1
|
Antonello J, Roy P. Damage-Associated Molecular Patterns (DAMPs) In Vascular Diseases. J Biol Chem 2025:110241. [PMID: 40381697 DOI: 10.1016/j.jbc.2025.110241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 05/02/2025] [Accepted: 05/07/2025] [Indexed: 05/20/2025] Open
Abstract
Research into the role of chronic sterile inflammation (i.e. a prolonged inflammatory state not caused by an infectious agent), in vascular disease progression has continued to grow over the last few decades. DAMPs have a critical role in this research due to their ability to link stress-causing cardiovascular risk factors to inflammatory phenotypes seen in vascular disease. In this mini-review, we will briefly summarize the DAMPs and receptor signaling pathways that have been extensively studied in the context of vascular disease, including TLRs, RAGE, cGAS-STING, and the NLRP3 inflammasome. In particular, we will discuss how these pathways can promote the release of pro-inflammatory cytokines and chemokines as well as vascular remodeling. Next, we will summarize the results of studies which have linked the various pro-inflammatory effects of DAMPs with the phenotypes in the context of vascular diseases including atherosclerosis, fibrosis, aneurysm, ischemia, and hypertension. Finally, we will discuss some pre-clinical and clinical trials that have targeted DAMPs, their receptors, or the products of their signaling pathways, and discuss the outlook and future directions for the field at large.
Collapse
Affiliation(s)
| | - Partha Roy
- Bioengineering, University of Pittsburgh; Pathology, University of Pittsburgh.
| |
Collapse
|
2
|
Li Y, Wu J, Ye P, Cai Y, Shao M, Zhang T, Guo Y, Zeng S, Pathak JL. Decellularized Extracellular Matrix Scaffolds: Recent Advances and Emerging Strategies in Bone Tissue Engineering. ACS Biomater Sci Eng 2024; 10:7372-7385. [PMID: 39492720 DOI: 10.1021/acsbiomaterials.4c01764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Abstract
Bone tissue engineering (BTE) is a complex biological process involving the repair of bone tissue with proper neuronal network and vasculature as well as bone surrounding soft tissue. Synthetic biomaterials used for BTE should be biocompatible, support bone tissue regeneration, and eventually be degraded in situ and replaced with the newly generated bone tissue. Recently, various forms of bone graft materials such as hydrogel, nanofiber scaffolds, and 3D printed composite scaffolds have been developed for BTE application. Decellularized extracellular matrix (DECM), a kind of natural biological material obtained from specific tissues and organs, has certain advantages over synthetic and exogenous biomaterial-derived bone grafts. Moreover, DECM can be developed from a wide range of biological sources and possesses strong molding abilities, natural 3D structures, and bioactive factors. Although DECM has shown robust osteogenic, proangiogenic, immunomodulatory, and bone defect healing potential, the rapid degradation and limited mechanical properties should be improved for bench-to-bed translation in BTE. This review summarizes the recent advances in DECM-based BTE and discusses emerging strategies of DECM-based BTE.
Collapse
Affiliation(s)
- Yunyang Li
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510182, P. R. China
| | - Jingwen Wu
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Hangzhou CASbios Medical Co., Hangzhou 310000, P. R. China
| | - Peilin Ye
- Department of Bioengineering, Zunyi Medical University, Zhuhai Campus, Zhuhai 519040, P. R. China
| | - Yilin Cai
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510182, P. R. China
| | - Mingfei Shao
- Hangzhou CASbios Medical Co., Hangzhou 310000, P. R. China
| | - Tong Zhang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yanchuan Guo
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Sujuan Zeng
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510182, P. R. China
| | - Janak L Pathak
- School and Hospital of Stomatology, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou Medical University, Guangzhou 510182, P. R. China
| |
Collapse
|
3
|
Bale S, Verma P, Yalavarthi B, Bajželj M, Hasan SA, Silverman JN, Broderick K, Shah KA, Hamill T, Khanna D, Sigalov AB, Bhattacharyya S, Varga J. Inhibiting triggering receptor expressed on myeloid cells 1 signaling to ameliorate skin fibrosis. JCI Insight 2024; 9:e176319. [PMID: 39418109 PMCID: PMC11623937 DOI: 10.1172/jci.insight.176319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 10/11/2024] [Indexed: 10/19/2024] Open
Abstract
Systemic sclerosis (SSc) is characterized by immune system failure, vascular insult, autoimmunity, and tissue fibrosis. TGF-β is a crucial mediator of persistent myofibroblast activation and aberrant extracellular matrix production in SSc. The factors responsible for this are unknown. By amplifying pattern recognition receptor signaling, triggering receptor expressed on myeloid cells 1 (TREM-1) is implicated in multiple inflammatory conditions. In this study, we used potentially novel ligand-independent TREM-1 inhibitors in preclinical models of fibrosis and explanted SSc skin fibroblasts in order to investigate the pathogenic role of TREM-1 in SSc. Selective pharmacological TREM-1 blockade prevented and reversed skin fibrosis induced by bleomycin in mice and mitigated constitutive collagen synthesis and myofibroblast features in SSc fibroblasts in vitro. Our results implicate aberrantly activated TREM-1 signaling in SSc pathogenesis, identify a unique approach to TREM-1 blockade, and suggest a potential therapeutic benefit for TREM-1 inhibition.
Collapse
Affiliation(s)
- Swarna Bale
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Priyanka Verma
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Bharath Yalavarthi
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Matija Bajželj
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Syed A.M. Hasan
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jenna N. Silverman
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Katherine Broderick
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Kris A. Shah
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Timothy Hamill
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Dinesh Khanna
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Swati Bhattacharyya
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - John Varga
- Michigan Scleroderma Program, Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
4
|
Samulevich ML, Carman LE, Aneskievich BJ. Critical Analysis of Cytoplasmic Progression of Inflammatory Signaling Suggests Potential Pharmacologic Targets for Wound Healing and Fibrotic Disorders. Biomedicines 2024; 12:2723. [PMID: 39767629 PMCID: PMC11726985 DOI: 10.3390/biomedicines12122723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
Successful skin wound healing is dependent on an interplay between epidermal keratinocytes and dermal fibroblasts as they react to local extracellular factors (DAMPs, PAMPs, cytokines, etc.) surveyed from that environment by numerous membrane receptors (e.g., TLRs, cytokine receptors, etc.). In turn, those receptors are the start of a cytoplasmic signaling pathway where balance is key to effective healing and, as needed, cell and matrix regeneration. When directed through NF-κB, these signaling routes lead to transient responses to the benefit of initiating immune cell recruitment, cell replication, local chemokine and cytokine production, and matrix protein synthesis. The converse can also occur, where ongoing canonical NF-κB activation leads to chronic, hyper-responsive states. Here, we assess three key players, TAK1, TNFAIP3, and TNIP1, in cytoplasmic regulation of NF-κB activation, which, because of their distinctive and yet inter-related functions, either promote or limit that activation. Their balanced function is integral to successful wound healing, given their significant control over the expression of inflammation-, fibrosis-, and matrix remodeling-associated genes. Intriguingly, these three proteins have also been emphasized in dysregulated NF-κB signaling central to systemic sclerosis (SSc). Notably, diffuse SSc shares some tissue features similar to an excessive inflammatory/fibrotic wound response without eventual resolution. Taking a cue from certain instances of aberrant wound healing and SSc having some shared aspects, e.g., chronic inflammation and fibrosis, this review looks for the first time, to our knowledge, at what those pathologies might have in common regarding the cytoplasmic progression of NF-κB-mediated signaling. Additionally, while TAK1, TNFAIP3, and TNIP1 are often investigated and reported on individually, we propose them here as three proteins whose consequences of function are very highly interconnected at the signaling focus of NF-κB. We thus highlight the emerging promise for the eventual clinical benefit derived from an improved understanding of these integral signal progression modulators. Depending on the protein, its indirect or direct pharmacological regulation has been reported. Current findings support further intensive studies of these points in NF-κB regulation both for their basic function in healthy cells as well as with the goal of targeting them for translational benefit in multiple cutaneous wound healing situations, whether stemming from acute injury or a dysregulated inflammatory/fibrotic response.
Collapse
Affiliation(s)
- Michael L. Samulevich
- Graduate Program in Pharmacology & Toxicology, University of Connecticut, Storrs, CT 06269-3092, USA; (M.L.S.); (L.E.C.)
| | - Liam E. Carman
- Graduate Program in Pharmacology & Toxicology, University of Connecticut, Storrs, CT 06269-3092, USA; (M.L.S.); (L.E.C.)
| | - Brian J. Aneskievich
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Connecticut, Storrs, CT 06269-3092, USA
| |
Collapse
|
5
|
Almalki WH, Almujri SS. Aging, ROS, and cellular senescence: a trilogy in the progression of liver fibrosis. Biogerontology 2024; 26:10. [PMID: 39546058 DOI: 10.1007/s10522-024-10153-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/30/2024] [Indexed: 11/17/2024]
Abstract
Ageing is an inevitable and multifaceted biological process that impacts a wide range of cellular and molecular mechanisms, leading to the development of various diseases, such as liver fibrosis. Liver fibrosis progresses to cirrhosis, which is an advanced form due to high amounts of extracellular matrix and restoration of normal liver structure with failure to repair damaged tissue and cells, marking the end of liver function and total liver failure, ultimately death. The most important factors are reactive oxygen species (ROS) and cellular senescence. Oxidative stress is defined as an impairment by ROS, which are by-products of the mitochondrial electron transport chain and other key molecular pathways that induce cell damage and can activate cellular senescence pathways. Cellular senescence is characterized by pro-inflammatory cytokines, growth factors, and proteases secreted by senescent cells, collectively known as the senescence-associated secretory phenotype (SASP). The presence of senescent cells, which disrupt tissue architecture and function and increase senescent cell production in liver tissues, contributes to fibrogenesis. Hepatic stellate cells (HSCs) are activated in response to chronic liver injury, oxidative stress, and senescence signals that drive excessive production and deposition of extracellular matrix. This review article aims to provide a comprehensive overview of the pathogenic role of ROS and cellular senescence in the aging liver and their contribution to fibrosis.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, 61421, Abha, Aseer, Saudi Arabia.
| |
Collapse
|
6
|
Naik A, Stratton RJ, Leask A. Digital ulcers associated with scleroderma: A major unmet medical need. Wound Repair Regen 2024; 32:949-959. [PMID: 39323322 DOI: 10.1111/wrr.13224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/27/2024]
Abstract
Scleroderma or systemic sclerosis (SSc)-associated digital ischaemic complications, such as digital ulcers (SSc-DUs), appear relatively early during the disease course and are a major burden with substantial deterioration of quality of life. Expert rheumatologist and wound specialists have defined a DU; however, international application of the definition is still disorganised. Appearance of SSc-DUs is secondary to the onset of Raynaud's phenomenon and as a consequence, recommended first-line of treatment mainly includes vasodilators; however, many DUs are refractory to this treatment. Despite important practical issues, such as a lack of well-characterised SSc-wound healing animal model, significant efforts are needed to mechanistically understand the pathogenesis of SSc-DUs for developing clinically targetable disease modifying therapies.
Collapse
Affiliation(s)
- Angha Naik
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Richard J Stratton
- Centre for Rheumatology and Connective Tissue Disease, University College London (Royal Free Campus), London, UK
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
7
|
Ding S, Guo J, Chen H, Petretto E. Multi-scalar data integration decoding risk genes for chronic kidney disease. BMC Nephrol 2024; 25:364. [PMID: 39425076 PMCID: PMC11489995 DOI: 10.1186/s12882-024-03798-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND Chronic Kidney Disease (CKD) impacts over 10% of the global population, and recent advancements in high-throughput analytical technologies are uncovering the complex physiology underlying this condition. By integrating Genome-Wide Association Studies (GWAS), RNA sequencing (RNA-seq/RNA array), and single-cell RNA sequencing (scRNA-seq) data, our study aimed to explore the genes and cell types relevant to CKD traits. METHODS GWAS summary data for end-stage renal failure (ESRD) and decreased eGFR (CKD) with or without diabetes and (micro)proteinuria were obtained from the GWAS Catalog and the UK Biobank (UKB) database. Two gene Expression Omnibus (GEO) transcriptome datasets were used to establish glomerular and tubular gene expression differences between CKD patients and healthy individuals. Two scRNA-seq datasets were utilized to obtain the expression of key genes at the single-cell level. The expression profile, differentially expressed genes (DEGs), gene-gene interaction, and pathway enrichment were analysed for these CKD risk genes. RESULTS A total of 779 distinct SNPs were identified from GWAS across different CKD traits, involving 681 genes. While many of these risk genes are specific to the CKD traits of renal failure, decreased eGFR, and (micro)proteinuria, they share common pathways, including extracellular matrix (ECM). ECM modeling was enriched in upregulated glomerular and tubular DEGs from CKD kidneys compared to healthy controls, with the expression of relevant collagen genes, such as COL1A2, prevalent in fibroblasts/myofibroblasts. Additionally, immune responses, including T cell differentiation, were dysregulated in CKD kidneys. The late podocyte signature gene THSD7A was enriched in podocytes but downregulated in CKD. We also highlighted that the regulated risk genes of CKD are mainly expressed in tubular cells and immune cells in the kidney. CONCLUSIONS Our integrated analysis highlight the genes, pathways, and relevant cell types associational with the pathogenesis of kidney traits, as a basis for further mechanistic studies to understand the pathogenesis of CKD.
Collapse
Affiliation(s)
- Shiqi Ding
- The NUS High School of Mathematics and Science , NUSH, 20 Clementi Ave 1, Singapore, Singapore
| | - Jing Guo
- Programme in Cardiovascular and Metabolic Disorders (CVMD) and Centre for Computational Biology (CCB), Duke-NUS Medical School, 8 College Road, Singapore, Singapore
| | - Huimei Chen
- Programme in Cardiovascular and Metabolic Disorders (CVMD) and Centre for Computational Biology (CCB), Duke-NUS Medical School, 8 College Road, Singapore, Singapore.
| | - Enrico Petretto
- Programme in Cardiovascular and Metabolic Disorders (CVMD) and Centre for Computational Biology (CCB), Duke-NUS Medical School, 8 College Road, Singapore, Singapore
| |
Collapse
|
8
|
Shirley SN, Watson AE, Yusuf N. Pathogenesis of Inflammation in Skin Disease: From Molecular Mechanisms to Pathology. Int J Mol Sci 2024; 25:10152. [PMID: 39337637 PMCID: PMC11431851 DOI: 10.3390/ijms251810152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 09/30/2024] Open
Abstract
Many skin diseases begin with inflammatory changes on a molecular level. To develop a more thorough understanding of skin pathology and to identify new targets for therapeutic advancements, molecular mechanisms of inflammation in the context of skin disease should be studied. Current research efforts to better understand skin disease have focused on examining the role of molecular processes at several stages of the inflammatory response such as the dysregulation of innate immunity sensors, disruption of both transcriptional and post-transcriptional regulation, and crosstalk between immune and neuronal processes (neuro-immune crosstalk). This review seeks to summarize recent developments in our understanding of inflammatory processes in skin disease and to highlight opportunities for therapeutic advancements. With a focus on publications within the past 5 years (2019-2024), the databases PubMed and EBSCOhost were used to search for peer-reviewed papers regarding inflammatory molecular mechanisms and skin disease. Several themes of research interest regarding inflammatory processes in skin disease were determined through extensive review and were included based on their relative representation in current research and their focus on therapeutic potential. Several skin diseases such as psoriasis, atopic dermatitis, hidradenitis suppurativa, and scleroderma were described in the paper to demonstrate the widespread influence of inflammation in skin disease.
Collapse
Affiliation(s)
- Simona N Shirley
- Heersink School of Medicine, University of Alabama-Birmingham, Birmingham, AL 35233, USA
| | - Abigail E Watson
- College of Medicine, Florida State University, Tallahassee, FL 32306, USA
| | - Nabiha Yusuf
- Heersink School of Medicine, University of Alabama-Birmingham, Birmingham, AL 35233, USA
- Department of Dermatology, University of Alabama-Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
9
|
Leir SH, Tkachenko S, Paranjapye A, Meckler F, Van Wettere AJ, Kerschner JL, Kuznetsov E, Schacht M, Gillurkar P, Regouski M, Viotti Perisse I, Marriott CM, Liu Y, Bunderson I, White KL, Polejaeva IA, Harris A. Stellate cells are in utero markers of pancreatic disease in cystic fibrosis. Mol Med 2024; 30:115. [PMID: 39112965 PMCID: PMC11304907 DOI: 10.1186/s10020-024-00871-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/28/2024] [Indexed: 08/11/2024] Open
Abstract
BACKGROUND Pancreatic fibrosis is an early diagnostic feature of the common inherited disorder cystic fibrosis (CF). Many people with CF (pwCF) are pancreatic insufficient from birth and the replacement of acinar tissue with cystic lesions and fibrosis is a progressive phenotype that may later lead to diabetes. Little is known about the initiating events in the fibrotic process though it may be a sequela of inflammation in the pancreatic ducts resulting from loss of CFTR impairing normal fluid secretion. Here we use a sheep model of CF (CFTR-/-) to examine the evolution of pancreatic disease through gestation. METHODS Fetal pancreas was collected at six time points from 50-days of gestation through to term, which is equivalent to ~ 13 weeks to term in human. RNA was extracted from tissue for bulk RNA-seq and single cells were prepared from 80-day, 120-day and term samples for scRNA-seq. Data were validated by immunochemistry. RESULTS Transcriptomic evidence from bulk RNA-seq showed alterations in the CFTR-/- pancreas by 65-days of gestation, which are accompanied by marked pathological changes by 80-days of gestation. These include a fibrotic response, confirmed by immunostaining for COL1A1, αSMA and SPARC, together with acinar loss. Moreover, using scRNA-seq we identify a unique cell population that is significantly overrepresented in the CFTR-/- animals at 80- and 120-days gestation, as are stellate cells at term. CONCLUSION The transcriptomic changes and cellular imbalance that we observe likely have pivotal roles in the evolution of CF pancreatic disease and may provide therapeutic opportunities to delay or prevent pancreatic destruction in CF.
Collapse
Affiliation(s)
- Shih-Hsing Leir
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106-4955, USA
| | - Svyatoslav Tkachenko
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106-4955, USA
| | - Alekh Paranjapye
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106-4955, USA
- Department of Genetics, University of Pennsylvania, Philadelphia, PA, USA
| | - Frederick Meckler
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106-4955, USA
| | - Arnaud J Van Wettere
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Jenny L Kerschner
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106-4955, USA
| | - Elizabeth Kuznetsov
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106-4955, USA
| | - Makayla Schacht
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106-4955, USA
| | - Pulak Gillurkar
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106-4955, USA
| | - Misha Regouski
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Iuri Viotti Perisse
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Cheyenne M Marriott
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Ying Liu
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Ian Bunderson
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Kenneth L White
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Irina A Polejaeva
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, USA
| | - Ann Harris
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, 44106-4955, USA.
| |
Collapse
|
10
|
Long D, Mao C, Xu Y, Zhu Y. The emerging role of neutrophil extracellular traps in ulcerative colitis. Front Immunol 2024; 15:1425251. [PMID: 39170617 PMCID: PMC11335521 DOI: 10.3389/fimmu.2024.1425251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Ulcerative colitis (UC) is characterized by chronic non-recessive inflammation of the intestinal mucosa involving both innate and adaptive immune responses. Currently, new targeted therapies are urgently needed for UC, and neutrophil extracellular traps (NETs) are new therapeutic options. NETs are DNA-based networks released from neutrophils into the extracellular space after stimulation, in which a variety of granule proteins, proteolytic enzymes, antibacterial peptides, histones, and other network structures are embedded. With the deepening of the studies on NETs, their regulatory role in the development of autoimmune and autoinflammatory diseases has received extensive attention in recent years. Increasing evidence indicates that excess NETs exacerbate the inflammatory response in UC, disrupting the structure and function of the intestinal mucosal barrier and increasing the risk of thrombosis. Although NETs are usually assigned a deleterious role in promoting the pathological process of UC, they also appear to have a protective role in some models. Despite such progress, comprehensive reviews describing the therapeutic promise of NETs in UC remain limited. In this review, we discuss the latest evidence for the formation and degradation of NETs, focusing on their double-edged role in UC. Finally, the potential implications of NETs as therapeutic targets for UC will be discussed. This review aims to provide novel insights into the pathogenesis and therapeutic options for UC.
Collapse
Affiliation(s)
- Dan Long
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Chenhan Mao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Yin Xu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Ying Zhu
- Department of Gastroenterology, The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
11
|
Umapathi P, Aggarwal A, Zahra F, Narayanan B, Zachara NE. The multifaceted role of intracellular glycosylation in cytoprotection and heart disease. J Biol Chem 2024; 300:107296. [PMID: 38641064 PMCID: PMC11126959 DOI: 10.1016/j.jbc.2024.107296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/21/2024] Open
Abstract
The modification of nuclear, cytoplasmic, and mitochondrial proteins by O-linked β-N-actylglucosamine (O-GlcNAc) is an essential posttranslational modification that is common in metozoans. O-GlcNAc is cycled on and off proteins in response to environmental and physiological stimuli impacting protein function, which, in turn, tunes pathways that include transcription, translation, proteostasis, signal transduction, and metabolism. One class of stimulus that induces rapid and dynamic changes to O-GlcNAc is cellular injury, resulting from environmental stress (for instance, heat shock), hypoxia/reoxygenation injury, ischemia reperfusion injury (heart attack, stroke, trauma hemorrhage), and sepsis. Acute elevation of O-GlcNAc before or after injury reduces apoptosis and necrosis, suggesting that injury-induced changes in O-GlcNAcylation regulate cell fate decisions. However, prolonged elevation or reduction in O-GlcNAc leads to a maladaptive response and is associated with pathologies such as hypertrophy and heart failure. In this review, we discuss the impact of O-GlcNAc in both acute and prolonged models of injury with a focus on the heart and biological mechanisms that underpin cell survival.
Collapse
Affiliation(s)
- Priya Umapathi
- Division of Cardiology, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| | - Akanksha Aggarwal
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Fiddia Zahra
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Bhargavi Narayanan
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Natasha E Zachara
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
12
|
Muruganandam M, Ariza-Hutchinson A, Patel RA, Sibbitt WL. Biomarkers in the Pathogenesis, Diagnosis, and Treatment of Systemic Sclerosis. J Inflamm Res 2023; 16:4633-4660. [PMID: 37868834 PMCID: PMC10590076 DOI: 10.2147/jir.s379815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 09/27/2023] [Indexed: 10/24/2023] Open
Abstract
Systemic sclerosis (SSc) is a complex autoimmune disease characterized by vascular damage, vasoinstability, and decreased perfusion with ischemia, inflammation, and exuberant fibrosis of the skin and internal organs. Biomarkers are analytic indicators of the biological and disease processes within an individual that can be accurately and reproducibly measured. The field of biomarkers in SSc is complex as recent studies have implicated at least 240 pathways and dysregulated proteins in SSc pathogenesis. Anti-nuclear antibodies (ANA) are classical biomarkers with well-described clinical classifications and are present in more than 90% of SSc patients and include anti-centromere, anti-Th/To, anti-RNA polymerase III, and anti-topoisomerase I antibodies. Transforming growth factor-β (TGF-β) is central to the fibrotic process of SSc and is intimately intertwined with other biomarkers. Tyrosine kinases, interferon-1 signaling, IL-6 signaling, endogenous thrombin, peroxisome proliferator-activated receptors (PPARs), lysophosphatidic acid receptors, and amino acid metabolites are new biomarkers with the potential for developing new therapeutic agents. Other biomarkers implicated in SSc-ILD include signal transducer and activator of transcription 4 (STAT4), CD226 (DNAX accessory molecule 1), interferon regulatory factor 5 (IRF5), interleukin-1 receptor-associated kinase-1 (IRAK1), connective tissue growth factor (CTGF), pyrin domain containing 1 (NLRP1), T-cell surface glycoprotein zeta chain (CD3ζ) or CD247, the NLR family, SP-D (surfactant protein), KL-6, leucine-rich α2-glycoprotein-1 (LRG1), CCL19, genetic factors including DRB1 alleles, the interleukins (IL-1, IL-4, IL-6, IL-8, IL-10 IL-13, IL-16, IL-17, IL-18, IL-22, IL-32, and IL-35), the chemokines CCL (2,3,5,13,20,21,23), CXC (8,9,10,11,16), CX3CL1 (fractalkine), and GDF15. Adiponectin (an indicator of PPAR activation) and maresin 1 are reduced in SSc patients. A new trend has been the use of biomarker panels with combined complex multifactor analysis, machine learning, and artificial intelligence to determine disease activity and response to therapy. The present review is an update of the various biomarker molecules, pathways, and receptors involved in the pathology of SSc.
Collapse
Affiliation(s)
- Maheswari Muruganandam
- Department of Internal Medicine, Division of Rheumatology and School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Angie Ariza-Hutchinson
- Department of Internal Medicine, Division of Rheumatology and School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Rosemina A Patel
- Department of Internal Medicine, Division of Rheumatology and School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Wilmer L Sibbitt
- Department of Internal Medicine, Division of Rheumatology and School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| |
Collapse
|
13
|
Jiang W, Zhang X, Yu S, Yan F, Chen J, Liu J, Dong C. Decellularized extracellular matrix in the treatment of spinal cord injury. Exp Neurol 2023; 368:114506. [PMID: 37597763 DOI: 10.1016/j.expneurol.2023.114506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/04/2023] [Accepted: 08/15/2023] [Indexed: 08/21/2023]
Abstract
Functional limitation caused by spinal cord injury (SCI) has the problem of significant clinical and economic burden. Damaged spinal axonal connections and an inhibitory environment severely hamper neuronal function. Regenerative biomaterials can fill the cavity and produce an optimal microenvironment at the site of SCI, inhibiting apoptosis, inflammation, and glial scar formation while promoting neurogenesis, axonal development, and angiogenesis. Decellularization aims to eliminate cells from the ultrastructure of tissues while keeping tissue-specific components that are similar to the structure of real tissues, making decellularized extracellular matrix (dECM) a suitable scaffold for tissue engineering. dECM has good biocompatibility, it can be widely obtained from natural organs of different species, and can be co-cultured with cells for 3D printing to obtain the target scaffold. In this paper, we reviewed the pathophysiology of SCI, the characteristics of dECM and its preparation method, and the application of dECM in the treatment of SCI. Although dECM has shown its therapeutic effect at present, there are still many indicators that need to be taken into account, such as the difficulty in obtaining materials and standardized production mode for large-scale use, the effect of decellularization on the physical and chemical properties of dECM, and the study on the synergistic effect of dECM and cells.
Collapse
Affiliation(s)
- Wenwei Jiang
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Xuanxuan Zhang
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Shumin Yu
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Fangsu Yan
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Jiaxi Chen
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Jinyi Liu
- Department of Anatomy, Medical College of Nantong University, Nantong, China
| | - Chuanming Dong
- Department of Anatomy, Medical College of Nantong University, Nantong, China; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, Jiangsu Province, China.
| |
Collapse
|