1
|
Jia BB, Sun BK, Lee EY, Ren B. Emerging Techniques in Spatial Multiomics: Fundamental Principles and Applications to Dermatology. J Invest Dermatol 2025; 145:1017-1032. [PMID: 39503694 DOI: 10.1016/j.jid.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 09/09/2024] [Accepted: 09/09/2024] [Indexed: 04/25/2025]
Abstract
Molecular pathology, such as high-throughput genomic and proteomic profiling, identifies precise disease targets from biopsies but require tissue dissociation, losing valuable histologic and spatial context. Emerging spatial multi-omic technologies now enable multiplexed visualization of genomic, proteomic, and epigenomic targets within a single tissue slice, eliminating the need for labeling multiple adjacent slices. Although early work focused on RNA (spatial transcriptomics), spatial technologies can now concurrently capture DNA, genome accessibility, histone modifications, and proteins with spatially-resolved single-cell resolution. This review outlines the principles, advantages, limitations, and potential for spatial technologies to advance dermatologic research. By jointly profiling multiple molecular channels, spatial multiomics enables novel studies of copy number variations, clonal heterogeneity, and enhancer dysregulation, replete with spatial context, illuminating the skin's complex heterogeneity.
Collapse
Affiliation(s)
- Bojing B Jia
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, California, USA; Medical Scientist Training Program, University of California, San Diego, La Jolla, California, USA
| | - Bryan K Sun
- Department of Dermatology, University of California, Irvine, Irvine, California, USA
| | - Ernest Y Lee
- Department of Dermatology, University of California, San Francisco, San Francisco, California, USA
| | - Bing Ren
- Center for Epigenomics, Department of Cellular & Molecular Medicine, University of California, San Diego, La Jolla, California, USA; Institute of Genomic Medicine, Moores Cancer Center, School of Medicine, University of California, San Diego, La Jolla, California, USA.
| |
Collapse
|
2
|
Zhang LM, Zeng T, Zhang BR, Zhang QJ, Gao SJ, Zhu YL, Liu MW. Mendelian randomization combined with single-cell sequencing data analysis of chemokines and chemokine receptors and key genes and molecular mechanisms associated with epilepsy. Neuroreport 2025; 36:00001756-990000000-00354. [PMID: 40298633 PMCID: PMC12080367 DOI: 10.1097/wnr.0000000000002168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 02/26/2025] [Indexed: 04/30/2025]
Abstract
To explore the functions and potential regulatory mechanisms of chemokine and chemokine receptor (CCR)-related genes in epilepsy. CCRs were identified as candidate genes and their causal relationship with epilepsy was rigorously evaluated via Mendelian randomization analysis. Subsequently, single-cell RNA sequencing (scRNA-seq) data were analyzed to identify and classify cell clusters into distinct types based on cellular annotation. Differential expression analysis was conducted to pinpoint key genes by overlapping the candidate gene set with differentially expressed genes (DEGs). Furthermore, potential therapeutic drugs for epilepsy were predicted, offering novel avenues for disease management and treatment. In total, 6395 DEGs were identified across the six cell clusters. After their intersection,CCRL2, XCL2, CXCR5, CXCL1, and CX3CR1 were pinpointed as key genes. Microglia, T cells, B cells, and macrophages have been emerged as critical cells. Furthermore, CXCL1 was regulated by hsa-miR-570-3p and hsa-miR-532-5p. Notably, CXCR5, CXCL1, and CX3CR1 were associated with 27 drug compounds. This comprehensive study leveraged scRNA-seq and transcriptomic data to elucidate the roles of CCR-related genes in epilepsy. Notably, CCRL2, XCL2, CXCR5, CXCL1, and CX3CR1 were identified as key genes implicated in epilepsy, whereas microglia, T cells, B cells, and macrophages were recognized as critical contributors to the development of epilepsy. Regulating the expression of CCRL2, XCL2, CXCR5, CXCL1, and CX3CR1, along with the activity of these immune cells may offer therapeutic potential for the alleviation of epilepsy.
Collapse
Affiliation(s)
- Lin-Ming Zhang
- Department of Neurology, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Tao Zeng
- Department of Neurology, The Pearl River Hospital Affiliated to Southern Medical University, Guangzhou, Guangdong, China
| | - Bing-ran Zhang
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Qiu-juan Zhang
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Shu-ji Gao
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Yan-lin Zhu
- Department of Emergency, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ming-wei Liu
- Department of Emergency, Dali Bai Autonomous Prefecture People’s Hospital, Dali, Yunnan, China
| |
Collapse
|
3
|
Schmidt M, Binder H, Schneider MR. The metabolic underpinnings of sebaceous lipogenesis. Commun Biol 2025; 8:670. [PMID: 40289206 PMCID: PMC12034822 DOI: 10.1038/s42003-025-08105-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025] Open
Abstract
Sebaceous glands synthesize and secrete sebum, a mélange of lipids and other cellular products that safeguards the mammalian integument. Differentiating sebocytes delaminate from the basal membrane and dislodge towards the gland's middle, where they eventually undergo a poorly understood death mode in which the whole cell becomes a secretion product (holocrine secretion). Supported by recent transcriptomics data, this review examines the idea that peripheral sebocytes have a remarkable ability to draw nutrients from the blood and become committed to unrestrainedly invest all available resources into synthetic processes for accomplishing sebum synthesis, thereby exploiting core metabolic fluxes as glycogen turnover, glutamine-directed anaplerosis, the pentose phosphate pathway and de novo lipogenesis. Finally, we propose that metabolic-driven processes are an important mechanistic component of holocrine secretion. A deeper understanding of these metabolic adaptations could indicate novel strategies for modulating sebum synthesis, a key pathogenic factor in acne and other skin diseases.
Collapse
Affiliation(s)
- Maria Schmidt
- Interdisciplinary Institute for Bioinformatics (IZBI), University of Leipzig, Leipzig, Germany
| | - Hans Binder
- Interdisciplinary Institute for Bioinformatics (IZBI), University of Leipzig, Leipzig, Germany
- Armenian Bioinformatics Institute (ABI), Yerevan, Armenia
| | - Marlon R Schneider
- Institute of Veterinary Physiology, Veterinary Faculty, University of Leipzig, Leipzig, Germany.
| |
Collapse
|
4
|
Kazmi A, Gill R, Restrepo P, Ji AL. The spatial and single-cell landscape of skin: Charting the multiscale regulation of skin immune function. Semin Immunol 2025; 78:101958. [PMID: 40267702 DOI: 10.1016/j.smim.2025.101958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 04/25/2025]
Abstract
Immune regulation is a key function of the skin, a barrier tissue that exhibits spatial compartmentalization of innate and adaptive immune cells. Recent advances in single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) have facilitated systems-based investigations into the molecular and cellular features of skin immunity at single-cell resolution, identifying cell types that maintain homeostasis in a coordinated manner, and those that exhibit dysfunctional cell-cell interactions in disease. Here, we review how technological innovation is uncovering the multiple scales of heterogeneity in the immune landscape of the skin. The microanatomic scale encompasses the skin's diverse cellular components and multicellular spatial organization, which govern the functional cell interactions and behaviors necessary to protect the host. On the macroanatomic scale, understanding heterogeneity in cutaneous tissue architecture across anatomical sites promises to unearth additional functional immune variation and resulting disease consequences. We focus on how single-cell and spatial dissection of the immune system in experimental models and in humans has led to a deeper understanding of how each cell type in the skin contributes to overall immune function in a context-dependent manner. Finally, we highlight translational opportunities for adopting these technologies, and insights gleaned from them, into the clinic.
Collapse
Affiliation(s)
- Abiha Kazmi
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Black Family Stem Cell Institute, Institute of Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Raman Gill
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Black Family Stem Cell Institute, Institute of Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Paula Restrepo
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Black Family Stem Cell Institute, Institute of Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andrew L Ji
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Black Family Stem Cell Institute, Institute of Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
5
|
Chang LY, Plikus MV, Jablonski NG, Lin SJ. Evolution of long scalp hair in humans. Br J Dermatol 2025; 192:574-584. [PMID: 39841178 PMCID: PMC11918595 DOI: 10.1093/bjd/ljae456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/29/2024] [Accepted: 11/08/2024] [Indexed: 01/23/2025]
Abstract
The ability to grow long scalp hair is a distinct human characteristic. It probably originally evolved to aid in cooling the sun-exposed head, although the genetic determinants of long hair are largely unknown. Despite ancestral variations in hair growth, long scalp hair is common to all extant human populations, which suggests its emergence before or concurrently with the emergence of anatomically modern humans (AMHs), approximately 300 000 years ago. Long scalp hair in AMHs was also a trait that was selected because it conveyed essential signals related to an individual's age, sexual maturity, health and social status. Biologically, hair length is primarily determined by the amount of time that a hair follicle spends in the active growth phase (anagen). While anagen duration is typically tightly regulated in most mammals, the inherent ability of a hair follicle to continuously recruit new dividing progenitors to its base, where hair fibre is generated, theoretically removes limits on maximal anagen duration. We propose a model wherein hair cycle progression into and out of anagen is regulated by evolutionary malleable molecular checkpoints. Several animal species and domesticated animal breeds display long body hair, which suggests that extremely long scalp hair in humans emerged via attenuation of an existing out-of-anagen checkpoint mechanism rather than via a newly evolved molecular programme. Studying congenital and somatic mosaicism conditions featuring altered hair length could potentially unveil the currently unknown molecular basis underlying this human trait.
Collapse
Affiliation(s)
- Lo-Yu Chang
- School of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Molecular Biology and Genetics, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, University of CaliforniaIrvine, Irvine, CA, USA
- Sue and Bill Gross Stem Cell Research Center, University of CaliforniaIrvine, Irvine, CA, USA
- Center for Complex Biological Systems, University of CaliforniaIrvine, Irvine, CA, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of CaliforniaIrvine, Irvine, CA, USA
| | - Nina G Jablonski
- Department of Anthropology, The Pennsylvania State University, PA, USA
| | - Sung-Jan Lin
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
- Department of Medical Research and Department of Dermatology, National Taiwan University Hospital, Taipei, Taiwan
- Department of Dermatology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
6
|
Cho C, Haddadi NS, Kidacki M, Woodard GA, Shakiba S, Yıldız-Altay Ü, Richmond JM, Vesely MD. Spatial Transcriptomics in Inflammatory Skin Diseases Using GeoMx Digital Spatial Profiling: A Practical Guide for Applications in Dermatology. JID INNOVATIONS 2025; 5:100317. [PMID: 39559817 PMCID: PMC11570843 DOI: 10.1016/j.xjidi.2024.100317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 07/05/2024] [Accepted: 08/29/2024] [Indexed: 11/20/2024] Open
Abstract
The spatial organization of the skin is critical for its function. In particular, the skin immune microenvironment is arranged spatially and temporally, such that imbalances in the immune milieu are indicative of disease. Spatial transcriptomic platforms are helping to provide additional insights into aberrant inflammation in tissues that are not captured by tissue processing required for single-cell RNA sequencing. In this paper, we discuss a technical and user experience overview of NanoString's GeoMx Digital Spatial Profiler to perform in-depth spatial analysis of the transcriptome in inflammatory skin diseases. Our objective is to provide potential pitfalls and methods to optimize RNA capture that are not readily available in the manufacturer's guidelines. We use concrete examples from our experiments to demonstrate these strategies in inflammatory skin diseases, including psoriasis, lichen planus, and discoid lupus erythematosus. Overall, we hope to illustrate the potential of digital spatial profiling to dissect skin disease pathogenesis in a spatially resolved manner and provide a framework for other skin biology investigators using digital spatial profiling.
Collapse
Affiliation(s)
- Christina Cho
- Department of Immunobiology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Nazgol-Sadat Haddadi
- Department of Dermatology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Michal Kidacki
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| | - Gavitt A. Woodard
- Department of Surgery, Yale School of Medicine, New Haven, Connecticut, USA
| | - Saeed Shakiba
- Department of Dermatology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Ümmügülsüm Yıldız-Altay
- Department of Dermatology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Jillian M. Richmond
- Department of Dermatology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Matthew D. Vesely
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
7
|
Lee SH, Sacks DL. Resilience of dermis resident macrophages to inflammatory challenges. Exp Mol Med 2024; 56:2105-2112. [PMID: 39349826 PMCID: PMC11542019 DOI: 10.1038/s12276-024-01313-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 10/03/2024] Open
Abstract
The skin serves as a complex barrier organ populated by tissue-resident macrophages (TRMs), which play critical roles in defense, homeostasis, and tissue repair. This review examines the functions of dermis resident TRMs in different inflammatory settings, their embryonic origins, and their long-term self-renewal capabilities. We highlight the M2-like phenotype of dermal TRMs and their specialized functions in perivascular and perineuronal niches. Their interactions with type 2 immune cells, autocrine cytokines such as IL-10, and their phagocytic clearance of apoptotic cells have been explored as mechanisms for M2-like dermal TRM self-maintenance and function. In conclusion, we address the need to bridge murine models with human studies, with the possibility of targeting TRMs to promote skin immunity or restrain cutaneous pathology.
Collapse
Affiliation(s)
- Sang Hun Lee
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - David L Sacks
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
8
|
Tang L, Zhang B, Li G, Qiu X, Dai Z, Liu H, Zhu Y, Feng B, Su Z, Han W, Huang H, Li Q, Zhang Z, Wang M, Liu H, Chen Y, Zhang Y, Wu D, Zheng X, Liu T, Zhao J, Li C, Zheng G. Upregulated SKP2 Empowers Epidermal Proliferation Through Downregulation of P27 Kip1. Ann Dermatol 2024; 36:282-291. [PMID: 39343755 PMCID: PMC11439983 DOI: 10.5021/ad.23.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/04/2024] [Accepted: 04/30/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Excessive growth of keratinocytes is the critical event in the etiology of psoriasis. However, the underlying molecular mechanism of psoriatic keratinocyte hyperproliferation is still unclear. OBJECTIVE This study aimed to figure out the potential contributory role of S-phase kinase-associated protein 2 (SKP2) in promoting the hyperproliferation of keratinocytes in psoriasis. METHODS We analyzed microarray data (GSE41662) to investigate the gene expression of SKP2 in psoriatic lesion skins compared with their adjacent non-lesional skin. Then, we further confirmed the mRNA and protein expression of SKP2 in human psoriatic skin tissues, imiquimod (IMQ)-induced psoriatic mice back skins and tumor necrosis factor α (TNF-α), interleukin (IL)-17A and IL-6-stimulated keratinocytes by using real-time quantitative polymerase chain reaction and western blot (WB). Furthermore, we explored the potential pathogenic role and its underlying cellular mechanism of SKP2 in promoting keratinocytes hyperproliferation through 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, cell cycle detection, 5-ethynyl-2'-deoxyuridine staining and WB. Finally, we determined whether inhibition of SKP2 can effectively alleviate the keratinocytes hyperproliferation in vivo. RESULTS We identified that SKP2 is aberrantly upregulated in the psoriatic lesion skin and cytokines-stimulated keratinocytes. Moreover, upregulated SKP2 augments cytokines-induced keratinocytes hyperproliferation. Mechanistically, enhanced SKP2 increased the S phase ratio through inhibiting Cyclin-Dependent Kinase Inhibitor p27 (P27 Kip1) expression. Correspondingly, suppression of SKP2 with SMIP004 can significantly ease the epidermis hyperplasia in vivo. CONCLUSION Our results suggest that elevated SKP2 can empower keratinocytes proliferation and psoriasis-like epidermis hyperplasia via downregulation of P27 Kip1. Therefore, targeting SKP2-P27 Kip1 axis might be a promising therapeutic strategy for the treatment of psoriasis in future.
Collapse
Affiliation(s)
- Lipeng Tang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bowen Zhang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guanzhuo Li
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xinmin Qiu
- Genetic Testing Lab, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zixin Dai
- School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou, China
| | - Hongying Liu
- Department of Pathology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Ying Zhu
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bing Feng
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zuqing Su
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Wenhui Han
- School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huilin Huang
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Qiuping Li
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, China
| | - Zihao Zhang
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Department of Cell Biology, Jinan University, Guangzhou, China
| | - Maojie Wang
- Department of Rheumatology Clinical and Basic Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Huazhen Liu
- Department of Immunology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuchao Chen
- Department of Immunology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yanmei Zhang
- Department of Immunology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Dinghong Wu
- Department of Material Basis of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xirun Zheng
- Department of Pathology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Taohua Liu
- Department of Pathology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jie Zhao
- Department of Pathology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Chutian Li
- Department of Pathology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Guangjuan Zheng
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Pharmacology of Traditional Chinese Medicine, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China
- Department of Pathology, The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
9
|
Sol S, Boncimino F, Todorova K, Mandinova A. Unraveling the Functional Heterogeneity of Human Skin at Single-Cell Resolution. Hematol Oncol Clin North Am 2024; 38:921-938. [PMID: 38839486 DOI: 10.1016/j.hoc.2024.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2024]
Abstract
The skin consists of several cell populations, including epithelial, immune, and stromal cells. Recently, there has been a significant increase in single-cell RNA-sequencing studies, contributing to the development of a consensus Human Skin Cell Atlas. The aim is to understand skin biology better and identify potential therapeutic targets. The present review utilized previously published single-cell RNA-sequencing datasets to explore human skin's cellular and functional heterogeneity. Additionally, it summarizes the functional significance of newly identified cell subpopulations in processes such as wound healing and aging.
Collapse
Affiliation(s)
- Stefano Sol
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Fabiana Boncimino
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Kristina Todorova
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Anna Mandinova
- Cutaneous Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA; Broad Institute of Harvard and MIT, 7 Cambridge Center, MA 02142, USA; Harvard Stem Cell Institute, 7 Divinity Avenue Cambridge, MA 02138, USA.
| |
Collapse
|
10
|
Schepps S, Xu J, Yang H, Mandel J, Mehta J, Tolotta J, Baker N, Tekmen V, Nikbakht N, Fortina P, Fuentes I, LaFleur B, Cho RJ, South AP. Skin in the game: a review of single-cell and spatial transcriptomics in dermatological research. Clin Chem Lab Med 2024; 62:1880-1891. [PMID: 38656304 DOI: 10.1515/cclm-2023-1245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/29/2024] [Indexed: 04/26/2024]
Abstract
Single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics (ST) are two emerging research technologies that uniquely characterize gene expression microenvironments on a cellular or subcellular level. The skin, a clinically accessible tissue composed of diverse, essential cell populations, serves as an ideal target for these high-resolution investigative approaches. Using these tools, researchers are assembling a compendium of data and discoveries in healthy skin as well as a range of dermatologic pathophysiologies, including atopic dermatitis, psoriasis, and cutaneous malignancies. The ongoing advancement of single-cell approaches, coupled with anticipated decreases in cost with increased adoption, will reshape dermatologic research, profoundly influencing disease characterization, prognosis, and ultimately clinical practice.
Collapse
Affiliation(s)
- Samuel Schepps
- Department of Dermatology and Cutaneous Biology, 6559 Thomas Jefferson University , Philadelphia, PA, USA
| | - Jonathan Xu
- Department of Dermatology and Cutaneous Biology, 6559 Thomas Jefferson University , Philadelphia, PA, USA
| | - Henry Yang
- Department of Dermatology and Cutaneous Biology, 6559 Thomas Jefferson University , Philadelphia, PA, USA
| | - Jenna Mandel
- Department of Dermatology and Cutaneous Biology, 6559 Thomas Jefferson University , Philadelphia, PA, USA
| | - Jaanvi Mehta
- Department of Dermatology and Cutaneous Biology, 6559 Thomas Jefferson University , Philadelphia, PA, USA
| | - Julianna Tolotta
- Department of Dermatology and Cutaneous Biology, 6559 Thomas Jefferson University , Philadelphia, PA, USA
| | - Nicole Baker
- Department of Dermatology and Cutaneous Biology, 6559 Thomas Jefferson University , Philadelphia, PA, USA
| | - Volkan Tekmen
- Department of Dermatology and Cutaneous Biology, 6559 Thomas Jefferson University , Philadelphia, PA, USA
| | - Neda Nikbakht
- Department of Dermatology and Cutaneous Biology, 6559 Thomas Jefferson University , Philadelphia, PA, USA
- Department of Pharmacology, Physiology and Cancer Biology, 6559 Thomas Jefferson University , Philadelphia, PA, USA
| | - Paolo Fortina
- Department of Pharmacology, Physiology and Cancer Biology, 6559 Thomas Jefferson University , Philadelphia, PA, USA
- International Federation of Clinical Chemistry Working Group on Single Cell and Spatial Transcriptomics, Milan, Italy
| | - Ignacia Fuentes
- International Federation of Clinical Chemistry Working Group on Single Cell and Spatial Transcriptomics, Milan, Italy
- Departamento de Biología Celular y Molecular, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Directora de Investigación Fundación DEBRA Chile, Santiago, Chile
| | - Bonnie LaFleur
- International Federation of Clinical Chemistry Working Group on Single Cell and Spatial Transcriptomics, Milan, Italy
- R. Ken Coit College of Pharmacy, University of Arizona, University of Arizona Cancer Center, Tucson, AZ, USA
| | - Raymond J Cho
- International Federation of Clinical Chemistry Working Group on Single Cell and Spatial Transcriptomics, Milan, Italy
- Department of Dermatology, University of San Francisco, San Francisco, CA, USA
| | - Andrew P South
- Department of Pharmacology, Physiology and Cancer Biology, 6559 Thomas Jefferson University , Philadelphia, PA, USA
- International Federation of Clinical Chemistry Working Group on Single Cell and Spatial Transcriptomics, Milan, Italy
| |
Collapse
|
11
|
Cho I, Ji AL. Type 1 innate lymphoid cells: a biomarker and therapeutic candidate in sarcoidosis. J Clin Invest 2024; 134:e183708. [PMID: 39225095 PMCID: PMC11364376 DOI: 10.1172/jci183708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Sarcoidosis is an inflammatory disease characterized by immune cell-rich granulomas that form in multiple organs. In this issue of the JCI, Sati and colleagues used scRNA-seq and spatial transcriptomics of skin samples from patients with sarcoidosis and non-sarcoidosis granulomatous disease to identify upregulation of a stromal-immune CXCL12/CXCR4 axis and accumulation of type 1 innate lymphoid cells (ILC1s) in sarcoidosis. The accumulation of ILC1s in skin and blood was specific to patients with sarcoidosis and not observed in other granulomatous diseases. The authors used a mouse model of lung granuloma to show that ILCs contribute to granuloma formation and that blockade of CXCR4 reduced the formation of granulomas, providing a proof of concept that sarcoidosis may be treated by CXCR4 blockade to prevent the progression of disease in patients. These results suggest ILC1s could serve as a diagnostic biomarker in sarcoidosis and a potential therapeutic target.
Collapse
Affiliation(s)
- Inchul Cho
- Department of Dermatology
- Black Family Stem Cell Institute
| | - Andrew L. Ji
- Department of Dermatology
- Black Family Stem Cell Institute
- Department of Oncological Sciences
- Department of Cell, Developmental and Regenerative Biology, and
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
12
|
Deng M, Odhiambo WO, Qin M, To TT, Brewer GM, Kheshvadjian AR, Cheng C, Agak GW. Analysis of intracellular communication reveals consistent gene changes associated with early-stage acne skin. Cell Commun Signal 2024; 22:400. [PMID: 39143467 PMCID: PMC11325718 DOI: 10.1186/s12964-024-01725-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/23/2024] [Indexed: 08/16/2024] Open
Abstract
A comprehensive understanding of the intricate cellular and molecular changes governing the complex interactions between cells within acne lesions is currently lacking. Herein, we analyzed early papules from six subjects with active acne vulgaris, utilizing single-cell and high-resolution spatial RNA sequencing. We observed significant changes in signaling pathways across seven different cell types when comparing lesional skin samples (LSS) to healthy skin samples (HSS). Using CellChat, we constructed an atlas of signaling pathways for the HSS, identifying key signal distributions and cell-specific genes within individual clusters. Further, our comparative analysis revealed changes in 49 signaling pathways across all cell clusters in the LSS- 4 exhibited decreased activity, whereas 45 were upregulated, suggesting that acne significantly alters cellular dynamics. We identified ten molecules, including GRN, IL-13RA1 and SDC1 that were consistently altered in all donors. Subsequently, we focused on the function of GRN and IL-13RA1 in TREM2 macrophages and keratinocytes as these cells participate in inflammation and hyperkeratinization in the early stages of acne development. We evaluated their function in TREM2 macrophages and the HaCaT cell line. We found that GRN increased the expression of proinflammatory cytokines and chemokines, including IL-18, CCL5, and CXCL2 in TREM2 macrophages. Additionally, the activation of IL-13RA1 by IL-13 in HaCaT cells promoted the dysregulation of genes associated with hyperkeratinization, including KRT17, KRT16, and FLG. These findings suggest that modulating the GRN-SORT1 and IL-13-IL-13RA1 signaling pathways could be a promising approach for developing new acne treatments.
Collapse
Affiliation(s)
- Min Deng
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA, 90095, USA
| | - Woodvine O Odhiambo
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA, 90095, USA
| | - Min Qin
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA, 90095, USA
| | - Thao Tam To
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA, 90095, USA
| | - Gregory M Brewer
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA, 90095, USA
| | - Alexander R Kheshvadjian
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA, 90095, USA
| | - Carol Cheng
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA, 90095, USA
| | - George W Agak
- Division of Dermatology, David Geffen School of Medicine, University of California (UCLA), Los Angeles, CA, 90095, USA.
| |
Collapse
|
13
|
Deng M, Odhiambo WO, Qin M, To TT, Brewer GM, Kheshvadjian AR, Cheng C, Agak GW. Analysis of Intracellular Communication Reveals Consistent Gene Changes Associated with Early-Stage Acne Skin. RESEARCH SQUARE 2024:rs.3.rs-4402048. [PMID: 38854033 PMCID: PMC11160929 DOI: 10.21203/rs.3.rs-4402048/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
A comprehensive understanding of the intricate cellular and molecular changes governing the complex interactions between cells within acne lesions is currently lacking. Herein, we analyzed early papules from six subjects with active acne vulgaris, utilizing single-cell and high-resolution spatial RNA sequencing. We observed significant changes in signaling pathways across seven different cell types when comparing lesional skin samples (LSS) to healthy skin samples (HSS). Using CellChat, we constructed an atlas of signaling pathways for the HSS, identifying key signal distributions and cell-specific genes within individual clusters. Further, our comparative analysis revealed changes in 49 signaling pathways across all cell clusters in the LSS- 4 exhibited decreased activity, whereas 45 were upregulated, suggesting that acne significantly alters cellular dynamics. We identified ten molecules, including GRN, IL-13RA1 and SDC1 that were consistently altered in all donors. Subsequently, we focused on the function of GRN and IL-13RA1 in TREM2 macrophages and keratinocytes as these cells participate in inflammation and hyperkeratinization in the early stages of acne development. We evaluated their function in TREM2 macrophages and the HaCaT cell line. We found that GRN increased the expression of proinflammatory cytokines and chemokines, including IL-18, CCL5, and CXCL2 in TREM2 macrophages. Additionally, the activation of IL-13RA1 by IL-13 in HaCaT cells promoted the dysregulation of genes associated with hyperkeratinization, including KRT17, KRT16, and FLG. These findings suggest that modulating the GRN-SORT1 and IL-13-IL-13RA1 signaling pathways could be a promising approach for developing new acne treatments.
Collapse
Affiliation(s)
| | | | - Min Qin
- University of California (UCLA)
| | | | | | | | | | | |
Collapse
|
14
|
Jiao B, Jiang H, Liu S, Wang Y, Chen Y, Duan H, Niu Y, Shen M, Wang H, Dai Y. Unveiling the mechanisms of trichloroethylene hypersensitivity syndrome: Exploring the role of connexin 43 gap junctions in severe skin damage. Food Chem Toxicol 2024; 187:114594. [PMID: 38485042 DOI: 10.1016/j.fct.2024.114594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 03/23/2024]
Abstract
Trichloroethylene (TCE), extensively used as an organic solvent in various industrial applications, has been identified as a causative factor in inducing hypersensitivity syndrome (THS). Currently, there is no specific treatment for THS, and most patients experience serious adverse outcomes due to extensive skin damage leading to severe infection. However, the pathogenesis of THS-associated skin damage remains unclear. This study aims to elucidate the mechanism underlying skin damage from the perspective of intercellular communication and gap junctions in THS. Our results verified that hyperactivation of connexin43 gap junctions, caused by the aberrantly elevated expression of connexin43, triggers a bystander effect that promotes apoptosis and inflammation in THS via the TNF-TNFRSF1B and mitochondria-associated pathways. Additionally, we identified the gap junction inhibitor Carbenoxolone disodium (CBX) as a promising agent for the treatment of skin damage in THS. CBX protects against inflammatory cell infiltration in the skin and decreases immune cell imbalance in the peripheral blood of THS mice. Furthermore, CBX reduces connexin43 expression, apoptosis and inflammation in THS mice. The study reveals new insights into the mechanisms underlying TCE-induced skin damage, offering a potential treatment strategy for the development of effective therapies targeting severe dermatitis induced by chemical exposure.
Collapse
Affiliation(s)
- Bo Jiao
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Haiqin Jiang
- Institute of Dermatology, Chinese Academy of Medical Sciences, National Center for STD and Leprosy Control, China CDC, Nanjing, China
| | - Shuai Liu
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Yican Wang
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Yuanyuan Chen
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China
| | - Huawei Duan
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Yong Niu
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Meili Shen
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China
| | - Hongsheng Wang
- Institute of Dermatology, Chinese Academy of Medical Sciences, National Center for STD and Leprosy Control, China CDC, Nanjing, China
| | - Yufei Dai
- National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing, 100050, China; China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, 100021, China.
| |
Collapse
|
15
|
Siqueira Andrade S, Faria AVDS, Augusto Sousa A, da Silva Ferreira R, Camargo NS, Corrêa Rodrigues M, Longo JPF. Hurdles in translating science from lab to market in delivery systems for Cosmetics: An industrial perspective. Adv Drug Deliv Rev 2024; 205:115156. [PMID: 38104897 DOI: 10.1016/j.addr.2023.115156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/01/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
In recent decades, a sweeping technological wave has reshaped the global economic landscape. Fueled by the unceasing forces of digital innovation and venture capital investment, this transformative machine has left a significant mark across numerous economic sectors. More recently, the emergence of 'deep tech' start-ups, focusing on areas such as artificial intelligence, nanotechnology, and biotechnology, has infused a fresh wave of innovation into various sectors, including the pharmaceutical and cosmetic industry. This review explores the significance of innovation within the cosmetics sector, with a particular emphasis on delivery systems. It assesses the crucial process of bridging the gap between research and the market, particularly in the translation of nanotechnology into tangible real-world applications. With the rise of nanotechnology-based beauty ingredients, we can anticipate groundbreaking advancements that promise to surpass consumer expectations, ushering in a new era of unparalleled innovation in beauty products.
Collapse
Affiliation(s)
- Sheila Siqueira Andrade
- PlateInnove Biotechnology, Sorocaba, São Paulo, Brazil; Department of Science and Innovation, Glia Innovation, Goiânia, Goiás, Brazil
| | - Alessandra Valéria de Sousa Faria
- Department of Biochemistry and Tissue Biology, Institute of Biology, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | | | | | | | - Mosar Corrêa Rodrigues
- Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasilia, Brazil
| | - João Paulo Figueiró Longo
- Department of Science and Innovation, Glia Innovation, Goiânia, Goiás, Brazil; Department of Genetics and Morphology, Institute of Biological Sciences, University of Brasília, Brasilia, Brazil.
| |
Collapse
|
16
|
Liu Y, Plikus MV. Mapping Human Skin: One Sequenced Cell at a Time. J Invest Dermatol 2023; 143:2093-2096. [PMID: 37747389 DOI: 10.1016/j.jid.2023.03.1678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 09/26/2023]
Affiliation(s)
- Yingzi Liu
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, California, USA
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, California, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, California, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California, USA; Center for Complex Biological Systems, University of California, Irvine, Irvine, California, USA.
| |
Collapse
|