1
|
Li J, Li S, Zhang Q, Liang M, Chen X, Feng Y, Pan Z, Hu T, Wu Q, Chen G, Zouboulis CC, Mo X, Ju Q. Apocrine Gland Damage and the Release of Specific Keratins in Early Stage Indicate the Crucial Involvement of Apocrine Glands in Hidradenitis Suppurativa. J Invest Dermatol 2025; 145:1371-1384.e7. [PMID: 39547394 DOI: 10.1016/j.jid.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 11/17/2024]
Abstract
The apocrine glands (AGs) are not considered to be primarily involved in hidradenitis suppurativa (HS). This study investigated the potential role of AGs in HS pathogenesis using immunohistochemistry and single-cell sequencing of nonlesional skin and early lesional skin (LS) from patients with HS (n = 12) and healthy controls (n = 8). AG cell destruction was more frequent, and AG size was significantly reduced in the nonlesional skin and LS. Barrier-related genes (eg, CLDN1 and CDH1) were downregulated in the AGs of the nonlesional skin and LS. Damaged AGs in the LS primarily recruited and activated neutrophils through the CXCL-CXCR and SAA1-FPR2 pathways. Elevated levels of specific keratins (keratin 18 and keratin 19) released from damaged AGs were observed on the skin surface of patients and were associated with disease severity. Keratin 19 was also detected in the dermis of the nonlesional skin and LS and was surrounded by neutrophils and macrophages. Moreover, serum keratin 19 levels in patients (N = 20) were significantly negatively correlated with the age at HS onset. Collectively, our findings provide previously unreported evidence that the AGs are damaged and release specific keratins in early HS lesions, indicating a crucial role of the AGs in HS pathogenesis.
Collapse
Affiliation(s)
- Jiaqi Li
- Department of Dermatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Sitong Li
- Department of Dermatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Qiujing Zhang
- Department of Dermatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Mengchen Liang
- Department of Dermatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Xiang Chen
- Department of Dermatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Yibo Feng
- Department of Dermatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Zhanyan Pan
- Department of Dermatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Tingting Hu
- Department of Dermatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Qiong Wu
- Department of Dermatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China
| | - Guangjie Chen
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Christos C Zouboulis
- Department of Dermatology, Venereology, Allergology and Immunology, Staedtisches Klinikum Dessau, Brandenburg Medical School Theodor Fontane and Faculty of Health Sciences Brandenburg, Dessau, Germany
| | - Xiaohui Mo
- Department of Dermatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
| | - Qiang Ju
- Department of Dermatology, Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, People's Republic of China.
| |
Collapse
|
2
|
Ye S, Ma L, Chi Y, Liu N, Liu Y, Wei W, Niu Y, Zheng P, Yu J, Hai D. Targeting neutrophil dysfunction in acute lung injury: Insights from active components of Chinese medicine. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156664. [PMID: 40121883 DOI: 10.1016/j.phymed.2025.156664] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/06/2025] [Accepted: 03/17/2025] [Indexed: 03/25/2025]
Abstract
BACKGROUNDS Acute lung injury (ALI) is a lethal condition characterized by uncontrolled pulmonary inflammatory responses, with high morbidity and mortality rates that pose a significant threat to patient health. The persistent retention of neutrophils in lung tissue and subsequent inflammatory damage represents a primary mechanism underlying the early onset of ALI disorders. In recent years, pharmaceutical research targeting these pathological processes has garnered considerable attention. Traditional Chinese medicines (TCM) and their active ingredients, known for their safety and stability, show promising potential in treating ALI through their ability to modulate neutrophil function via multiple pathways. PURPOSE This review examines the mechanisms of neutrophil involvement in the pathogenesis of ALI, investigates potential therapeutic targets and pathways through which Chinese medicines and their active ingredients regulate neutrophil function, and provides a theoretical foundation for developing novel clinical treatment strategies. METHODS A comprehensive literature search was conducted using multiple databases, including Science Direct, PubMed, Google Scholar, and Web of Science. Search terms included 'lung injury,' 'acute lung injury,' 'inflammatory lung injury,' 'inflammation,' 'active ingredient,' 'herbal,' 'traditional Chinese medicine,' 'mechanism,' 'drug,' and 'neutrophils.' The selected literature was systematically categorized and analyzed. RESULTS Our review reveals that TCM and active ingredients influence neutrophil function through four primary mechanisms to impede ALI progression: 1) reduction of neutrophil-mediated uncontrolled inflammatory responses by suppressing neutrophil hyperactivation and inhibiting neutrophil migration and infiltration; 2) attenuation of lung tissue inflammatory damage by inhibiting neutrophil-produced cytotoxic substances, including elastase granules, neutrophil extracellular traps (NETs), and reactive oxygen species (ROS); 3) suppression of inflammatory responses by decreasing the secretion of neutrophil-derived cytokines, such as interleukin (IL) -1β, IL-6 and tumor necrosis factor-alpha (TNF-α); and 4) enhancement of neutrophil phagocytosis and accelerate the removal of apoptotic neutrophils to eliminate harmful pathogens and promote late-stage tissue repair. These findings demonstrate that Chinese medicines and their active ingredients exhibit significant therapeutic potential in ALI disorders through the modulation of neutrophil function, providing a robust theoretical framework for their clinical applications. CONCLUSION Traditional Chinese medicines and their active ingredients demonstrate significant anti-inflammatory efficacy through multiple mechanisms of neutrophil function regulation, showing considerable promise for the treatment of ALI with broad clinical applications.
Collapse
Affiliation(s)
- Saiya Ye
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Lin Ma
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan 750004, China; Colaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Yinchuan 750004, China; Ningxia Characteristic Traditional Chinese Medicine Moder Engineering and Technique Research Center, Yinchuan 750004, China
| | - Yannan Chi
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
| | - Ning Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan 750004, China; Colaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Yinchuan 750004, China; Ningxia Characteristic Traditional Chinese Medicine Moder Engineering and Technique Research Center, Yinchuan 750004, China; Ningxia Key Laboratory of Drug Development and Generic Drug Research, Yinchuan 750004, China
| | - Yue Liu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan 750004, China; Colaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Yinchuan 750004, China; Ningxia Characteristic Traditional Chinese Medicine Moder Engineering and Technique Research Center, Yinchuan 750004, China
| | - Wei Wei
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan 750004, China; Colaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Yinchuan 750004, China; Ningxia Characteristic Traditional Chinese Medicine Moder Engineering and Technique Research Center, Yinchuan 750004, China
| | - Yang Niu
- Key Laboratory of Ningxia Ethnomedicine Modernization, Ministry of Education, Ningxia Medical University, Yinchuan 750004, China
| | - Ping Zheng
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan 750004, China.
| | - Jianqiang Yu
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan 750004, China; Colaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Yinchuan 750004, China; Ningxia Characteristic Traditional Chinese Medicine Moder Engineering and Technique Research Center, Yinchuan 750004, China; Ningxia Key Laboratory of Drug Development and Generic Drug Research, Yinchuan 750004, China.
| | - Dongmei Hai
- School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China; Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Yinchuan 750004, China; Colaborative Innovation Center for Ningxia Characteristic Traditional Chinese Medicine by Ningxia Hui Autonomous Region & Education Ministry of P.R. China, Yinchuan 750004, China; Ningxia Characteristic Traditional Chinese Medicine Moder Engineering and Technique Research Center, Yinchuan 750004, China.
| |
Collapse
|
3
|
Bai M, An N, Cheng M, Qin J, Wang J, Jia R, Liu W, Cheng J, Xu Q, Wu X. The natural compound PEITC ameliorates imiquimod-induced psoriasis in mice by suppressing neutrophil extracellular traps formation. Int Immunopharmacol 2025; 159:114939. [PMID: 40414074 DOI: 10.1016/j.intimp.2025.114939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/24/2025] [Accepted: 05/20/2025] [Indexed: 05/27/2025]
Abstract
Neutrophil extracellular traps (NETs) play a key role in the development of psoriasis, a chronic inflammatory skin condition. We demonstrate the effects and possible mechanisms of phenethyl isothiocyanate (PEITC) in inhibiting NETs and alleviating psoriasis. In response to imiquimod (IMQ), multiple symptoms including scaly plaques and associated skin inflammations were induced in mice. IMQ additionally promotes the formation of NETs and the levels of inflammatory factors. Interestingly, a natural compound PEITC exerted an intensive activity in the treatment of psoriasis. It improved lesions and ameliorated ischemic coagulation symptoms in the dorsal skin of mice. PEITC also significantly reduced the expression of inflammatory factors in mice skin with an inhibition on NETs-related molecules, such as myeloperoxidase, neutrophil elastase and citrullinated histone H3. 16S rRNA sequencing analysis demonstrated that IMQ treatment induced significant gut microbiota dysbiosis in mice, suggesting potential detrimental effects on intestinal microbial homeostasis. However, PEITC administration did not show a statistically significant ameliorative effect on this IMQ-induced microbial imbalance. In vitro experiments demonstrated that PEITC significantly suppressed lipopolysaccharide (LPS)-induced NET formation, suggesting that its therapeutic effects in psoriasis may be due to the inhibition of bacterially driven neutrophil activation. Therefore, we identified PAD4, an important enzyme for post-translational modification of proteins in the production of NETs, as a new potential target of PEITC. Taken together, our findings suggest that PEITC could be a novel potential therapeutic drug to relieve psoriasis via the inhibition of NETs both in vitro and in vivo.
Collapse
Affiliation(s)
- Mei Bai
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ning An
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Meng Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jia Qin
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China
| | - Jie Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China; School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Rumeng Jia
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Wentao Liu
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Jingcai Cheng
- Drug R&D Institute, JC (Wuxi) COMPANY, Inc., Wuxi, China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China.
| | - Xuefeng Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing Drum Tower Hospital, School of Life Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
4
|
Kaplan MJ. Exploring the Role of Neutrophil Extracellular Traps in Systemic Lupus Erythematosus: A Clinical Case Study and Comprehensive Review. Arthritis Rheumatol 2025; 77:247-252. [PMID: 39402725 DOI: 10.1002/art.43019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/16/2024] [Accepted: 09/10/2024] [Indexed: 11/07/2024]
Affiliation(s)
- Mariana J Kaplan
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, NIH, Bethesda, Maryland
| |
Collapse
|
5
|
Lada G. Immune links in comorbid depression and psoriasis: A narrative mini-review and perspective. Brain Behav Immun Health 2025; 44:100949. [PMID: 39959848 PMCID: PMC11830344 DOI: 10.1016/j.bbih.2025.100949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/19/2024] [Accepted: 01/13/2025] [Indexed: 02/18/2025] Open
Abstract
Evidence suggests a bidirectional association between psoriasis and depression, which is considered to reflect complex neuroimmunological and psychosocial interactions. Despite an early interest in the brain-skin axis and the role of stress in psoriasis immunopathogenesis, there is ongoing limited preclinical and clinical research into the inflammatory links between depression and psoriasis. Existing findings for serum inflammatory markers of depression in psoriasis are inconsistent and do not fully align with those in the general population, while brain imaging evidence is scarce and has not confirmed direct brain involvement in the systemic inflammation of psoriasis. The present paper reviews the available literature on the immune interplay of psoriasis with depression, highlights the significance of further work in the field and proposes avenues for future research.
Collapse
Affiliation(s)
- Georgia Lada
- Dermatology Centre, Northern Care Alliance NHS Foundation Trust, Manchester Academic Health Science Centre, Division of Musculoskeletal & Dermatological Sciences, The University of Manchester, Greater Manchester M6 8HD, United Kingdom
- Greater Manchester Mental Health NHS Foundation Trust, Greater Manchester, United Kingdom
| |
Collapse
|
6
|
Zhou X, Jin Y, Zhu Y, Luo X, Li S, Shen W, Wu R. The Role of Crosstalk between Nets and Keratinocytes in Skin Immunity. J Invest Dermatol 2025:S0022-202X(25)00012-0. [PMID: 39985552 DOI: 10.1016/j.jid.2024.07.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 02/24/2025]
Abstract
The skin is the principal barrier against pathogens. Skin-resident cells, especially keratinocytes, play essential roles in skin immunity. Damage to the integrity of the skin barrier triggers the localized release of proinflammatory factors from keratinocytes, which attract neutrophils. These infiltrating neutrophils in turn release cytokines to modulate keratinocyte function, thereby amplifying skin inflammation. In addition, neutrophils produce neutrophil extracellular traps in a process called NETosis. Notably, crosstalk between neutrophils and keratinocytes is a prominent feature of skin infection eradication and autoimmune disorder development. In this paper, we review research progress on neutrophil extracellular traps in cutaneous immunity, with a particular emphasis on their modulation of keratinocytes. Moreover, we discuss the implications of neutrophil heterogeneity for immune defense and disease development and treatment.
Collapse
Affiliation(s)
- Xiao Zhou
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
| | - Yi Jin
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
| | - Yanshan Zhu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
| | - Xin Luo
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
| | - Siying Li
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China
| | - Weiyun Shen
- Department of Anesthesiology, The Second Xiangya Hospital, Central South University, Changsha, China.
| | - Ruifang Wu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, China.
| |
Collapse
|
7
|
Chen X, OuYang L, Qian B, Qiu Y, Liu L, Chen F, Jiang W, Zheng M, Hu Z, Min X, Wen L, Wang Q, Yu D, Jia S, Lu Q, Zhao M. IL-1β mediated fibroblast-neutrophil crosstalk promotes inflammatory environment in skin lesions of SLE. Clin Immunol 2024; 269:110396. [PMID: 39522851 DOI: 10.1016/j.clim.2024.110396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/27/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Systemic lupus erythematosus (SLE) is characterized by immune dysregulation, with neutrophil infiltration in skin lesions contributing to inflammation and disease progression. However, the interaction between fibroblasts and neutrophils in SLE skin lesions has not been fully explored. Using single-cell RNA sequencing, we identified a unique CXCL1+ fibroblast subset in SLE lesions. We found that CXCL1+ fibroblasts recruit and activate neutrophils, increasing the production of inflammatory mediators, reactive oxygen species, and neutrophil extracellular traps. These fibroblasts also facilitated the transition of neutrophils to a low-density phenotype. Notably, these fibroblasts delayed neutrophil apoptosis, extending their survival and amplifying inflammation. Serum amyloid A1, secreted by CXCL1+ fibroblasts, emerged as a key activator of neutrophils. Activated neutrophils, in turn, secreted IL-1β to induce CXCL1+ fibroblasts differentiation via activating the NF-κB pathway. In conclusion, our findings reveal that IL-1β-induced CXCL1+ fibroblasts significantly modulate pro-inflammatory neutrophils, underscoring the critical crosstalk between fibroblasts and neutrophils in SLE pathogenesis.
Collapse
Affiliation(s)
- Xiaoyun Chen
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Lianlian OuYang
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Bao Qian
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China
| | - Yueqi Qiu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China
| | - Limin Liu
- Department of Medical Science Laboratory, The Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, China
| | - Fangqi Chen
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China
| | - Wenjuan Jiang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China
| | - Meiling Zheng
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China
| | - Zhi Hu
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China
| | - Xiaoli Min
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China
| | - Lifang Wen
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, the Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Qiaolin Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China
| | - Di Yu
- Frazer Institute, Faculty of Medicine, The University of Queensland, Brisbane, Queensland 4102, Australia
| | - Sujie Jia
- Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China.
| | - Qianjin Lu
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, the Second Xiangya Hospital, Central South University, Changsha 410011, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China.
| | - Ming Zhao
- Department of Dermatology, Hunan Key Laboratory of Medical Epigenomics, the Second Xiangya Hospital, Central South University, Changsha 410011, China; Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing 210042, China; Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing 210042, China.
| |
Collapse
|
8
|
Zhou L, Zhu J, Liu Y, Zhou P, Gu Y. Mechanisms of radiation-induced tissue damage and response. MedComm (Beijing) 2024; 5:e725. [PMID: 39309694 PMCID: PMC11413508 DOI: 10.1002/mco2.725] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Radiation-induced tissue injury (RITI) is the most common complication in clinical tumor radiotherapy. Due to the heterogeneity in the response of different tissues to radiation (IR), radiotherapy will cause different types and degrees of RITI, which greatly limits the clinical application of radiotherapy. Efforts are continuously ongoing to elucidate the molecular mechanism of RITI and develop corresponding prevention and treatment drugs for RITI. Single-cell sequencing (Sc-seq) has emerged as a powerful tool in uncovering the molecular mechanisms of RITI and for identifying potential prevention targets by enhancing our understanding of the complex intercellular relationships, facilitating the identification of novel cell phenotypes, and allowing for the assessment of cell heterogeneity and spatiotemporal developmental trajectories. Based on a comprehensive review of the molecular mechanisms of RITI, we analyzed the molecular mechanisms and regulatory networks of different types of RITI in combination with Sc-seq and summarized the targeted intervention pathways and therapeutic drugs for RITI. Deciphering the diverse mechanisms underlying RITI can shed light on its pathogenesis and unveil new therapeutic avenues to potentially facilitate the repair or regeneration of currently irreversible RITI. Furthermore, we discuss how personalized therapeutic strategies based on Sc-seq offer clinical promise in mitigating RITI.
Collapse
Affiliation(s)
- Lin Zhou
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Jiaojiao Zhu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Yuhao Liu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Ping‐Kun Zhou
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
| | - Yongqing Gu
- Beijing Key Laboratory for RadiobiologyBeijing Institute of Radiation MedicineBeijingChina
- Hengyang Medical CollegeUniversity of South ChinaHengyangHunanChina
- College of Life SciencesHebei UniversityBaodingChina
| |
Collapse
|
9
|
Zeng L, Yang K, Yu G, Hao W, Zhu X, Ge A, Chen J, Sun L. Advances in research on immunocyte iron metabolism, ferroptosis, and their regulatory roles in autoimmune and autoinflammatory diseases. Cell Death Dis 2024; 15:481. [PMID: 38965216 PMCID: PMC11224426 DOI: 10.1038/s41419-024-06807-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/26/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024]
Abstract
Autoimmune diseases commonly affect various systems, but their etiology and pathogenesis remain unclear. Currently, increasing research has highlighted the role of ferroptosis in immune regulation, with immune cells being a crucial component of the body's immune system. This review provides an overview and discusses the relationship between ferroptosis, programmed cell death in immune cells, and autoimmune diseases. Additionally, it summarizes the role of various key targets of ferroptosis, such as GPX4 and TFR, in immune cell immune responses. Furthermore, the release of multiple molecules, including damage-associated molecular patterns (DAMPs), following cell death by ferroptosis, is examined, as these molecules further influence the differentiation and function of immune cells, thereby affecting the occurrence and progression of autoimmune diseases. Moreover, immune cells secrete immune factors or their metabolites, which also impact the occurrence of ferroptosis in target organs and tissues involved in autoimmune diseases. Iron chelators, chloroquine and its derivatives, antioxidants, chloroquine derivatives, and calreticulin have been demonstrated to be effective in animal studies for certain autoimmune diseases, exerting anti-inflammatory and immunomodulatory effects. Finally, a brief summary and future perspectives on the research of autoimmune diseases are provided, aiming to guide disease treatment strategies.
Collapse
Affiliation(s)
- Liuting Zeng
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
| | - Kailin Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio-Cerebral Diseases, School of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, China.
- Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China.
| | - Ganpeng Yu
- People's Hospital of Ningxiang City, Ningxiang, China
| | - Wensa Hao
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | - Anqi Ge
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Junpeng Chen
- Psychosomatic laboratory, Department of Psychiatry, Daqing Hospital of Traditional Chinese Medicine, Daqing, China.
- Department of Physiology, School of Medicine, University of Louisville, Louisville, KY, USA.
- College of Mechanical Engineering, Hunan University of Science and Technology, Xiangtan, China.
| | - Lingyun Sun
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Graduate School of Peking Union Medical College, Nanjing, China.
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China.
| |
Collapse
|
10
|
Yamamoto T. Role of neutrophils in cutaneous lupus erythematosus. J Dermatol 2024; 51:180-184. [PMID: 38009863 PMCID: PMC11484148 DOI: 10.1111/1346-8138.17036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 10/24/2023] [Accepted: 10/27/2023] [Indexed: 11/29/2023]
Abstract
There are various types of cutaneous lupus erythematosus (CLE), either with or without the association of systemic lupus erythematosus (SLE). In some of the subtypes of cutaneous lupus, histopathology reveals neutrophil infiltration in the lesional skin; however, the significance of neutrophils in CLE is not yet fully elucidated. Recent studies have shown that neutrophil extracellular traps (NETs) formation by activated neutrophils is observed in several types of CLE, including lupus panniculitis, subacute lupus erythematosus, and acute lupus erythematosus, although the number of reports is small. Excessive NETosis, due to either increased NETs formation or defective clearance of NETs, may play a role in the induction of autoimmunity and autoantibody production in SLE, as well as endothelial damage, thrombus formation, and vascular damage in the lesional skin. CLE is an excessive interferon-driven autoimmune disease. Plasmacytoid dendritic cells are located in lupus erythematosus skin and contribute to the etiology of skin lesions as a main producing cell of type I interferon. Neutrophils, monocytes, and keratinocytes also produce type I interferon via several triggers. Neutrophils play an important role in the innate immune response in SLE. In this review, several types of CLE with neutrophil infiltration, as well as the role of neutrophils are discussed.
Collapse
|
11
|
Nirmal G, Liao CC, Lin ZC, Alshetaili A, Hwang E, Yang SC, Fang JY. Topically applied pH-responsive nanogels for alkyl radical-based therapy against psoriasiform hyperplasia. Drug Deliv 2023; 30:2245169. [PMID: 37585684 PMCID: PMC10416745 DOI: 10.1080/10717544.2023.2245169] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 06/30/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023] Open
Abstract
Phototherapy is a conventional antipsoriatic approach based on oxygen-relevant generation of oxidative stress to inhibit keratinocyte hyperproliferation. However, this therapy can be restricted due to local hypoxia in psoriatic lesions. The generation of alkyl radicals is oxygen-independent and suppresses hyperproliferation. Herein, we established alkyl radical-based therapy to treat psoriatic hyperplasia. Because alkyl radicals are short-lived compounds, we loaded 2,2'-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride (AIPH) as a precursor of alkyl radicals into the chitosan nanogels to improve stability. The present study presented a topically applied nanogel that led to a pH-responsive network sensitive to skin pH. This pH responsiveness of the nanogels allowed fast alkyl radical release in the target site. The physicochemical properties of the prepared nanogels were determined through size, zeta potential, scanning electron microscopy, and absorption spectroscopy. The antipsoriatic activity was examined with keratinocyte- and animal-based studies. The nanogels displayed a smooth and spherical morphology with a hydrodynamic diameter of 215 nm. This size was largely increased as the environmental pH increased to 6. The nanogels heated at 44 °C produced alkyl radicals to induce keratinocyte death through the necrosis pathway. Bioimaging demonstrated that topically applied nanogels could deliver alkyl radicals into the epidermis. This targeting was accompanied by the accumulation of free radicals in the epidermis according to the 2',7'-dichlorodihydrofluorescein diacetate assay. The imiquimod-stimulated psoriasiform animal model indicated a remarkable reduction in erythema, scaling, and overexpressed cytokines upon topical treatment of the nanogels. The transepidermal water loss of the psoriasiform skin was inhibited from 51.7 to 27.0 g/m2/h, suggesting barrier function recovery by the nanocarriers. The nanogels lowered hyperplasia by decreasing the epidermal thickness from 212 to 89 μm. The incorporation of 8-hydroxypyrene-1,3,6-trisulfonic acid (HPTS) as a pH-sensitive fluorescence dye in the nanogels could be used to diagnose the severity of the psoriasiform plaque due to the stronger fluorescence of HPTS in skin with lower pH (psoriasiform skin pH = 4.4) than in healthy skin (pH = 4.9). It was possible to deliver the prepared nanogels into the epidermis to restrain hyperplasia without causing cutaneous irritation.
Collapse
Affiliation(s)
- G.R. Nirmal
- Graduate Institute of Biomedical Sciences, Chang Gung University, Kweishan, Taiwan
| | - Chia-Chih Liao
- Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Zih-Chan Lin
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Taiwan
| | - Abdullah Alshetaili
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Erica Hwang
- Department of Dermatology, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Shih-Chun Yang
- Department of Microbiology, Soochow University, Taipei, Taiwan
| | - Jia-You Fang
- Department of Anesthesiology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taiwan
- Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taiwan
| |
Collapse
|
12
|
Scherlinger M, Richez C, Tsokos GC, Boilard E, Blanco P. The role of platelets in immune-mediated inflammatory diseases. Nat Rev Immunol 2023; 23:495-510. [PMID: 36707719 PMCID: PMC9882748 DOI: 10.1038/s41577-023-00834-4] [Citation(s) in RCA: 114] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/15/2022] [Indexed: 01/28/2023]
Abstract
Immune-mediated inflammatory diseases (IMIDs) are characterized by excessive and uncontrolled inflammation and thrombosis, both of which are responsible for organ damage, morbidity and death. Platelets have long been known for their role in primary haemostasis, but they are now also considered to be components of the immune system and to have a central role in the pathogenesis of IMIDs. In patients with IMIDs, platelets are activated by disease-specific factors, and their activation often reflects disease activity. Here we summarize the evidence showing that activated platelets have an active role in the pathogenesis and the progression of IMIDs. Activated platelets produce soluble factors and directly interact with immune cells, thereby promoting an inflammatory phenotype. Furthermore, platelets participate in tissue injury and promote abnormal tissue healing, leading to fibrosis. Targeting platelet activation and targeting the interaction of platelets with the immune system are novel and promising therapeutic strategies in IMIDs.
Collapse
Affiliation(s)
- Marc Scherlinger
- Service de Rhumatologie, Centre de référence des maladies auto-immunes systémiques rares RESO, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA.
- Laboratoire d'ImmunoRhumatologie Moléculaire UMR_S 1109, Institut National de la Santé et de la Recherche Médicale (INSERM), Strasbourg, France.
| | - Christophe Richez
- Service de Rhumatologie, Centre de référence des maladies auto-immunes systémiques rares RESO, Hôpital Pellegrin, Centre Hospitalier Universitaire, Bordeaux, France
- CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, Bordeaux, France
| | - George C Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Eric Boilard
- Centre de Recherche du Centre Hospitalier Universitaire de Québec-Université Laval, Quebec City, Quebec, Canada
- Centre de Recherche ARThrite, Université Laval, Quebec City, Quebec, Canada
| | - Patrick Blanco
- CNRS-UMR 5164, ImmunoConcept, Université de Bordeaux, Bordeaux, France.
- Laboratoire d'Immunologie et Immunogénétique, FHU ACRONIM, Hôpital Pellegrin, Centre Hospitalier Universitaire, Bordeaux, France.
| |
Collapse
|
13
|
Wang Z, Shi D. Research progress on the neutrophil components and their interactions with immune cells in the development of psoriasis. Skin Res Technol 2023; 29:e13404. [PMID: 37522489 PMCID: PMC10339011 DOI: 10.1111/srt.13404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 06/21/2023] [Indexed: 08/01/2023]
Abstract
BACKGROUND Psoriasis is an immune-mediated chronic inflammatory disease, and currently it is widely believed that the IL-23/IL-17 axis and Th17 cells play a critical and central role. However, increasing evidence suggests that neutrophils may interact with a variety of immune cells to play an indispensable role in psoriasis. MATERIALS AND METHODS We searched the recent literature on psoriasis and neutrophils through databases such as PubMed and CNKI, and summarized the findings to draw conclusions. RESULTS Neutrophils can promote the development of psoriasis by secreting IL-23, IL-17, and cytokines with TH17 cell chemotaxis. Activated keratinocytes (KCs) can attract and activate neutrophils, induce the formation of neutrophil extracellular traps (NETs). KCs can also expose self-antigens which lead to strong autoimmune reactions. The granule proteins secreted by activated neutrophils can activate IL-36, which converts vulgaris psoriasis to generalized pustular psoriasis (GPP). CONCLUSION The function of neutrophils components and the interaction between neutrophils and immune cells play an essential role in the pathogenesis of psoriasis. The aim is to provide a theoretical basis for the exploration of targeted clinical treatments and fundamental research on the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Zhenhui Wang
- Shandong University of Traditional Chinese MedicineJinanShandongChina
| | - Dongmei Shi
- Chief Physician, Doctoral Supervisor, Department of Dermatology & Laboratory of Medical MycologyJining No. 1 People's HospitalJiningShandong ProvinceChina
| |
Collapse
|
14
|
Lin CY, Yu HP, Chang YT, Lin ZC, Alalaiwe A, Hwang TL, Fang JY. Targeting anti-inflammatory immunonanocarriers to human and murine neutrophils via the Ly6 antigen for psoriasiform dermatitis alleviation. Biomater Sci 2023; 11:873-893. [PMID: 36515218 DOI: 10.1039/d2bm01521h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Psoriasis is a refractory and difficult-to-treat skin disorder. The neutrophil-targeting approach represents a promising option for psoriasis therapy. This study developed and examined NIMP-R14-conjugated immunonanoparticles for specific targeting to neutrophils associated with psoriasiform dermatitis. In the process, roflumilast (RFL), as a phosphodiesterase (PDE) 4 inhibitor, was encapsulated in the nanocarriers to assess the anti-inflammatory capability against primary neutrophil activation and murine psoriasiform lesion. The average size and surface charge of the immunonanocarriers were 305 ± 36 nm and -18 ± 6 mV, respectively. The monovalent antibody-conjugated nanoparticles offered precise uptake by both human and mouse neutrophils but failed to exhibit this effect in monocytes and lymphocytes. The intracellular RFL concentration of the immunonanocarriers was five-fold superior to that of the passive counterparts. The immunonanocarriers specifically recognized the neutrophils through the Ly6 antigen with no apparent cytotoxicity. The antibody-conjugated nanoparticles mitigated superoxide anion production and migration of the activated human neutrophils. The in vivo biodistribution in the psoriasiform mice, found using an in vivo imaging system (IVIS) and liquid chromatography (LC)-mass-mass analysis, showed that the antibody conjugation increased the nanoparticle residence in systemic circulation after intravenous administration. On the other hand, most of the nanoparticles were accumulated in the lesional skin after subcutaneous injection. The actively-targeted nanocarriers were better than the free RFL and unfunctionalized nanoparticles in suppressing psoriasiform inflammation. The immunonanocarriers reduced neutrophil recruitment and epidermal hyperplasia in the plaque. Intravenous and subcutaneous treatments with the immunonanocarriers significantly reduced the overexpressed cytokines and chemokines in the inflamed skin, demonstrating that the nanosystems could both systematically and locally alleviate inflammation. The results indicated that the NIMP-R14-conjugated RFL-loaded nanoparticles have potential as an anti-autoimmune disease delivery system for neutrophil targeting.
Collapse
Affiliation(s)
- Cheng-Yu Lin
- Graduate Institute of Biomedical Sciences, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Huang-Ping Yu
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan.,School of Medicine, College of Medicine, Chang Gung University, Kweishan, Taoyuan, Taiwan
| | - Yen-Tzu Chang
- Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan.
| | - Zih-Chan Lin
- Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Puzi, Chiayi, Taiwan
| | - Ahmed Alalaiwe
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Tsong-Long Hwang
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan.,Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan. .,Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan.,Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Jia-You Fang
- Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan.,Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan. .,Research Center for Food and Cosmetic Safety, Research Center for Chinese Herbal Medicine, and Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan
| |
Collapse
|
15
|
Transcriptome Analysis Reveals Effect of Dietary Probiotics on Immune Response Mechanism in Southern Catfish ( Silurus meridionalis) in Response to Plesiomonas shigelloides. Animals (Basel) 2023; 13:ani13030449. [PMID: 36766339 PMCID: PMC9913393 DOI: 10.3390/ani13030449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/19/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
To explore whether a probiotic complex composed of Lactobacillus rhamnosus, Lactobacillus plantarum, and Lactobacillus casei can prevent or inhibit the inflammatory response caused by the invasion of Plesiomonas shigelloides in the southern catfish, we screened differentially expressed genes and enriched inflammation-related pathways among a control and three experimental groups and conducted analysis by transcriptome sequencing after a 21-day breeding experiment. Compared with those in the PS (Plesiomonas shigelloides) group, southern catfish in the L-PS (Lactobacillus-Plesiomonas shigelloides) group had no obvious haemorrhages or ulcerations. The results also showed that inflammation-related genes, such as mmp9, cxcr4, nfkbia, socs3, il-8, pigr, tlr5, and tnfr1, were significantly upregulated in the PS group compared with those in the L-PS groups. In addition, we verified six DEGs (mmp9, cxcr4, nfkbia, socs3, rbp2, and calr) and three proteins (CXCR4, NFKBIA, and CALR) by qRT-PCR and ELISA, respectively. Our results were consistent with the transcriptome data. Moreover, significantly downregulated genes (p < 0.05) were enriched in inflammation-related GO terms (lymphocyte chemotaxis and positive regulation of inflammatory response) and immune-related pathways (intestinal immune network for IgA production and IL-17 signalling pathway) in the L-PS vs. the PS group. Our results indicate that the infection of P. shigelloides can produce an inflammatory response, and probiotics could inhibit the inflammatory response caused by P. shigelloides to some extent.
Collapse
|
16
|
Ismailova A, Salehi-Tabar R, Dimitrov V, Memari B, Barbier C, White JH. Identification of a forkhead box protein transcriptional network induced in human neutrophils in response to inflammatory stimuli. Front Immunol 2023; 14:1123344. [PMID: 36756115 PMCID: PMC9900176 DOI: 10.3389/fimmu.2023.1123344] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/03/2023] [Indexed: 01/25/2023] Open
Abstract
Introduction Neutrophils represent the largest proportion of circulating leukocytes and, in response to inflammatory stimuli, are rapidly recruited to sites of infection where they neutralize pathogens. Methods and results We have identified a novel neutrophil transcription network induced in response to inflammatory stimuli. We performed the first RNAseq analysis of human neutrophils exposed to lipopolysaccharide (LPS), followed by a meta-analysis of our dataset and previously published studies of LPS-challenged neutrophils. This revealed a robustly enhanced transcriptional network driven by forkhead box (FOX) transcription factors. The network is enriched in genes encoding proinflammatory cytokines and transcription factors, including MAFF and ATF3, which are implicated in responses to stress, survival and inflammation. Expression of transcription factors FOXP1 and FOXP4 is induced in neutrophils exposed to inflammatory stimuli, and potential FOXP1/FOXP4 binding sites were identified in several genes in the network, all located in chromatin regions consistent with neutrophil enhancer function. Chromatin immunoprecipitation (ChIP) assays in neutrophils confirmed enhanced binding of FOXP4, but not FOXP1, to multiple sites in response to LPS. Binding to numerous motifs and transactivation of network genes were also observed when FOXP proteins were transiently expressed in HEK293 cells. In addition to LPS, the transcriptional network is induced by other inflammatory stimuli, indicating it represents a general neutrophil response to inflammation. Discussion Collectively, these findings reveal a role for the FOXP4 transcription network as a regulator of responses to inflammatory stimuli in neutrophils.
Collapse
Affiliation(s)
- Aiten Ismailova
- Department of Physiology, McGill University, Montreal, QC, Canada
| | | | - Vassil Dimitrov
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Babak Memari
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - Camille Barbier
- Department of Physiology, McGill University, Montreal, QC, Canada
| | - John H. White
- Department of Physiology, McGill University, Montreal, QC, Canada,Department of Medicine, McGill University, Montreal, QC, Canada,*Correspondence: John H. White,
| |
Collapse
|
17
|
Gariazzo L, Trave I, Cozzani E, Canepa P, Parodi A. Evaluation of neutrophil extracellular trap (NET) in the peripheral blood of psoriatic patients treated with dimethyl fumarate: a pilot study. Exp Dermatol 2022; 31:1761-1763. [PMID: 35920048 DOI: 10.1111/exd.14656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 07/04/2022] [Accepted: 07/30/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Lodovica Gariazzo
- Section of Dermatology - Department of Health Sciences, University of Genoa, IRCCS - Ospedale Policlinico San Martino, Genoa, Italy
| | - Ilaria Trave
- Section of Dermatology - Department of Health Sciences, University of Genoa, IRCCS - Ospedale Policlinico San Martino, Genoa, Italy
| | - Emanuele Cozzani
- Section of Dermatology - Department of Health Sciences, University of Genoa, IRCCS - Ospedale Policlinico San Martino, Genoa, Italy
| | - Paola Canepa
- Section of Dermatology - Department of Health Sciences, University of Genoa, IRCCS - Ospedale Policlinico San Martino, Genoa, Italy
| | - Aurora Parodi
- Section of Dermatology - Department of Health Sciences, University of Genoa, IRCCS - Ospedale Policlinico San Martino, Genoa, Italy
| |
Collapse
|
18
|
Czerwińska J, Kasprowicz-Furmańczyk M, Placek W, Owczarczyk-Saczonek A. Changes in Tumor Necrosis Factor α (TNFα) and Peptidyl Arginine Deiminase 4 (PAD-4) Levels in Serum of General Treated Psoriatic Patients. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148723. [PMID: 35886575 PMCID: PMC9324472 DOI: 10.3390/ijerph19148723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/11/2022] [Accepted: 07/15/2022] [Indexed: 02/01/2023]
Abstract
Psoriasis is an autoimmune disease in which the disturbed dependencies between lymphocytes, dendritic cells, keratinocytes and neutrophils play the most important role. One of them is the overproduction of neutrophil extracellular traps (NETs). The release of NETs can be induced by pathogens, as well as antibodies and immune complexes, cytokines and chemokines, including TNFα. The first step of the NET creation is the activation of peptidyl arginine deiminase 4 (PAD-4). PAD-4 seems to be responsible for citrullination of histones and chromatin decondensation, but the data on PAD-4 in NETs is inconclusive. Thus, the current study aimed to determine PAD-4 and TNFα levels in the serum of psoriatic patients by ELISA and observe the response of these factors to systemic (anti-17a, anti-TNFα and methotrexate) therapies. Increased levels of both PAD-4 and its main stimulus factor TNFα in pre-treatment patients have been reported along with the concentrations of proteins correlated with disease severity (PASI, BSA). Before treatment, the irregularities in the case of anti-nuclear antibodies level (ANA) were also observed. All of the applied therapies led to a decrease in PAD-4 and TNFα levels after 12 weeks. The most significant changes, both in protein concentrations as well as in scale scores, were noted with anti-TNFα therapy (adalimumab and infliximab). This phenomenon may be associated with the inhibition of TNFα production at different stages of psoriasis development, including NET creation. The obtained data suggest the participation of PAD-4 in the activation of neutrophils to produce NETs in psoriasis, which may create opportunities for modern therapies with PAD inhibitors. However, further exploration of gene and protein expression in psoriatic skin is needed.
Collapse
|
19
|
Jerome AD, Atkinson JR, McVey Moffatt AL, Sepeda JA, Segal BM, Sas AR. Characterization of Zymosan-Modulated Neutrophils With Neuroregenerative Properties. Front Immunol 2022; 13:912193. [PMID: 35711408 PMCID: PMC9195616 DOI: 10.3389/fimmu.2022.912193] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022] Open
Abstract
Recent studies using advanced techniques such as single cell RNA sequencing (scRNAseq), high parameter flow cytometry, and proteomics reveal that neutrophils are more heterogeneous than previously appreciated. Unique subsets have been identified in the context of bacterial and parasitic infections, cancer, and tissue injury and repair. The characteristics of infiltrating neutrophils differ depending on the nature of the inflammation-inciting stimulus, the stage of the inflammatory response, as well as the tissue microenvironment in which they accumulate. We previously described a new subpopulation of immature Ly6Glow neutrophils that accumulate in the peritoneal cavity 3 days following intraperitoneal (i.p.) administration of the fungal cell wall extract, zymosan. These neutrophils express markers of alternative activation and possess neuroprotective/regenerative properties. In addition to inducing neurite outgrowth of explanted neurons, they enhance neuronal survival and axon regeneration in vivo following traumatic injury to the optic nerve or spinal cord. In contrast, the majority of neutrophils that accumulate in the peritoneal fluid 4 hours following i.p. zymosan injection (4h NΦ) have features of conventional, mature Ly6Ghi neutrophils and lack neuroprotective or neuroregenerative properties. In the current study, we expand upon on our previously published observations by performing a granular, in-depth analysis of these i.p. zymosan-modulated neutrophil populations using scRNAseq and high parameter flow cytometry. We also analyze cell lysates of each neutrophil population by liquid chromatography/mass spectrometry. Circulating blood neutrophils, harvested from naive mice, are analyzed in parallel as a control. When samples were pooled from all three groups, scRNAseq revealed 11 distinct neutrophil clusters. Pathway analyses demonstrated that 3d NΦ upregulate genes involved in tissue development and wound healing, while 4h NΦ upregulate genes involved in cytokine production and perpetuation of the immune response. Proteomics analysis revealed that 3d NΦ and 4h NΦ also express distinct protein signatures. Adding to our earlier findings, 3d NΦ expressed a number of neuroprotective/neuroregenerative candidate proteins that may contribute to their biological functions. Collectively, the data generated by the current study add to the growing literature on neutrophil heterogeneity and functional sub-specialization and might provide new insights in elucidating the mechanisms of action of pro-regenerative, neuroprotective neutrophil subsets.
Collapse
Affiliation(s)
- Andrew D. Jerome
- Department of Neurology, Ohio State Medical Center, Columbus, OH, United States
- Neuroscience Research Institute, The Ohio State University, Columbus, OH, United States
| | - Jeffrey R. Atkinson
- Department of Neurology, Ohio State Medical Center, Columbus, OH, United States
- Neuroscience Research Institute, The Ohio State University, Columbus, OH, United States
| | - Arnetta L. McVey Moffatt
- Department of Neurology, Ohio State Medical Center, Columbus, OH, United States
- Neuroscience Research Institute, The Ohio State University, Columbus, OH, United States
| | - Jesse A. Sepeda
- Department of Neurology, Ohio State Medical Center, Columbus, OH, United States
- Neuroscience Research Institute, The Ohio State University, Columbus, OH, United States
| | - Benjamin M. Segal
- Department of Neurology, Ohio State Medical Center, Columbus, OH, United States
- Neuroscience Research Institute, The Ohio State University, Columbus, OH, United States
| | - Andrew R. Sas
- Department of Neurology, Ohio State Medical Center, Columbus, OH, United States
- Neuroscience Research Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
20
|
Ortiz-Lopez LI, Choudhary V, Bollag WB. Updated Perspectives on Keratinocytes and Psoriasis: Keratinocytes are More Than Innocent Bystanders. PSORIASIS (AUCKLAND, N.Z.) 2022; 12:73-87. [PMID: 35529056 PMCID: PMC9075909 DOI: 10.2147/ptt.s327310] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/08/2022] [Indexed: 02/02/2023]
Abstract
Psoriasis is a complex disease triggered by genetic, immunologic, and environmental stimuli. Many genes have been linked to psoriasis, like the psoriasis susceptibility genes, some of which are critical in keratinocyte biology and epidermal barrier function. Still, the exact pathogenesis of psoriasis is unknown. In the disease, the balance between the proliferative and differentiative processes of keratinocytes becomes altered. Multiple studies have highlighted the role of dysregulated immune cells in provoking the inflammatory responses seen in psoriasis. In addition to immune cells, accumulating evidence shows that keratinocytes are involved in psoriasis pathogenesis, as discussed in this review. Although certain immune cell-derived factors stimulate keratinocyte hyperproliferation, activated keratinocytes can also produce anti-microbial peptides, cytokines, and chemokines that can promote their proliferation, as well as recruit immune cells to help initiate and reinforce inflammatory feedback loops. Psoriatic keratinocytes also show intrinsic differences from normal keratinocytes even after removal from the in vivo inflammatory environment; thus, psoriatic keratinocytes have been found to exhibit abnormal calcium metabolism and possible epigenetic changes that contribute to psoriasis. The Koebner phenomenon, in which injury promotes the development of psoriatic lesions, also provides evidence for keratinocytes' contributions to disease pathogenesis. Furthermore, transgenic mouse studies have confirmed the importance of keratinocytes in the etiology of psoriasis. Finally, in addition to immune cells and keratinocytes, data in the literature support roles for other cell types, tissues, and systems in psoriasis development. These other contributors are all potential targets for therapies, suggesting the importance of a holistic approach when treating psoriasis.
Collapse
Affiliation(s)
- Laura I Ortiz-Lopez
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Vivek Choudhary
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA
| | - Wendy B Bollag
- Department of Physiology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
- Charlie Norwood VA Medical Center, Augusta, GA, 30904, USA
- Department of Dermatology, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| |
Collapse
|
21
|
He Y, Chen R, Zhang M, Wang B, Liao Z, Shi G, Li Y. Abnormal Changes of Monocyte Subsets in Patients With Sjögren’s Syndrome. Front Immunol 2022; 13:864920. [PMID: 35309355 PMCID: PMC8931697 DOI: 10.3389/fimmu.2022.864920] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
Background Recent studies have proven the existence of distinct monocyte subsets, which play a significant role in the development of some rheumatic diseases such as systemic lupus erythematosus (SLE). This study was performed to define the changes of monocyte subsets in patients with Sjögren’s Syndrome (SjS). Methods Single cell RNA-sequencing (scRNA-seq) data of monocytes from SjS patients and controls were analyzed. The transcriptomic changes in monocyte subsets between SjS and controls were identified and potential key functional pathways involved in SjS development were also explored. Results A total of 11 monocyte subsets were identified in the scRNA-seq analyses of monocytes. A new monocyte subset characterized by higher expression of VNN2 (GPI-80) and S100A12 (Monocyte cluster 3) was identified, and it was increased in SjS patients. Compared with controls, almost all monocyte subsets from SjS patients had increased expression of TNFSF10 (TRAIL). Moreover, interferon (IFN)-related and neutrophil activation-associated pathways were main up-regulated pathways in the monocytes of SjS patients. Conclusion This study uncovered the abnormal changes in monocyte subsets and their transcriptomic changes in SjS patients, and identified TNFSF10 high/+ monocytes as a potential key player in SjS pathogenesis and a promising target for SjS treatment.
Collapse
Affiliation(s)
- Yan He
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen Science and Technology Bureau, Xiamen, China
| | - Rongjuan Chen
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen Science and Technology Bureau, Xiamen, China
| | - Mengqin Zhang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen Science and Technology Bureau, Xiamen, China
| | - Bin Wang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen Science and Technology Bureau, Xiamen, China
| | - Zhangdi Liao
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen Science and Technology Bureau, Xiamen, China
| | - Guixiu Shi
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen Science and Technology Bureau, Xiamen, China
- *Correspondence: Guixiu Shi, ; Yan Li,
| | - Yan Li
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen Science and Technology Bureau, Xiamen, China
- *Correspondence: Guixiu Shi, ; Yan Li,
| |
Collapse
|
22
|
Shao S, Xue K, Wang G. Neutrophils in Neutrophilic Dermatoses: Emerging Roles and Promising Targeted Therapies. J Allergy Clin Immunol 2022; 149:1203-1205. [PMID: 35189128 DOI: 10.1016/j.jaci.2022.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/05/2022] [Accepted: 02/16/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Shuai Shao
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shannxi, 710032, China
| | - Ke Xue
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shannxi, 710032, China
| | - Gang Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shannxi, 710032, China.
| |
Collapse
|
23
|
Neutrophil Extracellular Traps in Skin Diseases. Biomedicines 2021; 9:biomedicines9121888. [PMID: 34944704 PMCID: PMC8698493 DOI: 10.3390/biomedicines9121888] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/03/2021] [Accepted: 12/10/2021] [Indexed: 12/22/2022] Open
Abstract
Neutrophils are the primary innate immune cells, and serve as sentinels for invading pathogens. To this end, neutrophils exert their effector functions via phagocytosis, degranulation, reactive oxygen species generation, and neutrophil extracellular trap (NET) release. Pathogens and pathogen-derived components trigger NET formation, leading to the clearance of pathogens. However, NET formation is also induced by non-related pathogen proteins, such as cytokines and immune complexes. In this regard, NET formation can be induced under both non-sterile and sterile conditions. NETs are enriched by components with potent cytotoxic and inflammatory properties, thereby occasionally damaging tissues and cells and dysregulating immune homeostasis. Research has uncovered the involvement of NETs in the pathogenesis of several connective tissue diseases, such as systemic lupus erythematosus, rheumatoid arthritis, and ANCA-associated vasculitis. In dermatology, several skin diseases clinically develop local or systemic sterile pustules and abscesses. The involvement of neutrophils and subsequent NET formation has recently been elucidated in these skin diseases. Therefore, this review highlights the NETs in these neutrophil-associated diseases.
Collapse
|