approved metallo-β-lactamase inhibitors. Herein, we demonstrate that quercetin and its analogs are promising starting points for the further development of safe and effective metallo-β-lactamase inhibitors. Through a combined computational and in vitro approach, taxifolin was found to inhibit VIM-2 expressing P. aeruginosa cell proliferation at <4 μg/mL as part of a triple combination with amoxicillin and clavulanate. Furthermore, we tested this combination in mice with abrasive skin infections. Together, these results demonstrate that flavonol compounds, such as taxifolin, may be developed into effective metallo-β-lactamase inhibitors.
Collapse
Affiliation(s)
- Bogdan M. Benin
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (B.M.B.); (T.H.); (A.F.); (M.A.S.)
| | - Trae Hillyer
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (B.M.B.); (T.H.); (A.F.); (M.A.S.)
| | - Aylin S. Crugnale
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (B.M.B.); (T.H.); (A.F.); (M.A.S.)
| | - Andrew Fulk
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (B.M.B.); (T.H.); (A.F.); (M.A.S.)
| | - Caitlyn A. Thomas
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA; (C.A.T.); (M.W.C.)
| | - Michael W. Crowder
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA; (C.A.T.); (M.W.C.)
| | - Matthew A. Smith
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (B.M.B.); (T.H.); (A.F.); (M.A.S.)
- Akron Children’s Hospital, Rebecca D. Considine Research Institute, Akron, OH 44302, USA
| | - Woo Shik Shin
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA; (B.M.B.); (T.H.); (A.F.); (M.A.S.)
| |
Collapse
|
9
|
Li G, Lai Z, Shan A. Advances of Antimicrobial Peptide-Based Biomaterials for the Treatment of Bacterial Infections. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206602. [PMID: 36722732 PMCID: PMC10104676 DOI: 10.1002/advs.202206602] [Citation(s) in RCA: 83] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/12/2023] [Indexed: 05/10/2023]
Abstract
Owing to the increase in multidrug-resistant bacterial isolates in hospitals globally and the lack of truly effective antimicrobial agents, antibiotic resistant bacterial infections have increased substantially. There is thus an urgent need to develop new antimicrobial drugs and their related formulations. In recent years, natural antimicrobial peptides (AMPs), AMP optimization, self-assembled AMPs, AMP hydrogels, and biomaterial-assisted delivery of AMPs have shown great potential in the treatment of bacterial infections. In this review, it is focused on the development prospects and shortcomings of various AMP-based biomaterials for treating animal model infections, such as abdominal, skin, and eye infections. It is hoped that this review will inspire further innovations in the design of AMP-based biomaterials for the treatment of bacterial infections and accelerate their commercialization.
Collapse
Affiliation(s)
- Guoyu Li
- The Institute of Animal NutritionNortheast Agricultural UniversityHarbin150030P. R. China
| | - Zhenheng Lai
- The Institute of Animal NutritionNortheast Agricultural UniversityHarbin150030P. R. China
| | - Anshan Shan
- The Institute of Animal NutritionNortheast Agricultural UniversityHarbin150030P. R. China
| |
Collapse
|
10
|
Lu Y, Guan T, Wang S, Zhou C, Wang M, Wang X, Zhang K, Han X, Lin J, Tang Q, Wang C, Zhou W. Novel xanthone antibacterials: Semi-synthesis, biological evaluation, and the action mechanisms. Bioorg Med Chem 2023; 83:117232. [PMID: 36940608 DOI: 10.1016/j.bmc.2023.117232] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023]
Abstract
α-Mangostin (α-MG) has demonstrated to display potent activities against Gram-positive bacterial. However, the contribution of phenolic hydroxyl groups of α-MG to the antibacterial activity remains obscure, severely hampering selection of structure modification to develop more potential α-MG-based anti-bacterial derivatives. Herein, twenty-one α-MG derivatives are designed, synthesized and evaluated for the antibacterial activities. The structure activity relationships (SARs) reveal that the contribution of the phenolic groups ranks as C3 > C6 > C1, and the phenolic hydroxyl group at C3 is essential to the antibacterial activity. Of note, compared to the parent compound α-MG, 10a with one acetyl at C1 exhibits the higher safety profiles due to its higher selectivity and no hemolysis, and the more potent antibacterial efficacy in an animal skin abscess model. Our evidences further present that, in comparison with α-MG, 10a has a stronger ability in depolarizing membrane potentials and leads to more leakage of bacterial proteins, consistent with the results observed by transmission electron microscopy (TEM). Transcriptomics analysis demonstrates those observations possibly relate to disturbed synthesis of proteins participating in the biological process of membrane permeability and integrity. Collectively, our findings provide a valuable insight for developing α-MG-based antibacterial agents with little hemolysis and new action mechanism via structural modifications at C1.
Collapse
Affiliation(s)
- Yan Lu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China; School of Pharmaceutical Sciences, South-Central University for Nationalities, 430074 Wuhan, China
| | - Ting Guan
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, E. 232, University town, Waihuan Rd, Panyu, Guangzhou 510006, Guangdong, China
| | - Shaobing Wang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, 430074 Wuhan, China
| | - Cui Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China
| | - Meizhu Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China
| | - Xiaoyang Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Keyu Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China
| | - Jinchao Lin
- Metabo-Profile Biotechnology (Shanghai) Co. Ltd., 201315 Shanghai, China
| | - Qun Tang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Chunmei Wang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| | - Wen Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 200241 Shanghai, China; Key Laboratory of Veterinary Chemical Drugs and Pharmaceutics, Ministry of Agriculture and Rural Affairs, Shanghai Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China.
| |
Collapse
|
11
|
Smythe P, Wilkinson HN. The Skin Microbiome: Current Landscape and Future Opportunities. Int J Mol Sci 2023; 24:3950. [PMID: 36835363 PMCID: PMC9963692 DOI: 10.3390/ijms24043950] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/11/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023] Open
Abstract
Our skin is the largest organ of the body, serving as an important barrier against the harsh extrinsic environment. Alongside preventing desiccation, chemical damage and hypothermia, this barrier protects the body from invading pathogens through a sophisticated innate immune response and co-adapted consortium of commensal microorganisms, collectively termed the microbiota. These microorganisms inhabit distinct biogeographical regions dictated by skin physiology. Thus, it follows that perturbations to normal skin homeostasis, as occurs with ageing, diabetes and skin disease, can cause microbial dysbiosis and increase infection risk. In this review, we discuss emerging concepts in skin microbiome research, highlighting pertinent links between skin ageing, the microbiome and cutaneous repair. Moreover, we address gaps in current knowledge and highlight key areas requiring further exploration. Future advances in this field could revolutionise the way we treat microbial dysbiosis associated with skin ageing and other pathologies.
Collapse
Affiliation(s)
- Paisleigh Smythe
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
- Skin Research Centre, Hull York Medical School, University of York, York YO10 5DD, UK
| | - Holly N. Wilkinson
- Centre for Biomedicine, Hull York Medical School, University of Hull, Hull HU6 7RX, UK
- Skin Research Centre, Hull York Medical School, University of York, York YO10 5DD, UK
| |
Collapse
|
12
|
Yilmaz EG, Ece E, Erdem Ö, Eş I, Inci F. A Sustainable Solution to Skin Diseases: Ecofriendly Transdermal Patches. Pharmaceutics 2023; 15:579. [PMID: 36839902 PMCID: PMC9960884 DOI: 10.3390/pharmaceutics15020579] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023] Open
Abstract
Skin is the largest epithelial surface of the human body, with a surface area of 2 m2 for the average adult human. Being an external organ, it is susceptible to more than 3000 potential skin diseases, including injury, inflammation, microbial and viral infections, and skin cancer. Due to its nature, it offers a large accessible site for administrating several medications against these diseases. The dermal and transdermal delivery of such medications are often ensured by utilizing dermal/transdermal patches or microneedles made of biocompatible and biodegradable materials. These tools provide controlled delivery of drugs to the site of action in a rapid and therapeutically effective manner with enhanced diffusivity and minimal side effects. Regrettably, they are usually fabricated using synthetic materials with possible harmful environmental effects. Manufacturing such tools using green synthesis routes and raw materials is hence essential for both ecological and economic sustainability. In this review, natural materials including chitosan/chitin, alginate, keratin, gelatin, cellulose, hyaluronic acid, pectin, and collagen utilized in designing ecofriendly patches will be explored. Their implementation in wound healing, skin cancer, inflammations, and infections will be discussed, and the significance of these studies will be evaluated with future perspectives.
Collapse
Affiliation(s)
- Eylul Gulsen Yilmaz
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Emre Ece
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Özgecan Erdem
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Ismail Eş
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
| | - Fatih Inci
- UNAM—National Nanotechnology Research Center, Bilkent University, Ankara 06800, Turkey
- Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
13
|
Sun MC, Chen YF, Liu D, Xu XL, You YC, Lu W, Shi YJ, Ren MY, Fan YB, Du YZ, Tao XH. Effective decolonization strategy for mupirocin-resistant Staphylococcus aureus by TPGS-modified mupirocin-silver complex. Mater Today Bio 2023; 18:100534. [PMID: 36686036 PMCID: PMC9850068 DOI: 10.1016/j.mtbio.2022.100534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/11/2022] [Accepted: 12/26/2022] [Indexed: 01/04/2023] Open
Abstract
The widespread utilization of mupirocin to treat methicillin-resistant Staphylococcus aureus (MRSA)-caused infectious diseases has led to the emergence of mupirocin-resistant Staphylococcus aureus (MuRSA), posing a serious global medical threat. In order to counteract MuRSA, we develop a d-α-tocopherol polyethylene glycol 1000 succinate (TPGS) modified mupirocin and silver complex (TPGS/Mup-Ag) to combat MuRSA. The surfactivity of TPGS endows Mup-Ag with a homogeneous and small particle size (∼16 nm), which significantly enhances bacterial internalization. Silver ions are released from the mupirocin-Ag complex (Mup-Ag) to exert a synergistic antibacterial activity with mupirocin. Results manifest that our strategy reduces the concentration of mupirocin that induces 50% bacterial death from about 1000 μmol/mL to about 16 μmol/mL. In vitro bacterial infection model suggests that TPGS/Mup-Ag can not only eliminate both intracellular and inhibit bacterial adhesion, but also living cells are not affected. Results of in vivo experiments demonstrate that TPGS/Mup-Ag can effectively inhibit the progression of skin infection and accelerate wound healing, as well as alleviate systemic inflammation in both the subcutaneous infection model and the wound infection model. Furthermore, this study may contribute to the development of therapeutic agents for antibiotic-resistant bacteria and offer ideas for silver-based bactericides.
Collapse
Affiliation(s)
- Ming-Chen Sun
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ying-Fang Chen
- HangZhou Xiaoshan District Skin Disease Hospital, Hangzhou, 311200, China
| | - Di Liu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Ling Xu
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310015, China
| | - Yu-Chan You
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei Lu
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China
| | - Yun-Juan Shi
- Department of Graduate School, Bengbu Medical College, Bengbu, 233030, China
| | - Ming-Yang Ren
- Department of Graduate School, Bengbu Medical College, Bengbu, 233030, China
| | - Yi-Bin Fan
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiao-Hua Tao
- Center for Plastic & Reconstructive Surgery, Department of Dermatology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, 310014, China
| |
Collapse
|
14
|
Xie X, Tong X, Li Z, Cheng Q, Wang X, Long Y, Liu F, Wang Y, Wang J, Liu L. Use of mouse primary epidermal organoids for USA300 infection modeling and drug screening. Cell Death Dis 2023; 14:15. [PMID: 36631452 PMCID: PMC9833019 DOI: 10.1038/s41419-022-05525-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 01/13/2023]
Abstract
Skin infections caused by drug-resistant Staphylococcus aureus occur at high rates nationwide. Mouse primary epidermal organoids (mPEOs) possess stratified histological and morphological characteristics of epidermis and are highly similar to their derived tissue at the transcriptomic and proteomic levels. Herein, the susceptibility of mPEOs to methicillin-resistant S. aureus USA300 infection was investigated. The results show that mPEOs support USA300 colonization and invasion, exhibiting swollen epithelial squamous cells with nuclear necrosis and secreting inflammatory factors such as IL-1β. Meanwhile mPEOs beneficial to observe the process of USA300 colonization with increasing infection time, and USA300 induces mPEOs to undergo pyroptosis and autophagy. In addition, we performed a drug screen for the mPEO infection model and showed that vancomycin restores cell viability and inhibits bacterial internalization in a concentration-dependent manner. In conclusion, we establish an in vitro skin infection model that contributes to the examination of drug screening strategies and antimicrobial drug mechanisms.
Collapse
Affiliation(s)
- Xiaorui Xie
- School of Pharmacy, Fudan University, Shanghai, China
- Shanghai Drugability Biomass Product Evaluation Professional Public Service Platform, Center for Pharmacological Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Xuebo Tong
- Shanghai Children's Medical Center affiliated to the Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhihong Li
- Shanghai Drugability Biomass Product Evaluation Professional Public Service Platform, Center for Pharmacological Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Quan Cheng
- Shanghai Drugability Biomass Product Evaluation Professional Public Service Platform, Center for Pharmacological Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Xiaowei Wang
- Shanghai Drugability Biomass Product Evaluation Professional Public Service Platform, Center for Pharmacological Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Yin Long
- Department of Traditional Chinese Medicine, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Fangbo Liu
- Shanghai Drugability Biomass Product Evaluation Professional Public Service Platform, Center for Pharmacological Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, China
| | - Yonghui Wang
- School of Pharmacy, Fudan University, Shanghai, China.
| | - Juan Wang
- Shanghai Drugability Biomass Product Evaluation Professional Public Service Platform, Center for Pharmacological Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, China.
| | - Li Liu
- Shanghai Drugability Biomass Product Evaluation Professional Public Service Platform, Center for Pharmacological Evaluation and Research, China State Institute of Pharmaceutical Industry, Shanghai, China.
| |
Collapse
|
15
|
Malachowa N, McGuinness W, Kobayashi SD, Porter AR, Shaia C, Lovaglio J, Smith B, Rungelrath V, Saturday G, Scott DP, Falugi F, Missiakas D, Schneewind O, DeLeo FR. Toward Optimization of a Rabbit Model of Staphylococcus aureus (USA300) Skin and Soft Tissue Infection. Microbiol Spectr 2022; 10:e0271621. [PMID: 35389241 PMCID: PMC9045089 DOI: 10.1128/spectrum.02716-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/22/2022] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus remains a leading cause of skin and soft tissue infections (SSTIs) globally. In the United States, many of these infections are caused by isolates classified as USA300. Our understanding of the success of USA300 as a human pathogen is due in part to data obtained from animal infection models, including rabbit SSTI models. These animal models have been used to study S. aureus virulence and pathogenesis and to gain an enhanced understanding of the host response to infection. Although significant knowledge has been gained, the need to use a relatively high inoculum of USA300 (1 × 108 to 5 × 108 CFU) is a caveat of these infection models. As a step toward addressing this issue, we created mutations in USA300 that mimic those found in S. aureus strains with naturally occurring rabbit tropism-namely, single nucleotide polymorphisms in dltB and/or deletion of rot. We then developed a rabbit SSTI model that utilizes an inoculum of 106 USA300 CFU to cause reproducible disease and tested whether primary SSTI protects rabbits against severe reinfection caused by the same strain. Although there was modest protection against severe reinfection, primary infection and reinfection with rabbit-tropic USA300 strains failed to increase the overall level of circulating anti-S. aureus antibodies significantly. These findings provide additional insight into the host response to S. aureus. More work is needed to further develop a low-inoculum infection model that can be used to better test the potential of new therapeutics or vaccine target antigens. IMPORTANCE Animal models of S. aureus infection are important for evaluating bacterial pathogenesis and host immune responses. These animal infection models are often used as an initial step in the testing of vaccine antigens and new therapeutics. The extent to which animal models of S. aureus infection approximate human infections remains a significant consideration for translation of results to human clinical trials. Although significant progress has been made with rabbit models of S. aureus infection, one concern is the high inoculum needed to cause reproducible disease. Here, we generated USA300 strains that have tropism for rabbits and developed a rabbit SSTI model that uses fewer CFU than previous models.
Collapse
Affiliation(s)
- Natalia Malachowa
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Will McGuinness
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Scott D. Kobayashi
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Adeline R. Porter
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Carl Shaia
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Jamie Lovaglio
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Brian Smith
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Viktoria Rungelrath
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Greg Saturday
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Dana P. Scott
- Rocky Mountain Veterinary Branch, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| | - Fabiana Falugi
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | | | - Olaf Schneewind
- Department of Microbiology, University of Chicago, Chicago, Illinois, USA
| | - Frank R. DeLeo
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, USA
| |
Collapse
|
16
|
Huang R, Yu QH, Yao XD, Liu WL, Cheng YJ, Ma YH, Zhang AQ, Qin SY. Self-Deliverable Peptide-Mediated and Reactive-Oxygen-Species-Amplified Therapeutic Nanoplatform for Highly Effective Bacterial Inhibition. ACS APPLIED MATERIALS & INTERFACES 2022; 14:159-171. [PMID: 34929082 DOI: 10.1021/acsami.1c17271] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
An "antibiotic-free strategy" provides a viable option to address bacterial infections, especially for the "superbug" challenge. However, the undesirable antibacterial activity of antibiotic-free agents hinders their practical applications. In this study, we developed a combination antibacterial strategy of coupling peptide-drug therapy with chemodynamic therapy (CDT) to achieve the effective bacterial inhibition. An amphiphilic oligopeptide (LAOOH-OPA) containing a therapeutic unit of D(KLAK)2 peptide and a hydrophobic linoleic acid hydroperoxide (LAHP) was designed. The positively charged D(KLAK)2 peptide with an α-helical conformation enabled rapid binding with microbial cells via electrostatic interaction and subsequent membrane insertion to deactivate the bacterial membrane. When triggered by Fe2+, moreover, LAHP could generate singlet oxygen (1O2) to elicit lipid bilayer leakage for enhanced bacteria inhibition. In vitro assays demonstrated that the combination strategy possessed excellent antimicrobial activity not only merely toward susceptible strains (Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli) but also toward methicillin-resistant Staphylococcus aureus (MRSA). On the mouse skin abscess model induced by S. aureus, self-assembled LAOOH-OPA exhibited a more significant bacteria reduction (1.4 log10 reduction) in the bioburden compared to that of the standard vancomycin (0.9 log10 reduction) without apparent systemic side effects. This combination antibacterial strategy shows great potential for effective bacterial inhibition.
Collapse
Affiliation(s)
- Rong Huang
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, P. R. China
| | - Qi-Hang Yu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South Central University for Nationalities, Wuhan 430074, China
| | - Xue-Di Yao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, P. R. China
| | - Wen-Long Liu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South Central University for Nationalities, Wuhan 430074, China
| | - Yin-Jia Cheng
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South Central University for Nationalities, Wuhan 430074, China
| | - Yi-Han Ma
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South Central University for Nationalities, Wuhan 430074, China
| | - Ai-Qing Zhang
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South Central University for Nationalities, Wuhan 430074, China
| | - Si-Yong Qin
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, South Central University for Nationalities, Wuhan 430074, China
| |
Collapse
|
17
|
Hopp CS, Kanatani S, Archer NK, Miller RJ, Liu H, Chiou KK, Miller LS, Sinnis P. Comparative intravital imaging of human and rodent malaria sporozoites reveals the skin is not a species-specific barrier. EMBO Mol Med 2021; 13:e11796. [PMID: 33750026 PMCID: PMC8033530 DOI: 10.15252/emmm.201911796] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/21/2021] [Accepted: 01/27/2021] [Indexed: 01/09/2023] Open
Abstract
Malaria infection starts with the injection of Plasmodium sporozoites into the host’s skin. Sporozoites are motile and move in the skin to find and enter blood vessels to be carried to the liver. Here, we present the first characterization of P. falciparum sporozoites in vivo, analyzing their motility in mouse skin and human skin xenografts and comparing their motility to two rodent malaria species. These data suggest that in contrast to the liver and blood stages, the skin is not a species‐specific barrier for Plasmodium. Indeed, P. falciparum sporozoites enter blood vessels in mouse skin at similar rates to the rodent malaria parasites. Furthermore, we demonstrate that antibodies targeting sporozoites significantly impact the motility of P. falciparum sporozoites in mouse skin. Though the sporozoite stage is a validated vaccine target, vaccine trials have been hampered by the lack of good animal models for human malaria parasites. Pre‐clinical screening of next‐generation vaccines would be significantly aided by the in vivo platform we describe here, expediting down‐selection of candidates prior to human vaccine trials.
Collapse
Affiliation(s)
- Christine S Hopp
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Johns Hopkins Malaria Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Sachie Kanatani
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Johns Hopkins Malaria Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Nathan K Archer
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert J Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Haiyun Liu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kevin K Chiou
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
| | - Lloyd S Miller
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Photini Sinnis
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Johns Hopkins Malaria Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|