1
|
Ezzedine K, Tannous R, Pearson TF, Harris JE. Recent clinical and mechanistic insights into vitiligo offer new treatment options for cell-specific autoimmunity. J Clin Invest 2025; 135:e185785. [PMID: 39817457 PMCID: PMC11735104 DOI: 10.1172/jci185785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025] Open
Abstract
Vitiligo is an autoimmune disease that has been recognized, stigmatized, and treated for millennia. Recent translational research has revealed key mechanisms of disease, including cellular stress, innate immune activation, T cell-mediated elimination of melanocytes from the skin resulting in clinically apparent white spots, as well as stem cell regeneration that reverses established lesions. Many of these pathways have been targeted therapeutically, leading to the first FDA-approved medication to reverse the disease, with many more in clinical trials. Despite these impressive advances, many questions remain, which will be answered through integration of additional basic, translational, and clinical research studies. This vitiligo revolution has led to great excitement for individuals with vitiligo, those who know them, and the dermatologists who care for their patients. But just as importantly, these advances have great potential to shed light on autoimmune diseases that are more difficult to study, possibly leading to treatment advances that could not be achieved otherwise.
Collapse
Affiliation(s)
- Khaled Ezzedine
- Department of Dermatology, Hôpital Henri Mondor, Université Paris-Est Créteil Val de Marne-Université Paris, Paris, France
- EpidermE, Université Paris-Est Créteil (UPEC), Créteil, France
| | - Rim Tannous
- Department of Dermatology, Hôpital Henri Mondor, Université Paris-Est Créteil Val de Marne-Université Paris, Paris, France
| | - Todd F. Pearson
- Department of Dermatology, UMass Chan Medical School, Worcester, Massachusetts, USA
| | - John E. Harris
- Department of Dermatology, UMass Chan Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
2
|
Speeckaert R, Belpaire A, Lambert J, Speeckaert M, van Geel N. Th Pathways in Immune-Mediated Skin Disorders: A Guide for Strategic Treatment Decisions. Immune Netw 2024; 24:e33. [PMID: 39513029 PMCID: PMC11538609 DOI: 10.4110/in.2024.24.e33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/06/2024] [Accepted: 06/19/2024] [Indexed: 11/15/2024] Open
Abstract
In recent years, there have been significant breakthroughs in the identification of immunological components of skin diseases and in the development of immunomodulatory drugs. Novel therapies create exciting prospects for personalized care. This article provides an overview of the role played by Th1, Th2, Th17, and follicular Th pathways in the most common skin diseases. Additionally, it elucidates the impact of current and upcoming treatments on each of these signaling cascades. Skin diseases predominantly influenced by a single dominant Th pathway such as psoriasis and atopic dermatitis are well-suited for biologics. However, in many other disorders a complex interplay between different immune pathways exists. This can lead to inconsistent efficacy of biologics based on individual patient profiles. In case of activation of several Th pathways, it may be more suitable to consider conventional therapies or JAK inhibitors. Increasing immunological insights have transitioned from laboratory research to practical applications, a trend that is expected to continue growing in the future.
Collapse
Affiliation(s)
| | - Arno Belpaire
- Department of Dermatology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Jo Lambert
- Department of Dermatology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Marijn Speeckaert
- Department of Nephrology, Ghent University Hospital, 9000 Ghent, Belgium
| | - Nanja van Geel
- Department of Dermatology, Ghent University Hospital, 9000 Ghent, Belgium
| |
Collapse
|
3
|
Liao Z, Yao Y, Dong B, Le Y, Luo L, Miao F, Jiang S, Lei T. Involvement of interferon γ-producing mast cells in immune responses against melanocytes in vitiligo requires MrgX2 activation. Chin Med J (Engl) 2024:00029330-990000000-01263. [PMID: 39344472 DOI: 10.1097/cm9.0000000000003173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Increasing evidence indicates that oxidative stress and interferon γ (IFNγ)-driven cellular immune responses are responsible for the pathogenesis of vitiligo. However, the connection between oxidative stress and the local production of IFNγ in early vitiligo remains unexplored. The aim of this study was to identify the mechanism underlying the production of IFNγ by mast cells and its impact on vitiligo pathogenesis. METHODS Skin specimens from the central, marginal, and perilesional skin areas of active vitiligo lesions were collected to characterize changes of mast cells, CD8+ T cells, and IFNγ-producing cells. Cell supernatants from hydrogen peroxide (H2O2)-treated keratinocytes (KCs) were harvested to measure levels of soluble stem cell factor (sSCF) and matrix metalloproteinase (MMP)-9. A murine vitiligo model was established using Mas-related G protein-coupled receptor-B2 (MrgB2, mouse ortholog of human MrgX2) conditional knockout (MrgB2-/-) mice to investigate IFNγ production and inflammatory cell infiltrations in tail skin following the challenge with tyrosinase-related protein (Tyrp)-2 180 peptide. Potential interactions between the Tyrp-2 180 peptide and MrgX2 were predicted using molecular docking. The siRNAs targeting MrgX2 and the calcineurin inhibitor FK506 were also used to examine the signaling pathways involved in mast cell activation. RESULTS IFNγ-producing mast cells were closely aligned with the recruitment of CD8+ T cells in the early phase of vitiligo skin. sSCF released by KCs through stress-enhanced MMP9-dependent proteolytic cleavage recruited mast cells into sites of inflamed skin (Perilesion vs. lesion, 13.00 ± 4.00/HPF vs. 26.60 ± 5.72/HPF, P <0.05). Moreover, IFNγ-producing mast cells were also observed in mouse tail skin following challenge with Tyrp-2 180 (0 h vs. 48 h post-recall, 0.00 ± 0.00/HPF vs. 3.80 ± 1.92/HPF, P <0.05). The IFNγ+ mast cell and CD8+ T cell counts were lower in the skin of MrgB2-/-mice than in those of wild-type mice (WT vs. KO 48 h post-recall, 4.20 ± 0.84/HPF vs. 0.80 ± 0.84/HPF, P <0.05). CONCLUSION Mast cells activated by MrgX2 serve as a local IFNγ producer that bridges between innate and adaptive immune responses against MCs in early vitiligo. Targeting MrgX2-mediated mast cell activation may represent a new strategy for treating vitiligo.
Collapse
Affiliation(s)
- Zhikai Liao
- Department of Dermatology, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, China
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Speeckaert R, Caelenberg EV, Belpaire A, Speeckaert MM, Geel NV. Vitiligo: From Pathogenesis to Treatment. J Clin Med 2024; 13:5225. [PMID: 39274437 PMCID: PMC11396398 DOI: 10.3390/jcm13175225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/16/2024] Open
Abstract
Recent advances in vitiligo have provided promising treatment options, particularly through understanding the immune-mediated mechanisms leading to depigmentation. The inflammatory components in both vitiligo (non-segmental) and segmental vitiligo have similarities. Both are believed to result from an immune-based destruction of melanocytes by anti-melanocyte-specific cytotoxic T cells. The JAK-STAT pathway is activated with IFN-γ as the crucial cytokine and Th1-associated chemokines such as CXCL9 and CXCL10 recruit immune cells towards vitiligo skin. Nonetheless, clear differences are also present, such as the localized nature of segmental vitiligo, likely due to somatic mosaicism and increased presence of poliosis. The differing prevalence of poliosis suggests that the follicular immune privilege, which is known to involve immune checkpoints, may be more important in vitiligo (non-segmental). Immunomodulatory therapies, especially those targeting the JAK-IFNγ pathway, are currently at the forefront, offering effective inhibition of melanocyte destruction by cytotoxic T cells. Although Janus Kinase (JAK) inhibitors demonstrate high repigmentation rates, optimal results can take several months to years. The influence of environmental UV exposure on repigmentation in patients receiving immunomodulating drugs remains largely underexplored. Nonetheless, the combined effect of phototherapy with JAK inhibitors is impressive and suggests a targeted immune-based treatment may still require additional stimulation of melanocytes for repigmentation. Identifying alternative melanocyte stimulants beyond UV light remains crucial for the future management of vitiligo.
Collapse
Affiliation(s)
| | | | - Arno Belpaire
- Department of Dermatology, Ghent University Hospital, 9000 Ghent, Belgium
| | | | - Nanja van Geel
- Department of Dermatology, Ghent University Hospital, 9000 Ghent, Belgium
| |
Collapse
|
5
|
Wu W, Wang X, He K, Li C, Li S. From mice to men: An assessment of preclinical model systems for the study of vitiligo. Clin Immunol 2024; 262:110171. [PMID: 38462156 DOI: 10.1016/j.clim.2024.110171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/21/2024] [Accepted: 02/16/2024] [Indexed: 03/12/2024]
Abstract
Vitiligo is an autoimmune skin disease of multiple etiology, for which there is no complete cure. This chronic depigmentation is characterized by epidermal melanocyte loss, and causes disfigurement and significant psychosocial distress. Mouse models have been extensively employed to further our understanding of complex disease mechanisms in vitiligo, as well as to provide a preclinical platform for clinical interventional research on potential treatment strategies in humans. The current mouse models can be categorized into three groups: spontaneous mouse models, induced mouse models, and transgenic mice. Despite their limitations, these models allow us to understand the pathology processes of vitiligo at molecule, cell, tissue, organ, and system levels, and have been used to test prospective drugs. In this review, we comprehensively evaluate existing murine systems of vitiligo and elucidate their respective characteristics, aiming to offer a panorama for researchers to select the appropriate mouse models for their study.
Collapse
Affiliation(s)
- Wei Wu
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China
| | - Xinju Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China
| | - Kaiqiao He
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China.
| | - Shuli Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 Changlexi Road, Xi'an 710032, Shaanxi, China.
| |
Collapse
|
6
|
Tang Q, Fakih HH, Zain Ui Abideen M, Hildebrand SR, Afshari K, Gross KY, Sousa J, Maebius AS, Bartholdy C, Søgaard PP, Jackerott M, Hariharan V, Summers A, Fan X, Okamura K, Monopoli KR, Cooper DA, Echeverria D, Bramato B, McHugh N, Furgal RC, Dresser K, Winter SJ, Biscans A, Chuprin J, Haddadi NS, Sherman S, Yıldız-Altay Ü, Rashighi M, Richmond JM, Bouix-Peter C, Blanchard C, Clauss A, Alterman JF, Khvorova A, Harris JE. Rational design of a JAK1-selective siRNA inhibitor for the modulation of autoimmunity in the skin. Nat Commun 2023; 14:7099. [PMID: 37925520 PMCID: PMC10625637 DOI: 10.1038/s41467-023-42714-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/19/2023] [Indexed: 11/06/2023] Open
Abstract
Inhibition of Janus kinase (JAK) family enzymes is a popular strategy for treating inflammatory and autoimmune skin diseases. In the clinic, small molecule JAK inhibitors show distinct efficacy and safety profiles, likely reflecting variable selectivity for JAK subtypes. Absolute JAK subtype selectivity has not yet been achieved. Here, we rationally design small interfering RNAs (siRNAs) that offer sequence-specific gene silencing of JAK1, narrowing the spectrum of action on JAK-dependent cytokine signaling to maintain efficacy and improve safety. Our fully chemically modified siRNA supports efficient silencing of JAK1 expression in human skin explant and modulation of JAK1-dependent inflammatory signaling. A single injection into mouse skin enables five weeks of duration of effect. In a mouse model of vitiligo, local administration of the JAK1 siRNA significantly reduces skin infiltration of autoreactive CD8+ T cells and prevents epidermal depigmentation. This work establishes a path toward siRNA treatments as a new class of therapeutic modality for inflammatory and autoimmune skin diseases.
Collapse
Affiliation(s)
- Qi Tang
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Hassan H Fakih
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Mohammad Zain Ui Abideen
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Samuel R Hildebrand
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Khashayar Afshari
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Katherine Y Gross
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Jacquelyn Sousa
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Allison S Maebius
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | | | | | | | - Vignesh Hariharan
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Ashley Summers
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Xueli Fan
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Ken Okamura
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Kathryn R Monopoli
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Bioinformatics and Computational Biology Program, Worcester Polytechnic Institute, Worcester, MA, 01609, USA
| | - David A Cooper
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Brianna Bramato
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Nicholas McHugh
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Raymond C Furgal
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Karen Dresser
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Sarah J Winter
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Annabelle Biscans
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Jane Chuprin
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Nazgol-Sadat Haddadi
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Shany Sherman
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Ümmügülsüm Yıldız-Altay
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Mehdi Rashighi
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Jillian M Richmond
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | | | | | - Adam Clauss
- LEO Pharma A/S, Industriparken 55, 2750, Ballerup, Denmark
| | - Julia F Alterman
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| | - John E Harris
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
7
|
Touni AA, Shivde RS, Echuri H, Abdel-Aziz RTA, Abdel-Wahab H, Kundu RV, Le Poole IC. Melanocyte-keratinocyte cross-talk in vitiligo. Front Med (Lausanne) 2023; 10:1176781. [PMID: 37275386 PMCID: PMC10235633 DOI: 10.3389/fmed.2023.1176781] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/27/2023] [Indexed: 06/07/2023] Open
Abstract
Vitiligo is a common acquired pigmentary disorder that presents as progressive loss of melanocytes from the skin. Epidermal melanocytes and keratinocytes are in close proximity to each other, forming a functional and structural unit where keratinocytes play a pivotal role in supporting melanocyte homeostasis and melanogenesis. This intimate relationship suggests that keratinocytes might contribute to ongoing melanocyte loss and subsequent depigmentation. In fact, keratinocyte dysfunction is a documented phenomenon in vitiligo. Keratinocyte apoptosis can deprive melanocytes from growth factors including stem cell factor (SCF) and other melanogenic stimulating factors which are essential for melanocyte function. Additionally, keratinocytes control the mobility/stability phases of melanocytes via matrix metalloproteinases and basement membrane remodeling. Hence keratinocyte dysfunction may be implicated in detachment of melanocytes from the basement membrane and subsequent loss from the epidermis, also potentially interfering with repigmentation in patients with stable disease. Furthermore, keratinocytes contribute to the autoimmune insult in vitiligo. Keratinocytes express MHC II in perilesional skin and may present melanosomal antigens in the context of MHC class II after the pigmented organelles have been transferred from melanocytes. Moreover, keratinocytes secrete cytokines and chemokines including CXCL-9, CXCL-10, and IL-15 that amplify the inflammatory circuit within vitiligo skin and recruit melanocyte-specific, skin-resident memory T cells. In summary, keratinocytes can influence vitiligo development by a combination of failing to produce survival factors, limiting melanocyte adhesion in lesional skin, presenting melanocyte antigens and enhancing the recruitment of pathogenic T cells.
Collapse
Affiliation(s)
- Ahmed Ahmed Touni
- Department of Dermatology, Faculty of Medicine, Minia University, Minia, Egypt
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Rohan S. Shivde
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Harika Echuri
- Department of Dermatology, Emory University, Atlanta, GA, United States
| | | | - Hossam Abdel-Wahab
- Department of Dermatology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Roopal V. Kundu
- Department of Dermatology, Faculty of Medicine, Minia University, Minia, Egypt
| | - I. Caroline Le Poole
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|