1
|
Elamin NY, Elamin MR, Alhussain H, Alotaibi MT, Alluhaybi AA, El-Bindary AA. Electrospun nanofibers of polycaprolactone loaded with chitosan/carbon quantum dots composite for adsorptive removal of Cd(II) ions from wastewater: Adsorption, kinetics, thermodynamics, and BOX Behnken design. Int J Biol Macromol 2025; 308:142680. [PMID: 40169047 DOI: 10.1016/j.ijbiomac.2025.142680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/20/2025] [Accepted: 03/28/2025] [Indexed: 04/03/2025]
Abstract
The research focused on assessing the improvements in stability and effectiveness regarding the elimination of Cd(II) ions. Specifically, this study involved the development of a novel electrospun nanofibrous membrane composed of chitosan (CS), carbon quantum dots (CQDs), and polycaprolactone (PCL). The membrane's primary application is the elimination of Cd(II) ions, from aqueous solutions. By precisely fine-tuning the electrospinning process parameters, we succeeded in optimizing the membrane. The characterizations performed using FTIR, XRD, XPS, SEM and EDX confirm the successful formation of a robustly crosslinked CS/CQDs/PCL nanofiber membrane. This thorough investigation not only showcases the material's textural characteristics but also underscores its potential for various applications. The examination further analyzed the influence of numerous factors, such as dosage, pH, temperature, and initial concentration, by the adsorption mechanism. The research incorporated equilibrium assessments in conjunction with kinetic evaluations to evaluate the characteristics of adsorption. The results showed that the Langmuir isotherm model well captured the adsorption process and that it complied with pseudo-second-order kinetics values. The fact that metal adsorption rises with temperature indicates that endothermic reactions and spontaneous behavior are both features of the adsorption process. The data suggests that the most effective situations for the elimination of Cd(II) ions in water purification are characterized by a pH level of 6, a amount of 0.02 g of CS/CQDs/PCL per 25 mL, and an adsorption capability measured at 340.05 mg/g precisely for the Cd(II) ions solution. In order to enhance the efficiency of the adsorbent in Cd(II) ions elimination from water, it is crucial to consider multiple significant factors. Systematic trials using the Box-Behnken design and response surface methods, made possible by the Design-Expert software, demonstrated significant improvements in the adsorption efficiency. A thorough assessment of the adsorbent's reusability conducted over five consecutive adsorption and desorption cycles shows a high degree of consistency in its removal efficacy.
Collapse
Affiliation(s)
- Nuha Y Elamin
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, Riyadh 11623, Saudi Arabia
| | - Mohamed R Elamin
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, Riyadh 11623, Saudi Arabia
| | - Hanan Alhussain
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), P.O. Box 5701, Riyadh 11623, Saudi Arabia
| | - Mohammed T Alotaibi
- Department of Chemistry, Turabah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Ahmad A Alluhaybi
- Department of Chemistry, College of Science and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - Ashraf A El-Bindary
- Chemical Department, Faculty of Science, Damietta University, Damietta 34517, Egypt.
| |
Collapse
|
2
|
El-Fattah WA, Guesmi A, Hamadi NB, El-Desouky MG, El-Bindary AA. Smart nanocomposite of carbon quantum dots in double hydrogel (carboxymethyl cellulose/chitosan) for effectively adsorb and remove diquat herbicide: Characterization, thermodynamics, isotherms, kinetics, and optimizing through Box-Behnken Design. Int J Biol Macromol 2025; 309:142806. [PMID: 40188922 DOI: 10.1016/j.ijbiomac.2025.142806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/22/2025] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
This research synthesized carbon quantum dots (CQDs) encapsulated in a chitosan (CS) and carboxymethyl cellulose (CMC) matrix. The crosslinking with epichlorohydrin formed (CQDs-CS/CMC) hydrogel beads for effective removal of diquat (DQ) herbicides. Various techniques like XRD, FT-IR, FESEM, EDX, XPS, and nitrogen adsorption/desorption isotherm analysis were used to evaluate the textural properties. The textural properties of the CQDs-CS/CMC were investigated through nitrogen adsorption/desorption isotherms. The surface area was found to be 95.72 m2/g, pore size 6.57 nm, and pore volume 0.313 cc/g. Post-DQ adsorption, these values decreased to 68.44 m2/g, 4.2 nm, and 0.162 cc/g, indicating DQ blocked mesopores and adsorption sites. The study also examined the effects of dosage, pH, temperature, and initial DQ concentration on adsorption, employing equilibrium and kinetic studies. The system conformed to pseudo-second-order kinetics and Langmuir isotherm models. Chemisorption was the main adsorption process, with an energy of 32.3 kJ/mol. Increased metal uptake at higher temperatures shows the process is spontaneous and endothermic. The Box-Behnken Design software identified optimal adsorption parameters: a pH of 8 and a dosage of 0.02 g of CQDs-CS/CMC per 25 mL of DQ solution, achieving 449.6 mg/g adsorption capability. Extensive testing using Design-Expert software substantially improved the adsorption procedure. The assessment of adsorbent stability involved six cycles of adsorption/desorption. Results showed consistent reusability with no significant reduction in removal efficacy. It maintained its initial chemical configuration before and after repurposing, exhibited consistent performance, and reliable XRD results.
Collapse
Affiliation(s)
- Wesam Abd El-Fattah
- Chemistry Department, College of Science, IMSIU (Imam Mohammad Ibn Saud Islamic University), P.O. Box 5701, Riyadh 11432, Saudi Arabia
| | - Ahlem Guesmi
- Chemistry Department, College of Science, IMSIU (Imam Mohammad Ibn Saud Islamic University), P.O. Box 5701, Riyadh 11432, Saudi Arabia
| | - Naoufel Ben Hamadi
- Chemistry Department, College of Science, IMSIU (Imam Mohammad Ibn Saud Islamic University), P.O. Box 5701, Riyadh 11432, Saudi Arabia
| | | | - Ashraf A El-Bindary
- Chemical Department, Faculty of Science, Damietta University, Damietta 34517, Egypt.
| |
Collapse
|
3
|
El-Fattah WA, Guesmi A, Hamadi NB, Alzahrani A, Alluhaybi AA, El-Desouky MG. Effective of mercury (II) removal from contaminated water using an innovative nanofiber membrane: Kinetics, isotherms, and optimization studies. Int J Biol Macromol 2025; 311:143596. [PMID: 40318734 DOI: 10.1016/j.ijbiomac.2025.143596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/31/2025] [Accepted: 04/26/2025] [Indexed: 05/07/2025]
Abstract
The study aimed to evaluate enhancements in both stability and efficiency concerning the removal of Hg(II) ions. This research specifically concentrated on creating an innovative electrospun nanofibrous membrane (CPP) that is made up of chitosan (CS), polyethylenimine (PEI), and polycaprolactone (PCL). The membrane's primary purpose is to enhance the elimination of Hg(II) from aqueous solutions. By carefully adjusting the electrospinning process variables, we improved its efficiency. Characterization techniques like FTIR, XRD, XPS, SEM, and EDX confirm the successful creation of a highly crosslinked CPP nanofiber membrane. This detailed examination reveals the textural attributes of the material, concurrently underlining its relevance in various domains. The investigation additionally delves into the impact of several aspects on the adsorption mechanism, comprising dosage, pH levels, temperature, and initial Hg(II) concentration. The research incorporates an analysis of adsorption characteristics by integrating kinetic evaluations with equilibrium studies. The findings indicate that the adsorption mechanism aligns with the values of pseudo-second-order kinetics and is appropriately represented by the Langmuir isotherm model. Furthermore, the data suggest a hybrid nature of the adsorption procedure, exhibiting both spontaneous and endothermic characteristics, as showed by the increased metal adsorption at elevated temperatures. The analysis reveals that optimal conditions for the elimination of Hg(II) ions in water purification involve a pH of 6 and the use of 0.02 g of CPP per 25 mL of solution, corresponding to a projected adsorption capability of 393.043 mg/g precisely for the Hg(II) ions solution. To enhance the efficacy of the adsorbent in the elimination of Hg(II) ions from water, several key parameters require careful examination. Notable advancements in adsorption performance have been achieved through the application of response surface methodologies and structured experimentation utilizing the Box-Behnken design, facilitated by the Design-Expert software. A thorough evaluation of the reusability of the adsorbent, conducted during five consecutive cycles of adsorption and desorption, shows a remarkable stability in its ability to efficiently remove Hg(II) ions.
Collapse
Affiliation(s)
- Wesam Abd El-Fattah
- Chemistry Department, College of Science, IMSIU (Imam Mohammad Ibn Saud Islamic University), P.O. Box 5701, Riyadh 11432, Saudi Arabia
| | - Ahlem Guesmi
- Chemistry Department, College of Science, IMSIU (Imam Mohammad Ibn Saud Islamic University), P.O. Box 5701, Riyadh 11432, Saudi Arabia
| | - Naoufel Ben Hamadi
- Chemistry Department, College of Science, IMSIU (Imam Mohammad Ibn Saud Islamic University), P.O. Box 5701, Riyadh 11432, Saudi Arabia
| | - Amjad Alzahrani
- Department of Chemistry, University College in Al-Qunfudhah, Umm Al-Qura University, Saudi Arabia
| | - Ahmad A Alluhaybi
- Department of Chemistry, College of Science and Arts, King Abdulaziz University, Rabigh, Saudi Arabia
| | - M G El-Desouky
- Egyptian propylene and polypropylene company, Port Said 42511, Egypt.
| |
Collapse
|
4
|
Mogharbel RT, Alaysuy O, S Alatawi IS, Alshammari NM, Sallam S, Almutairi AM, Al-Bonayan AM, El-Metwaly NM. Fabrication of Cerium Metal-Organic Frameworks Functionalized with Glutamic Acid for Adsorption of Basic Red 46 from Aqueous Solutions: Kinetics, Thermodynamics, and Optimization. ACS OMEGA 2025; 10:15096-15115. [PMID: 40291002 PMCID: PMC12019498 DOI: 10.1021/acsomega.4c10666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 04/02/2025] [Accepted: 04/04/2025] [Indexed: 04/30/2025]
Abstract
This research investigated the efficient removal of cationic Basic red 46 (BR46) dye from aqueous solutions, by means of cerium metal-organic frameworks (Ce-MOF) functionalized with glutamic acid to create NH2-Ce-MOF. The NH2-Ce-MOF was easily produced through a postsynthesis functionalization strategy and extensively analyzed through numerous methods with X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray (EDX), and N2 adsorption/desorption isotherm. The findings revealed that the synthesized adsorbent had a high surface area of 1158.8 m2/g, a pore size of 1.511 nm, and a pore volume of 0.875 cm3/g. Upon adsorption of the BR46 dye, the surface area decreased to 872.6 m2/g, the pore size reduced to 1.18 nm, and the pore volume released to 0.53 cm3/g. The decreases in surface area, pore size, and volume demonstrate the material's strong ability to adsorb substances, as the dye molecules can fill the tiny pores. They exhibited an increased adsorption capability of 454.8 mg/g. The Langmuir isotherm and pseudo-second-order kinetic models performed the best at simulating adsorption isotherm and kinetic curves, respectively. The exhibition of chemisorption and adsorption energy of 28.4 kJ/mol was supported by various adsorption driving forces, including hydrogen bonding, electrostatic interaction, π-π conjugation, pore filling, and van der Waals force. After conducting thorough research on the impact of temperature, it was established that the adsorption procedure is both endothermic, indicated by a positive ΔH° of 83.7 kJ/mol.K, and spontaneous, as confirmed by the increase in negativity of ΔG° with rising temperatures. Additionally, the increase in randomness with increasing temperatures is evident in the ΔS° value of 289.32 J/mol. Employed Box-Behnken design (BBD) and response surface methodology (RSM) to enhance the results of the adsorption procedure. The NH2-Ce-MOF proposal is a practical, affordable solution for eliminating BR46 dye from wastewater streams because the adsorbent was composed of reusable materials and reused over five times with excellent efficiency.
Collapse
Affiliation(s)
- Roaa T. Mogharbel
- Department
of Chemistry, College of Science, Northern
Border University, P.O. Box.1321, Arar 91431, Saudi Arabia
| | - Omaymah Alaysuy
- Department
of Chemistry, College of Science, University
of Tabuk, Tabuk 47512, Saudi Arabia
| | | | - Nadiyah M. Alshammari
- Department
of Chemistry, College of Science, Qassim
University, 51452 Buraidah, Saudi Arabia
| | - Sahar Sallam
- Department
of Physical Science, Physics/Chemistry Division, Jazan University, P.O. Box 114, 45142 Jazan, Saudi
Arabia
| | - Abeer M. Almutairi
- Department
of Physics, Faculty of Science, University
of Tabuk, Tabuk 71421, Saudi Arabia
| | - Ameena Mohsen Al-Bonayan
- Department
of Chemistry, Faculty of Sciences, Umm Al-Qura
University, Makkah 24382, Saudi Arabia
| | - Nashwa M. El-Metwaly
- Department
of Chemistry, Faculty of Sciences, Umm Al-Qura
University, Makkah 24382, Saudi Arabia
- Department
of Chemistry, Faculty of Science, Mansoura
University, El-Gomhoria Street, Mansoura 35516, Egypt
| |
Collapse
|
5
|
Alshammari NAH, Elsayed NH, Alatawi RAS, Bukhari AAH, Alnawmasi JS, Alshareef SA, Alnahdi KM, Alhawiti AS, El-Binadary AA. Synthesis of pomegranate peel-activated carbon encapsulated onto carboxymethylcellulose and polyethylenimine for cadmium (II) adsorption: Optimization, kinetics and isotherm modeling. Int J Biol Macromol 2025; 310:143348. [PMID: 40262686 DOI: 10.1016/j.ijbiomac.2025.143348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 04/08/2025] [Accepted: 04/17/2025] [Indexed: 04/24/2025]
Abstract
This research explores pomegranate peel as a precursor for activated carbon to eliminate cadmium (II) ions from aqueous solutions. The produced activated carbon was encapsulated with carboxymethylcellulose and polyethylenimine, then crosslinked with epichlorohydrin to form activated carbon carboxymethylcellulose and polyethyleneimine (ACCP) hydrogel beads. Numerous analytical methods were working to characterize the adsorbent, including X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX), and nitrogen adsorption/desorption isotherms. The BET analysis revealed a surface area of 110.02 m2/g, indicating a highly porous material with numerous active adsorption sites. A pore volume of 0.13 cc/g shows significant capacity for retaining adsorbed ions. The average pore radius of 1.88 nm classifies as mesopores, typically found near the transition between micropores and mesopores. Examine the influence of various factors, including pH, concentration of Cd(II), amount of adsorbent, duration of contact, and temperature, on the adsorption process. The adsorption isotherm monitored the Langmuir equation, suggesting a specific adsorption procedure. Kinetics were defined by the pseudo-second-order model, linking the adsorption rate to the square of unoccupied sites. Thermodynamic parameters yielded ΔHo of 97.94 kJ/mol and ΔSo of 334.8 J/mol.K, indicating an endothermic and spontaneous adsorption process. Various mechanisms for Cd(II) interaction with ACCP may include ion exchange, electrostatic forces, or complexation. Data indicate that optimal parameters for efficient Cd(II) removal in water are a pH of 6, 0.02 g of ACCP per 25 mL solution, and an adsorption capacity of 301.6 mg/g. To enhance the adsorbent's efficacy, various influential parameters must be thoroughly examined. A Box-Behnken design (BBD) and response surface methodology (RSM) are used to help identify the ideal conditions for Cd(II) adsorption. An investigation of the adsorbent's reusability over five cycles shows a substantial reliability for removal applications.
Collapse
Affiliation(s)
- Nawaa Ali H Alshammari
- Department of Chemistry, Faculty of Science, Northern Border University, Arar 73222, Saudi Arabia
| | - Nadia H Elsayed
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia.
| | - Raedah A S Alatawi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia
| | | | - Jawza Sh Alnawmasi
- Department of Chemistry, College of Science, Qassim University, Buraydah, 51452, Qassim, Saudi Arabia
| | | | - Kholoud M Alnahdi
- Physics Department, Faculty of Science, University of Tabuk, 71491, Tabuk, Saudi Arabia
| | - Aliyah S Alhawiti
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia
| | - A A El-Binadary
- Chemical Department, Faculty of Science, Damietta University, Damietta 34517, Egypt
| |
Collapse
|
6
|
Alotaibi AM, Elsayed NH. Adsorption and eliminating of diquat herbicide using layer double hydroxide enclosed in double layer hydrogel beads of carboxymethyl cellulose and alginate: Synthesis, characterization, adsorption isotherm, kinetics, thermodynamics and optimization via box-behnken design. Int J Biol Macromol 2025; 303:140564. [PMID: 39904426 DOI: 10.1016/j.ijbiomac.2025.140564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 01/19/2025] [Accepted: 01/31/2025] [Indexed: 02/06/2025]
Abstract
This study involved the creation of AlCu-layered double hydroxide (LDH) encapsulated in carboxymethyl cellulose (CMC) and alginate (Alg), which was then crosslinked with epichlorohydrin to form hydrogel beads (AlCu-LDH/CMC-Alg hydrogel beads) used for the removal of diquat (DQ) herbicide. The resulting material, AlCu-LDH/CMC-Alg hydrogel beads, underwent a comprehensive analysis of its properties using XRD, FT-IR, XPS, EDX, N2 adsorption/desorption isotherm, and FESEM to determine its textural characteristics. The AlCu-LDH/CMC-Alg hydrogel beads was analyzed using nitrogen adsorption/desorption isotherms to assess its textural properties. The hydrogel beads of AlCu-LDH/CMC-Alg showed a surface area of 114.22 m2/g, a pore volume of 0.35 cc/g, and a pore radius of 3.62 nm, indicating a mesoporous structure with a notable adsorption capacity. Following the adsorption of DQ, these measurements decreased to 65.145 m2/g, 0.2 cc/g, and 2.4 nm, respectively, suggesting that the DQ had filled or blocked the pores. This study also analyzed the impact of dose, pH, temperature, and initial concentration on the adsorption process. Equilibrium and adsorption kinetics were used to examine the adsorption characteristics. The process followed the pseudo-second-order and Langmuir isotherm models. The primary adsorption mechanism identified was chemisorption, with an adsorption energy of 29.6 kJ.mol-1. The rise in DQ absorption at higher temperatures suggests an endothermic and spontaneous adsorption process. The optimal adsorption parameters, as determined by the Box-Behnken design software, are a pH of 8, a dosage of 0.02 g of AlCu-LDH/CMC-Alg hydrogel beads per 25 mL, and an adsorption capacity of 302.6 mg/g for the DQ solution. Through careful testing and utilization of the Box-Behnken design and response surface technique in the Design-Expert software, significant enhancements were made to the adsorption process. The stability of the adsorbent was assessed by conducting six successive cycles of adsorption and desorption, revealing that its reusability remained steady with no noticeable decline in removal efficiency. Furthermore, it preserved its original chemical makeup both before and after being reused, demonstrated steady effectiveness, and kept consistent X-ray diffraction (XRD) results.
Collapse
Affiliation(s)
- Alya M Alotaibi
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Nadia H Elsayed
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia.
| |
Collapse
|
7
|
Al-Hazmi GAAM, Elsayed NH, Alnawmasi JS, Alomari KB, Alessa AH, Alshareef SA, El-Bindary AA. Elimination of Ni(II) from wastewater using metal-organic frameworks and activated algae encapsulated in chitosan/carboxymethyl cellulose hydrogel beads: Adsorption isotherm, kinetic, and optimizing via Box-Behnken design optimization. Int J Biol Macromol 2025; 299:140019. [PMID: 39848370 DOI: 10.1016/j.ijbiomac.2025.140019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/25/2025]
Abstract
The study investigated the enhancement of stability and efficacy in the removal of bivalent nickel ions (Ni(II)) by utilizing a cerium metal-organic framework (Ce-MOF) encapsulated within a food-grade algal matrix. This composite material is integrated into a dual-layer hydrogel containing chitosan and carboxymethyl cellulose. The enhancement of structural integrity in the final product can be attributed to the cross-linking process with epichlorohydrin, leading to the development of Ce-MOF-FGA/CMC-CS hydrogel beads. A comprehensive characterization of the adsorbent was conducted utilizing various analytical methods. These included X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), energy-dispersive X-ray spectroscopy (EDX), nitrogen adsorption/desorption isotherm analysis, and field emission scanning electron microscopy (FESEM), all aimed at clarifying the textural characteristics of the material. The investigation also explored the effects of multiple variables, including dosage, pH, temperature, and initial concentration, on the adsorption process. The study conducted equilibrium analyses alongside kinetic evaluations to assess the adsorption characteristics. The results demonstrated that the adsorption behavior aligned with the principles of pseudo-second-order kinetics and was suitably described by the Langmuir isotherm model. The data showing heightened metal adsorption as temperatures increase suggests that the adsorption process is characterized by both endothermic properties and spontaneity. In order to determine the most favorable conditions for adsorption, the Box-Behnken design software was utilized. The findings indicate that the optimal conditions include a pH of 5, a dosage of 0.02 g of Ce-MOF-FGA/CMC-CS hydrogel beads for every 25 mL of solution, and an adsorption capacity of 301.05 mg/g specifically for the Ni(II) solution. To optimize the performance of the adsorbent in the removal of Ni(II) during water purification, it is essential to take into account several key variables. The adsorption efficiency was significantly improved by conducting a series of methodically planned experiments, employing the Box-Behnken design alongside response surface methodology, as supported by Design-Expert software. An in-depth evaluation of the adsorbent's reusability carried out over six successive cycles of adsorption and desorption, indicates a significant stability in its removal efficiency.
Collapse
Affiliation(s)
- Gamil A A M Al-Hazmi
- Department of Chemistry, Faculty of Science, P.O. Box 9004, King Khalid University, Abha, Saudi Arabia
| | - Nadia H Elsayed
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia.
| | - Jawza Sh Alnawmasi
- Department of Chemistry, College of Science, Qassim University, Buraydah 51452, Qassim, Saudi Arabia
| | - Khadra B Alomari
- Jazan University, Department of Physical Sciences, Chemistry Division, P. O. Box 114, 45142 Jazan, Saudi Arabia
| | - Ali Hamzah Alessa
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71491, Saudi Arabia
| | | | - A A El-Bindary
- Chemical Department, Faculty of Science, Damietta University, Damietta 34517, Egypt
| |
Collapse
|
8
|
Alatawi RAS. Electrospun nanofiber chitosan/polyvinyl alcohol loaded with metal organic framework nanofiber for efficient adsorption and removal of industrial dyes from waste water: Adsorption isotherm, kinetic, thermodynamic, and optimization via Box-Behnken design. Int J Biol Macromol 2025; 299:140086. [PMID: 39842572 DOI: 10.1016/j.ijbiomac.2025.140086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
Dyes can seriously harm human health because they linger or break down in the environment and find their way into drinking water through the water cycle. Examples of the most important interactions between MOFs and dyes are provided, and an effort is made to comprehend how surface charge and size compatibility affect the adsorption process. The methods for incorporating functionalized Ce-MOF into electrospun nanofibers made of polyvinyl alcohol and chitosan to create functionalized cerium metal organic framework nanofiber membranes (FCCP nanofiber membranes) are presented in this paper. A number of techniques, including XRD, FT-IR, N2 adsorption/desorption isotherm, SEM mapping, and EDX, were used to successfully manufacture and analyze the adsorbent. Examine the effects of pH, adsorbent dose, starting concentration, contact time, and thermodynamics on the adsorption process of malachite green dye (MG) onto FCCP nanofiber membrane. The Langmuir and pseudo-second-order adsorption processes were fitted. The adsorption process was chemisorption, as shown by the adsorption energy of 31.6 kJ/mol. Examine the adsorption mechanism, which may involve electrostatic interaction, pore filling, and π-π interaction. The increase in MG dye absorption at higher temperatures suggests an endothermic and spontaneous adsorption process. For the MG dye solution, the ideal adsorption parameters were determined using the Box-Behnken design software to be pH 8, a dosage of 0.2 g of FCCP nanofiber membrane per 25 mL, and an adsorption capacity of 359.2 mg/g. These elements are necessary for the composite sponge to be utilized in water purification processes and to be the most successful at adsorbing arsenate. Applying the Box-Behnken design and response surface approach features of the Design-Expert software successfully enhanced the adsorption process with a small number of planned tests. The stability of the adsorbent was confirmed by an investigation of its reusability using six consecutive cycles of adsorption and desorption, which revealed no appreciable drop in removal effectiveness. It also demonstrated consistent efficiency, preserved homogeneous XRD data, and kept its original chemical composition both before and after reuse.
Collapse
Affiliation(s)
- Raedah A S Alatawi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia.
| |
Collapse
|
9
|
Pazoki H, Anbia M. Kinetic and isotherm studies of cr (VI) adsorption from aqueous media by using a synthetic chitosan-allophane nanocomposite. Sci Rep 2025; 15:11088. [PMID: 40169671 PMCID: PMC11961679 DOI: 10.1038/s41598-024-72839-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/11/2024] [Indexed: 04/03/2025] Open
Abstract
This study investigates Cr (VI) removal from an aqueous solution by a synthetic chitosan-allophane nanocomposite. The nanocomposite was synthesized using the solvothermal method. The adsorbent was characterized utilizing X-ray diffraction (XRD), Fourier transform infrared (FT-IR), scanning electron microscopy (SEM) images, and the Brunauer-Emmet-Teller (BET) method. This work investigated the influence of the solid/liquid ratio, pH, contact time, and initial concentration on the adsorption process, as well as the adsorption kinetics and isotherms. The maximum adsorption capacity of the synthetic nanocomposite for Cr (VI) is 112.17 (mg/g) under optimum conditions. The kinetics study shows that the pseudo-second-order kinetic equation better describes the adsorption behavior of the adsorbent. The isotherms study suggests that the adsorption process of the synthetic chitosan-allophane nanocomposite follows the Langmuir model. Freundlich isotherm shows a better fit to the process with R2 = 0.97 and Freundlich constant of 42.9 L/g. The adsorption of Cr (VI) ions on adsorbent well fits to pseudo-second-order with qe: 125 mg/g. Moreover, the stability and reproducibility of the synthetic nanocomposite were investigated. This study presents a approach for synthesizing high surface area, engineered morphology, reusable, and stable nanocomposite for effectively adsorbing heavy metal ions from wastewaters.
Collapse
Affiliation(s)
- Hosein Pazoki
- Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology, Tehran, Iran
| | - Mansoor Anbia
- Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology, Tehran, Iran.
| |
Collapse
|
10
|
Alzahrani SO, Alqarni SA, Alessa H, Ashour GRS, Jawhari AH, Hameed A, Al-Bonayan AM, El-Metwaly NM. Electrospun nanofibers membrane of carbon quantum dots loaded onto chitosan-polyvinyl alcohol for removal of rhodamine B dye from aqueous solutions: Adsorption isotherm, kinetics, thermodynamics and optimization via Box-Behnken design. Int J Biol Macromol 2025; 304:140951. [PMID: 39947537 DOI: 10.1016/j.ijbiomac.2025.140951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/01/2025] [Accepted: 02/10/2025] [Indexed: 02/16/2025]
Abstract
The study aims to blend carbon quantum dots (CQDs) with chitosan and polyvinyl alcohol to produce micro fibrous membranes. To create electrospun carbon quantum dots nanofibers (ECQNF) that can absorb rhodamine B dye (RB) found in wastewater. A variety of methodologies were utilized to investigate the ECQNF, including scanning electron microscopy (SEM) for surface morphology, Fourier transform infrared spectroscopy (FTIR) to identify functional groups, X-ray photoelectron spectroscopy (XPS) for elemental analysis, X-ray diffraction (XRD), and N2 adsorption/desorption isotherms for structural analysis. Batch adsorption experiments varied parameters like contact time, initial RB concentrations, and adsorbent dosages. The membrane achieved a maximum adsorption of 522 mg/g at 600 ppm and 298 K. Thermodynamic evaluation indicated the process is endothermic. Several isothermal models analyzed the adsorption of RB onto the electrospun adsorbent, with the Langmuir model best fitting the data. The pseudo-second-order model effectively described the kinetics. The Dubinin-Radushkevich model indicated an adsorption energy of 32.6 kJ/mol, suggesting chemisorption. Positive entropy and enthalpy values, along with a more negative Gibbs free energy, confirm the process is endothermic and spontaneous. The increase in adsorption capability with rising temperature is evident. The ECQNF can be reused up to six times, maintaining efficiency and chemical structure. The XRD analyses demonstrate consistent results before and after each reuse cycle. It's crucial to investigate the interaction mechanisms between the adsorbent and adsorbate, including hydrogen bonding, n-π stacking, electrostatic interactions, and pore filling. Using the Box-Behnken design, the adsorption outcomes were optimized, highlighting the effectiveness of ECQNF in enhancing pollutant removal from wastewater.
Collapse
Affiliation(s)
- Seraj O Alzahrani
- Department of Chemistry, College of Science, Taibah University, P. O. Box 344, Madinah, Saudi Arabia
| | - Sara A Alqarni
- Department of Chemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Hussain Alessa
- Department of Chemistry, Faculty of Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Gadeer R S Ashour
- Department of Chemistry, Faculty of Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ahmed H Jawhari
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Ahmed Hameed
- Department of Chemistry, Faculty of Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Ameena M Al-Bonayan
- Department of Chemistry, Faculty of Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Nashwa M El-Metwaly
- Department of Chemistry, Faculty of Sciences, Umm Al-Qura University, Makkah, Saudi Arabia; Department of Chemistry, Faculty of Science, Mansoura University, El-Gomhoria Street, 35516, Egypt.
| |
Collapse
|
11
|
Siddiq HA, Madkhali MMM, Ghubayra R, Alaghaz ANMA, El-Desouky MG, El-Bindary MA, El-Bindary AA. Efficient removal of tetracycline by VCo-layered double hydroxide encapsulated with chitosan: Optimization via Box-Behnken design, and thermodynamics. Int J Biol Macromol 2025; 296:139565. [PMID: 39798768 DOI: 10.1016/j.ijbiomac.2025.139565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 12/03/2024] [Accepted: 01/05/2025] [Indexed: 01/15/2025]
Abstract
The VCo-LDH/CS hydrogel beads were created by combining VCo-layered double hydroxide (VCo-LDH) and chitosan (CS) using a cross-linking process with epichlorohydrin. These beads were specifically designed to remove tetracycline (TTC). To characterize the VCo-LDH/CS hydrogel beads, several analytical techniques were used, with PXRD, XPS, FESEM, EDX, and FT-IR. The thorough characterization methods provided crucial information about the phase, crystallinity, morphology, surface properties, and chemical arrangement of the synthesized VCo-LDH/CS hydrogel beads. However, significant changes occurred in these important physical properties after TTC was adsorbed. These alterations in the physical characteristics of the VCo-LDH/CS hydrogel beads indicate that the TTC molecules have been successfully absorbed into the porous assembly of the adsorbent, filling the obtainable adsorption places and causing a decrease in the material's overall surface area, pore size, and pore volume. It was determined that a pH of 7 and an applied dosage of 0.02 g/25 mL were the most favorable conditions for achieving the highest adsorption capability of 546.6 mg/g. The Langmuir equation accurately represented the adsorption isotherm, and the kinetic information were evaluated using the pseudo-second-order model. Chemisorption was utilized for the adsorption procedure, demonstrated by an adsorption energy of 29.62 kJ/mol. Analysis of thermodynamic limits ΔG°, ΔH°, and ΔS° suggested that the adsorption procedure happened spontaneously, maintained by the progressively negative ΔG° as enthalpy and entropy values increased. This demonstrates the complex and changing nature of the adsorption procedure, with various potential mechanisms suggested to affect it, including π-π interactions, electrostatic forces, pore filling, and hydrogen bonding. The utilization of a Box-Behnken design (BBD) alongside Response Surface Methodology (RSM) enhanced the outcomes of the adsorption process.
Collapse
Affiliation(s)
- Hind Ahmed Siddiq
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia; Nanotechnology Research Unit, College of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Marwah M M Madkhali
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia; Nanotechnology Research Unit, College of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Reem Ghubayra
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia; Nanotechnology Research Unit, College of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Abdel-Nasser M A Alaghaz
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia; Nanotechnology Research Unit, College of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | | | - Mohamed A El-Bindary
- Basic Science Department, Higher Institute of Engineering and Technology, New Damietta 34517, Egypt
| | - Ashraf A El-Bindary
- Chemistry Department, Faculty of Science, Damietta University, Damietta 34517, Egypt.
| |
Collapse
|
12
|
Dalari BLSK, Skoronski E, Giroletti CL, Domingos DG, Schallemberger JB, Nagel-Hassemer ME. Use of polysulfone capsules impregnated with phosphonium-based ionic liquid for removal of black reactive dye. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:9125-9141. [PMID: 40108037 DOI: 10.1007/s11356-025-36157-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/18/2025] [Indexed: 03/22/2025]
Abstract
In this study, polysulfone capsules impregnated with the ionic liquid tetradecyltrihexylphosphonium decanoate (IC) were synthesized and applied to remove the reactive dye black (RB) an aqueous solution. The impregnated capsules were characterized by scanning electron microscopy (SEM), surface analysis by Brunauer-Emmett-Teller (BET), Fourier transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA). Some adsorption parameters were investigated, such as the effect of adsorbent dosage (0.01-1.5 g/30 mL), pH (2-12), and temperature (293-323 K). At pH 8, the dye was completely removed and the process was characterized as exothermic. The kinetic model that best represented the adsorption of RB was the pseudo-first-order. The analysis of the variation of the dye concentration (150-1000 mg L-1) was performed and the Langmuir, Freundlich, and Redlich-Peterson models were presented in their nonlinear form. The maximum adsorption capacity identified by the Langmuir model was q max of 276.94 mg g-1, and the capsules could be reused for up to 4 cycles, showing removal percentages above 50% and cumulative loading of 520.8 mg g-1. In addition, a fixed bed column adsorption study was carried out. These results indicate that the proposed material has a high adsorptive capacity and has potential for application in the treatment of industrial textile effluents containing reactive dyes. In addition to considerably reducing the toxic effects of the dye on Lactuca sativa, when compared with pure IL.
Collapse
Affiliation(s)
- Beatriz Lima Santos Klienchen Dalari
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Campus Universitário Trindade, Florianópolis, Santa Catarina, 87504-200, Brazil.
| | - Everton Skoronski
- Department of Environmental and Sanitary Engineering, Santa Catarina State University, 2090 Luis de Camões Avenue, Lages, Santa Catarina, 88520-000, Brazil
| | - Cristiane Lisboa Giroletti
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Campus Universitário Trindade, Florianópolis, Santa Catarina, 87504-200, Brazil
| | - Dayane Gonzaga Domingos
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Campus Universitário Trindade, Florianópolis, Santa Catarina, 87504-200, Brazil
| | - Juliana Barden Schallemberger
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Campus Universitário Trindade, Florianópolis, Santa Catarina, 87504-200, Brazil
| | - Maria Eliza Nagel-Hassemer
- Department of Sanitary and Environmental Engineering, Federal University of Santa Catarina, Campus Universitário Trindade, Florianópolis, Santa Catarina, 87504-200, Brazil
| |
Collapse
|
13
|
Kumari S, Singh S, Lo SL, Sharma P, Agarwal S, Garg MC. Machine learning and modelling approach for removing methylene blue from aqueous solutions: Optimization, kinetics and thermodynamics studies. J Taiwan Inst Chem Eng 2025; 166:105361. [DOI: 10.1016/j.jtice.2024.105361] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
|
14
|
AlSalem HS, Alatawi RAS, Bukhari AAH, Alnawmasi JS, Zghab I, El-Desouky MG, Almabadi MH, Alnakhli ZH, Elsayed NH. Adsorption and removal of Pb (II) via layer double hydroxide encapsulated with chitosan; synthesis, characterization adsorption isotherms, kinetics, thermodynamics, & optimization via Box-Behnken design. Int J Biol Macromol 2024; 283:137517. [PMID: 39542326 DOI: 10.1016/j.ijbiomac.2024.137517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/13/2024] [Accepted: 11/09/2024] [Indexed: 11/17/2024]
Abstract
The study aimed to enhance the stability and efficiency of removing bivalent Pb(II) by encapsulating AlNi-layered double hydroxide (LDH) in chitosan and itaconic acid to create an adsorbent with chemically active sites. The resulting material, AlNi-LDH/CS, underwent thorough property analysis using XRD, FT-IR, XPS, EDX, N2 adsorption/desorption isotherm, and FESEM to find out what textural characteristics it has. Specifically, nitrogen adsorption/desorption isotherms were utilized to assess the textural properties of AlNi-LDH/CS. The Al/Ni-LDH/CS surface displayed a specific surface area of 71.95 m2/g and an average pore size of 2.537 nm, consistent with the platelets' external surface. The effects of dose, pH, temperature, and starting concentration on the adsorption process were also investigated in this study. The adsorption characteristics have been examined by means of equilibrium and adsorption kinetics. The adsorption process adhered to the pseudo-second-order and Langmuir isotherm models. The predominant adsorption process was found to be chemisorption, which had an adsorption energy of 28.42 kJ·mol-1. An endothermic and spontaneous adsorption process is suggested by the increase in metal absorption at increasing temperatures. The Box-Behnken design software was utilized to establish the optimal adsorption parameters as pH 5, a dosage of 0.2 g of AlNi-LDH/CS per 25 mL, and an adsorption capacity of 453.05 mg/g for the Pb(II) arsenate solution. For the composite sponge to be most effective in adsorbing arsenate and be used in water purification procedures, these factors are essential. The adsorption process was successfully improved with few planned tests by applying the Box-Behnken design and response surface technique aspects of the Design-Expert software. An evaluation of the adsorbent's reusability using six successive cycles of adsorption and desorption confirmed its stability and showed no discernible decrease in removal efficiency. Additionally, it retained its original chemical composition before and after reuse, showcased consistent efficiency, and maintained uniform XRD data.
Collapse
Affiliation(s)
- Huda S AlSalem
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Raedah A S Alatawi
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia
| | | | - Jawza Sh Alnawmasi
- Department of Chemistry, College of Science, Qassim University, Buraydah 51452, Qassim, Saudi Arabia
| | - Imen Zghab
- Department of Physical Sciences, Chemistry Division, College of Science, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | | | - Meshal H Almabadi
- Department of Chemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Zainab Hassan Alnakhli
- Department of Chemistry, Faculty of Science and Humanities, Shaqra University, P.O. Box 33, Dawadmi 17452, Saudi Arabia
| | - Nadia H Elsayed
- Department of Chemistry, Faculty of Science, University of Tabuk, Tabuk 71421, Saudi Arabia.
| |
Collapse
|
15
|
Kumari S, Chowdhry J, Kumar M, Chandra Garg M. Zeolites in wastewater treatment: A comprehensive review on scientometric analysis, adsorption mechanisms, and future prospects. ENVIRONMENTAL RESEARCH 2024; 260:119782. [PMID: 39142462 DOI: 10.1016/j.envres.2024.119782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/08/2024] [Accepted: 08/11/2024] [Indexed: 08/16/2024]
Abstract
Zeolites possess a microporous crystalline structure, a large surface area, and a uniform pore size. Natural or synthetic zeolites are commonly utilized for adsorbing organic and inorganic compounds from wastewater because of their unique physicochemical properties and cost-effectiveness. The present review work comprehensively revealed the application of zeolites in removing a diverse range of wastewater contaminates, such as dyes, heavy metal ions, and phenolic compounds, within the framework of contemporary research. The present review work offers a summary of the existing literature about the chemical composition of zeolites and their synthesis by different methods. Subsequently, the article provides a wide range of factors to examine the adsorption mechanisms of both inorganic and organic pollutants using natural zeolites and modified zeolites. This review explores the different mechanisms through which zeolites effectively eliminate pollutants from aquatic matrices. Additionally, this review explores that the Langmuir and pseudo-second-order models are the predominant models used in investigating isothermal and kinetic adsorption and also evaluates the research gap on zeolite through scientometric analysis. The prospective efficacy of zeolite materials in future wastewater treatment may be assessed by a comparative analysis of their capacity to adsorb toxic inorganic and organic contaminates from wastewater, with other adsorbents.
Collapse
Affiliation(s)
- Sheetal Kumari
- Amity Institute of Environmental Science (AIES), Amity University, Noida, India
| | | | - Manish Kumar
- Amity Institute of Environmental Science (AIES), Amity University, Noida, India.
| | - Manoj Chandra Garg
- Amity Institute of Environmental Science (AIES), Amity University, Noida, India.
| |
Collapse
|
16
|
Nawaz S, Salman SM, Ali A, Ali B, Shah SN, Rahman LU. Kinetics and thermodynamics investigations of efficient and eco-friendly removal of alizarin red S from water via acid-activated Dalbergia sissoo leaf powder and its magnetic iron oxide nanocomposite. Front Chem 2024; 12:1457265. [PMID: 39385963 PMCID: PMC11462623 DOI: 10.3389/fchem.2024.1457265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/30/2024] [Indexed: 10/12/2024] Open
Abstract
The present work aimed to highlight an efficient, readily accessible, and cost-effective adsorbent derived from Dalbergia sissoo (DS) leaf powder for removing the environmentally hazardous dye "alizarin red S" (ARS) from hydrous medium. A variant of the adsorbent is activated via sulfuric acid and composited with magnetic iron oxide nanoparticles (DSMNC). Both adsorbents are thoroughly characterized using techniques such as Fourier transform infrared spectroscopy, point of zero charge, energy-dispersive X-ray spectroscopy, and scanning electron microscopy, which show that they have a porous structure rich in active sites. Different adsorption conditions are optimized with the maximum removal efficiency of 76.63% for DS and 97.89% for DSMNC. The study was highlighted via the application of various adsorption isotherms, including Freundlich, Langmuir, Temkin, and Dubinin-Radushkevich, to adsorption data. Pseudo-first-order, pseudo-second-order, and intra-particle diffusion models were utilized to investigate the kinetics and mechanism of adsorption. The Freundlich model and pseudo-second-order kinetics exhibited the best fit, suggesting a combination of physical interactions, as confirmed by the D-R and Temkin models. The dominant adsorbate-adsorbent interactive interactions responsible for ARS removal were hydrogen bonding, dispersion forces, and noncovalent aromatic ring adsorbent pi-interactions. Thermodynamic parameters extracted from adsorption data indicated that the removal of the mutagenic dye "ARS" was exothermic and spontaneous on both DS and DSMNC, with DSMNC exhibiting higher removal efficiency.
Collapse
Affiliation(s)
- Saleem Nawaz
- Department of Chemistry, Islamia College Peshawar, Peshawar, Pakistan
| | | | - Asad Ali
- Energy Engineering, Division of Energy Science, Lulea University of Technology, Lulea, Sweden
| | - Basit Ali
- Department of Chemistry, Islamia College Peshawar, Peshawar, Pakistan
| | - Syed Nusrat Shah
- Department of Chemistry, Islamia College Peshawar, Peshawar, Pakistan
| | - Latif Ur Rahman
- Institute of Chemical Sciences, University of Peshawar, Peshawar, Pakistan
| |
Collapse
|
17
|
Almutairi FM. Novel algae-chitosan/alginate beads for efficient basic Fuchsin removal: Synthesis, characterization, adsorption study, mechanism, and optimization. Int J Biol Macromol 2024; 280:135604. [PMID: 39276900 DOI: 10.1016/j.ijbiomac.2024.135604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/09/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
In this study, utilized algae activated with citric acid and lime juice to develop a novel bioadsorbent, The Algae@CS/Alginate beads were formed by encapsulating the activated algae with chitosan and alginate, producing a nanocomposite that is efficient in removing Basic Fuchsin (BF) dye from water. The beads were characterized by means of a diversity of techniques, such as FTIR, XRD, XPS, SEM and determination the surface area via N2 adsorption/desorption isotherm that permitted that the adsorbent has high surface area 124.43 m2/g. The electrical properties of the BF, including its structure and reactivity, were determined by density functional theory (DFT). The MEP data and the molecular orbitals (HOMO and LUMO), as well as the sites of the electrophilic besides nucleophilic attack places, correspond fairly well, according to DFT. The adsorption process was fitted to Langmuir isothermally, and kinetically to pseudo-second-order (PSOE) model. The adsorption mechanism was identified as chemisorption with an adsorption energy of 32.6 kJ/mol. Thermodynamic research shows that the BF adsorption process by Algae@CS/Alginate beads is spontaneous and endothermic because of the positive ΔHo and negative ΔGo. Through numerical optimization of the programmed, the ideal conditions for adsorption were strongminded to be a pH of 8, a dosage of 0.02 g/25 mL for Algae@CS/Alginate beads, and a concentration of 367.27 mg/g of BF. Using the least amount of intended experiments, the adsorption procedure was optimized by the request of Box-Behnken design (BBD) and answer surface methodology (RSM) in Design-Expert software. Adsorbent reusability test results showed that, following eight successive cycles of adsorption and desorption, the adsorbent was stable and that removal efficacy had not decreased. It additionally demonstrated good efficacy, no alteration in chemical conformation, and the same XRD and FTIR data before and after recycle. Analyze the interaction between the Algae@CS/Alginate beads and the BF.
Collapse
Affiliation(s)
- Fahad M Almutairi
- Physical Biochemistry Research Laboratory, Biochemistry Department, Faculty of Science, University of Tabuk, Tabuk, Saudi Arabia.
| |
Collapse
|
18
|
Kumari S, Sharma R, Thakur N, Kumari A. Removal of organic and inorganic effluents from wastewater by using degradation and adsorption properties of transition metal-doped nickel ferrite. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:46526-46545. [PMID: 36973621 DOI: 10.1007/s11356-023-26567-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Removal of water pollutants (methylene blue dye and heavy metals) was achieved by zinc/manganese-doped nickel ferrites (Ni1 - xMxFe2O4, where x = 0.00, 0.025, 0.10). Degradation of dye was achieved under natural solar light illumination. Degradation studies of dye were conducted under different parameters such as contact time-80 min, dye's concentration-5 mg/L, pH-7, and dosage of ferrites-15 mg. The adsorption of dye was studied using non-linear kinetics models (pseudo-first-order and pseudo-second-order) and isotherm models (Langmuir and Freundlich). The adsorption of dye followed pseudo-first-order kinetics (R2 = 0.99377) than second-order kinetics (R2 = 0.98063) and Langmuir isotherm model (R2 = 0.96095) than Freundlich model (R2 = 0.95962) with maximum adsorption efficiency of 29.62 mg/g. Doping of nickel ferrites caused an increase in the removal percentage of methylene blue dye (80 to 90%) and inorganic effluents (75 to 95% for lead and 47 to 82% for cadmium). In addition to this, band gap energy (2.43 to 3.26 eV) (UV-Vis spectroscopy), pore radius (65.2 to 74.8 A°), and specific surface area (16.45 to 27.95 m2/g) (BET analysis) were also increased. Generally, the results of the study revealed that synthesized nanoparticles can act as potential candidate for the removal of effluents from wastewater under optimum parameters along with recyclability, reusability, and separation under the influence of a magnetic field.
Collapse
Affiliation(s)
- Seema Kumari
- Department of Chemistry, Career Point University, Bhoranj (Tikker-Kharwarian), MDR 35, Hamirpur, Himachal Pradesh, 176041, India
| | - Rahul Sharma
- Department of Chemistry, Career Point University, Bhoranj (Tikker-Kharwarian), MDR 35, Hamirpur, Himachal Pradesh, 176041, India
| | - Nitika Thakur
- Department of Biotechnology, Shoolini University of Biotechnology and Management Sciences, Solan, Himachal Pradesh, 173229, India
| | - Asha Kumari
- Department of Chemistry, Career Point University, Bhoranj (Tikker-Kharwarian), MDR 35, Hamirpur, Himachal Pradesh, 176041, India.
| |
Collapse
|
19
|
Duan X, Pi Q, Tang L. pH-dependent and whole-cell catalytic decolorization of dyes using recombinant dye-decolorizing peroxidase from Rhodococcus jostii. Bioprocess Biosyst Eng 2024; 47:355-366. [PMID: 38326513 DOI: 10.1007/s00449-024-02968-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024]
Abstract
Dyes in wastewater have adverse effects on the environment and human health. Dye-decolorizing peroxidase (DyP) is a promising biocatalyst to dyes degradation, but the decolorization rates varied greatly which influencing factors and mechanisms remain to be fully disclosed. To explore an effective decolorizing approach, we have studied a DyP from Rhodococcus jostii (RhDyPB) which was overexpressed in Escherichia coli to decolorize four kinds of dyes, Reactive blue 19, Eosin Y, Indigo carmine, and Malachite green. We found the decolorization rates of the dyes by purified RhDyPB were all pH-dependent and the highest one was 94.4% of Malachite green at pH 6.0. ESI-MS analysis of intermediates in the decolorization process of Reactive blue 19 proved the degradation was due to peroxidase catalysis. Molecular docking predicated the interaction of RhDyPB with dyes, and a radical transfer reaction. In addition, we performed decolorization of dyes with whole E. coli cell with and without expressing RhDyPB. It was found that decolorization of dyes by E. coli cell was due to both cell absorption and degradation, and RhDyPB expression improved the degradation rates towards Reactive blue 19, Indigo carmine and Malachite green. The effective decolorization of Malachite green and the successful application of whole DyP-overexpressed cells in dye decolorization is conducive to the bioremediation of dye-containing wastewaters by DyPs.
Collapse
Affiliation(s)
- Xiaoyan Duan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, No 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China
| | - Qian Pi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, No 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China
| | - Lei Tang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, No 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China.
- School of Biotechnology, Jiangnan University, No 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China.
| |
Collapse
|
20
|
Hamad KH, Yasser AM, Nabil R, Tarek R, Hesham E, El-Telbany A, Saeed A, Selim SE, Abdelhamid AE. Nylon fiber waste as a prominent adsorbent for Congo red dye removal. Sci Rep 2024; 14:1088. [PMID: 38212330 PMCID: PMC10784493 DOI: 10.1038/s41598-023-51105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/30/2023] [Indexed: 01/13/2024] Open
Abstract
In this research nylon fibers wastes (NF) were fabricated into porous sheet using a phase inversion technique to be utilized as an adsorbent materials for Congo red dye (CR). The fabricated sheet denoted as NS was characterized using FTIR and XRD. The surface studies of the adsorbent materials using SEM and BET analysis reveals a highly pores structure with an average pore volume 0.61 cc/g and BET surface area of 767 m2/g. The adsorption studies of fabricated NS were employed into CR at different parameters as pH, effect of time and dye concentration. The adsorption isotherm and kinetic studies were more fit to Langmuir and pseudo second order models. The maximum adsorption capacity qmax reached 188 mg/g with removal percentage of 95 for CR concentration of 400 mg/L at pH 6 and 0.025 g NS dose for 10 ml CR solution. The regeneration study reveals a prominent adsorption behavior of NS with removal % of 88.6 for CR (300 mg/L) after four adsorption desorption cycles. Effect of incorporation of NaonFil Clay to NS was studied using Response Surface Methodology (RSM) modeling and reveals that 98.4% removal of CR could be achieved by using 19.35% wt. of fiber with 8.2 g/L dose and zero clay, thus at a predetermined parameters studies of NanoFil clay embedded into NS, there are no significant effect for %R for CR.
Collapse
Affiliation(s)
- Kareem H Hamad
- Egyptian Academy for Engineering and Advanced Technology (EA&EAT) Affiliated to Ministry of Military Production, Cairo, Egypt
| | - Ahmed M Yasser
- Egyptian Academy for Engineering and Advanced Technology (EA&EAT) Affiliated to Ministry of Military Production, Cairo, Egypt
| | - Radwa Nabil
- Egyptian Academy for Engineering and Advanced Technology (EA&EAT) Affiliated to Ministry of Military Production, Cairo, Egypt
| | - Raneem Tarek
- Egyptian Academy for Engineering and Advanced Technology (EA&EAT) Affiliated to Ministry of Military Production, Cairo, Egypt
| | - Eslam Hesham
- Egyptian Academy for Engineering and Advanced Technology (EA&EAT) Affiliated to Ministry of Military Production, Cairo, Egypt
| | - Ahmed El-Telbany
- Egyptian Academy for Engineering and Advanced Technology (EA&EAT) Affiliated to Ministry of Military Production, Cairo, Egypt
| | - Ahmed Saeed
- Egyptian Academy for Engineering and Advanced Technology (EA&EAT) Affiliated to Ministry of Military Production, Cairo, Egypt
| | - Salah E Selim
- Egyptian Academy for Engineering and Advanced Technology (EA&EAT) Affiliated to Ministry of Military Production, Cairo, Egypt.
| | - Ahmed E Abdelhamid
- Polymers and Pigments Department, National Research Centre, 33 El-Buhouth St., Dokki, 12622, Giza, Egypt
| |
Collapse
|
21
|
Vieira H, Lestre GM, Solstad RG, Cabral AE, Botelho A, Helbig C, Coppola D, de Pascale D, Robbens J, Raes K, Lian K, Tsirtsidou K, Leal MC, Scheers N, Calado R, Corticeiro S, Rasche S, Altintzoglou T, Zou Y, Lillebø AI. Current and Expected Trends for the Marine Chitin/Chitosan and Collagen Value Chains. Mar Drugs 2023; 21:605. [PMID: 38132926 PMCID: PMC10744996 DOI: 10.3390/md21120605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 12/23/2023] Open
Abstract
Chitin/chitosan and collagen are two of the most important bioactive compounds, with applications in the pharmaceutical, veterinary, nutraceutical, cosmetic, biomaterials, and other industries. When extracted from non-edible parts of fish and shellfish, by-catches, and invasive species, their use contributes to a more sustainable and circular economy. The present article reviews the scientific knowledge and publication trends along the marine chitin/chitosan and collagen value chains and assesses how researchers, industry players, and end-users can bridge the gap between scientific understanding and industrial applications. Overall, research on chitin/chitosan remains focused on the compound itself rather than its market applications. Still, chitin/chitosan use is expected to increase in food and biomedical applications, while that of collagen is expected to increase in biomedical, cosmetic, pharmaceutical, and nutritional applications. Sustainable practices, such as the reuse of waste materials, contribute to strengthen both value chains; the identified weaknesses include the lack of studies considering market trends, social sustainability, and profitability, as well as insufficient examination of intellectual property rights. Government regulations, market demand, consumer preferences, technological advancements, environmental challenges, and legal frameworks play significant roles in shaping both value chains. Addressing these factors is crucial for seizing opportunities, fostering sustainability, complying with regulations, and maintaining competitiveness in these constantly evolving value chains.
Collapse
Affiliation(s)
- Helena Vieira
- CESAM—Centre for Environmental and Marine Studies, Department of Environment and Planning, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (H.V.); (G.M.L.); (S.C.)
| | - Gonçalo Moura Lestre
- CESAM—Centre for Environmental and Marine Studies, Department of Environment and Planning, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (H.V.); (G.M.L.); (S.C.)
| | - Runar Gjerp Solstad
- Nofima Norwegian Institute of Food Fisheries and Aquaculture Research, Muninbakken 9-13, 9019 Tromsø, Norway; (R.G.S.); (K.L.); (T.A.)
| | - Ana Elisa Cabral
- ECOMARE, CESAM—Centre for Environmental and Marine Studies, Department of Biology, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (A.E.C.); (M.C.L.); (R.C.)
| | - Anabela Botelho
- GOVCOPP—Research Unit on Governance, Competitiveness and Public Policies, DEGEIT, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Carlos Helbig
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany; (C.H.); (S.R.)
| | - Daniela Coppola
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton 55, 80133 Napoli, Italy; (D.C.); (D.d.P.)
| | - Donatella de Pascale
- Department of Ecosustainable Marine Biotechnology, Stazione Zoologica Anton Dohrn, Via Ammiraglio Ferdinando Acton 55, 80133 Napoli, Italy; (D.C.); (D.d.P.)
| | - Johan Robbens
- Flanders Research Institute for Agriculture, Fisheries and Food, ILVO, Aquatic Environment and Quality, Jacobsenstraat 1, 8400 Ostend, Belgium; (J.R.); (K.T.)
| | - Katleen Raes
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Ghent University Campus Kortrijk, Graaf Karel de Goedelaan 5, 8500 Kortrijk, Belgium; (K.R.); (Y.Z.)
| | - Kjersti Lian
- Nofima Norwegian Institute of Food Fisheries and Aquaculture Research, Muninbakken 9-13, 9019 Tromsø, Norway; (R.G.S.); (K.L.); (T.A.)
| | - Kyriaki Tsirtsidou
- Flanders Research Institute for Agriculture, Fisheries and Food, ILVO, Aquatic Environment and Quality, Jacobsenstraat 1, 8400 Ostend, Belgium; (J.R.); (K.T.)
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Ghent University Campus Kortrijk, Graaf Karel de Goedelaan 5, 8500 Kortrijk, Belgium; (K.R.); (Y.Z.)
| | - Miguel C. Leal
- ECOMARE, CESAM—Centre for Environmental and Marine Studies, Department of Biology, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (A.E.C.); (M.C.L.); (R.C.)
| | - Nathalie Scheers
- Department of Life Sciences, Chalmers University of Technology, 412 96 Göteborg, Sweden;
| | - Ricardo Calado
- ECOMARE, CESAM—Centre for Environmental and Marine Studies, Department of Biology, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (A.E.C.); (M.C.L.); (R.C.)
| | - Sofia Corticeiro
- CESAM—Centre for Environmental and Marine Studies, Department of Environment and Planning, Campus Universitário de Santiago, University of Aveiro, 3810-193 Aveiro, Portugal; (H.V.); (G.M.L.); (S.C.)
| | - Stefan Rasche
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany; (C.H.); (S.R.)
| | - Themistoklis Altintzoglou
- Nofima Norwegian Institute of Food Fisheries and Aquaculture Research, Muninbakken 9-13, 9019 Tromsø, Norway; (R.G.S.); (K.L.); (T.A.)
| | - Yang Zou
- Research Unit VEG-i-TEC, Department of Food Technology, Safety and Health, Ghent University Campus Kortrijk, Graaf Karel de Goedelaan 5, 8500 Kortrijk, Belgium; (K.R.); (Y.Z.)
| | - Ana I. Lillebø
- ECOMARE, CESAM—Centre for Environmental and Marine Studies, Department of Biology, Santiago University Campus, University of Aveiro, 3810-193 Aveiro, Portugal; (A.E.C.); (M.C.L.); (R.C.)
| |
Collapse
|
22
|
Benhouria A, Zaghouane-Boudiaf H, Riadh B, Ferhat D, Hameed BH, Boutahala M. Cross-linked chitosan-epichlorohydrin/bentonite composite for reactive orange 16 dye removal: Experimental study and molecular dynamic simulation. Int J Biol Macromol 2023; 242:124786. [PMID: 37169046 DOI: 10.1016/j.ijbiomac.2023.124786] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/26/2023] [Accepted: 05/05/2023] [Indexed: 05/13/2023]
Abstract
Chitosan/bentonite beads (CsB) composites were prepared from chitosan (Cs) and bentonite (B) and cross-linked with epichlorohydrin for removal of reactive orange 16 (RO16) and methylene blue (MB). The adsorption results have shown that the (Cs20B80), 20 % wt of (Cs) and 80 % (B), was selected as the best adsorbent for (MB) and (RO16) dyes. SEM, EDX, FTIR, BET, and pHpzc were implemented to investigate the features of Cs, B, and Cs20B80 samples. The influence of contact time (0-72 h), initial RO16 concentration (15-300 mg/L), temperature (30, 40, and 50 °C), the quantity of adsorbent (1-4 g/L), ion strength (0.1-1 M), and solution pH (3-10) on RO16 adsorption onto Cs20B80 were explored. The pseudo-second-order and the Langmuir models fit adequately the adsorption kinetic results and the isotherms ones respectively. Also, the maximal monolayer capacities calculated using the non-linear form of the Langmuir isotherm are 55.27, 55.29, and 70.80 mg/g, at 30, 40 and 50 °C. Based to the statistical physics model, the RO16 could be retained on the surface of Cs20B80 through a non-parallel orientation. The RO16 adsorption process is endothermic and natural, as demonstrated by thermodynamic studies. After three regeneration cycles, the Cs20B80 composite has shown an adsorption capacity of around 20 % compared to the initial one. The adsorption energy of RO16 onto Cs, B, and Cs20B80 examined using the Monte Carlo simulation method (MC) ranged from -164.8 to -303.7 (kcal/mol), showing the potential of the three adsorbants for RO16 dye. Also, the process of adsorption of RO16 dye on the surface of Cs20B80 composite indicates several kinds of physical interactions, involving electrostatic interaction, hydrogen bonding, and π-π interactions, this finding was proved theoretically via molecular dynamic simulations.
Collapse
Affiliation(s)
- Assia Benhouria
- Laboratoire de valorisation des matériaux (LVM), Université de Mostaganem, 27000 Mostaganem, Algeria.
| | - H Zaghouane-Boudiaf
- Laboratoire de génie des procédés chimiques (LGPC), Faculté de Technologie, Université Sétif-1, 19000 Sétif, Algeria
| | - Bourzami Riadh
- Research Unit on Emergent Materials, University of Ferhat Abbas Sétif-1, 19000, Setif, Algeria
| | - Djerboua Ferhat
- Laboratoire des matériaux polymériques et multiphasiques, Département de Génie des Procédés, Faculté de Technologie, Université Ferhat Abbas Setif-1, 19000 Sétif, Algeria
| | - B H Hameed
- Department of Chemical Engineering, College of Engineering, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Mokhtar Boutahala
- Laboratoire de génie des procédés chimiques (LGPC), Faculté de Technologie, Université Sétif-1, 19000 Sétif, Algeria
| |
Collapse
|
23
|
Miao J, Xing L, Ouyang J, Li Z, Wang X. Adsorption Properties of Anionic Dyes on Quaternized Microcrystalline Cellulose. ACS OMEGA 2023; 8:5617-5624. [PMID: 36816705 PMCID: PMC9933187 DOI: 10.1021/acsomega.2c07087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 01/20/2023] [Indexed: 06/01/2023]
Abstract
Efficient removal of dyes in the wastewater of dyeing and printing industries is challenging, especially the anionic dyes with strong stability, serious environmental pollution, and difficult degradation. In the present work, a novel cationic adsorbent was synthesized through the quaternization of 2,3-epoxypropyltrimethylammonium chloride (GTA) onto microcrystalline cellulose and characterized by Fourier transform infrared spectroscopy, X-ray diffraction, specific surface and pore size analysis, and scanning electron microscopy. Acid Yellow 128 (AY-128) and Acid Red 1 (AR-1) were selected to investigate their adsorption on quaternized microcrystalline cellulose (QMCC). The experimental adsorption results indicated that (1) the adsorption kinetics of AY-128 and AR-1 on QMCC could be consistent with the pseudo-second-order and Freundlich models, respectively; (2) the adsorption process was spontaneous and feasibly endothermic. The removal efficiency of AY-128 and AR-1 was up to 99 and 95%, respectively. After five times of reuse, the removal efficiency of AY-128 and AR-1 was still 97 and 95%. In conclusion, quaternized microcrystalline cellulose was a promising adsorbent for AY-128 and AR-1.
Collapse
|
24
|
Shu R, Qiao Q, Guo F, Dong K, Liu S, Xu L, Bai Y, Zhou N. Controlled design of Na-P1 zeolite/ porous carbon composites from coal gasification fine slag for high-performance adsorbent. ENVIRONMENTAL RESEARCH 2023; 217:114912. [PMID: 36435498 DOI: 10.1016/j.envres.2022.114912] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
Low-cost and concentrated industrial wastes have been recognized as a sustainable resource for preparation of new functional materials. Here, a new method was designed for the synthesis of porous composites containing high-purity Na-P1 zeolite and porous carbon from waste coal gasification fine slag (CGFS), which was treated first by acid leaching to controllably remove metal impurities and adjust Si/Al ratio, followed by NaOH fusion and hydrothermal treatment. By leaching with 1.0 mol/L HCl solution, the Si/Al ratio of the raw CGFS increased to 5.7, and the obtained CZ-1.0 consisted of high-purity Na-P1 zeolite with a typical cone-shaped flower cluster shape. The residue carbon in CGFS can be further activated to form porous carbon and graphite carbon layers interposed in the zeolite structure. The specific surface area and pore volume of CZ-1.0 reached 153.91 m2/g and 0.18 cm3/g, respectively. CZ-1.0 exhibited remarkable adsorption performance for methylene blue (MB) with the adsorption capacity reaching 137.5 mg/g for 100 mg/L MB solution. The adsorption process is mainly controlled by the chemisorption mechanism, and the adsorption of MB by CZ-1.0 may include ion exchange, hydrogen bond interaction, π-π bond interaction and van der Waals force. NaCl solution was successfully used as the desorption agent to regenerate the composite material, and the removal rate remained above 92% after five cycles. This work provides an effective strategy to synthesize a practically applicable adsorbent from the waste coal gasification fine slag for the purification of MB wastewater.
Collapse
Affiliation(s)
- Rui Shu
- School of Low-Carbon Energy and Power Engineering, China University of Mining and Technology, 221116, Xuzhou, China
| | - Qixia Qiao
- School of Low-Carbon Energy and Power Engineering, China University of Mining and Technology, 221116, Xuzhou, China
| | - Feiqiang Guo
- School of Low-Carbon Energy and Power Engineering, China University of Mining and Technology, 221116, Xuzhou, China.
| | - Kaiming Dong
- School of Low-Carbon Energy and Power Engineering, China University of Mining and Technology, 221116, Xuzhou, China
| | - Sha Liu
- School of Low-Carbon Energy and Power Engineering, China University of Mining and Technology, 221116, Xuzhou, China
| | - Liya Xu
- School of Low-Carbon Energy and Power Engineering, China University of Mining and Technology, 221116, Xuzhou, China
| | - Yonghui Bai
- State Key Laboratory of High-efficiency Utilization of Coal and Green Chemical Engineering, Ningxia University, Yinchuan, 750021, China.
| | - Nan Zhou
- Institute of Thermal and Power Engineering, Zhejiang University of Technology, Liuhe Road 288#, 310023, Hangzhou, China
| |
Collapse
|
25
|
Dong Q, Qiu W, Li L, Tao N, Liang Wang A, Deng S, Jin Y. Extraction of Chitin from White Shrimp (Penaeus vannamei) Shells Using Binary Ionic Liquid Mixtures. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
26
|
Mahmoudian MH, Mesdaghinia A, Mahvi AH, Nasseri S, Nabizadeh R, Dehghani MH. Photocatalytic degradation of bisphenol a from aqueous solution using bismuth ferric magnetic nanoparticle: synthesis, characterization and response surface methodology-central composite design modeling. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2022; 20:617-628. [PMID: 36406610 PMCID: PMC9672235 DOI: 10.1007/s40201-021-00762-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 11/23/2021] [Indexed: 12/07/2022]
Abstract
PURPOSE Bisphenol A (BPA), as endocrine-disrupting compound (EDC), is extensively used as an important chemical in the synthesis of polycarbonate polymers and epoxy resins. BPA absorption into the body can result in the development of metabolic disorders such as low sex-specific neurodevelopment, immune toxicity, neurotoxicity and interference of cellular pathway. Therefore, the presence of BPA in the body and the environment can create hazards that must reach standards before being discharged into the environment. METHODS In this study, bismuth ferric nanomagnetic (BFO NMPs) were successfully synthesized via sol-gel method and developed as photocatalysts for BPA removal under visible light irradiation. FE-SEM, TEM, PL, XRD, UV-Vis DRS, VSM, EDX, and FTIR were used to characterize the BFO NMPs. RESULTS RSM model (R2 = 0.9745) showed a good correlation between experimental and predicted removal efficiency of BPA. The investigation of four independent variables indicated that pH had the most significant positive effect on the degradation of BPA. Under optimal conditions (pH = 4.042, catalyst dose = 7.617 mg, contact time = 122.742 min and BPA concentration = 15.065 mg/L), maximum degradation was calculated to be 98.7%. After five recycles, the removal of BPA remained >82%, which indicated the proper ability to reuse the catalyst. CONCLUSION In conclusion, it can be stated like BPA, the prepared BFO NMPs is a promising photocatalyst for practical application in organic pollutant decomposition.
Collapse
Affiliation(s)
- Mohammad Hassan Mahmoudian
- Department of Environmental Health Engineering, School of Public Health, International Campus, Tehran University of Medical Sciences (IC–TUMS), Tehran, Iran
| | - Alireza Mesdaghinia
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Water Quality Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Mahvi
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Simin Nasseri
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Center for Water Quality Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Nabizadeh
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hadi Dehghani
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
27
|
Ay Ç, Sarpaşar Z. Using zeolite and Fe 3O 4@zeolite composites in removal of Reactive Red 120 from wastewater: Isotherm, kinetic, thermodynamic and adsorption behaviors. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2135520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Çiğdem Ay
- Department of Chemistry, Kütahya Dumlupınar University, Science and Art Faculty, Kütahya, Turkey
| | - Zeynep Sarpaşar
- Department of Chemistry, Kütahya Dumlupınar University, Science and Art Faculty, Kütahya, Turkey
| |
Collapse
|
28
|
Simultaneous removal of Basic blue and Toluidine blue O dyes by Magnetic Fe3O4@polydopamine nanoparticle as an efficient adsorbent using derivative spectrophotometric determination and central composite design optimization. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
29
|
Saha B, Debnath A, Saha B. Fabrication of PANI@Fe–Mn–Zr hybrid material and assessments in sono-assisted adsorption of methyl red dye: Uptake performance and response surface optimization. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100635] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
30
|
Dadban Shahamat Y, Masihpour M, Borghei P, Hoda Rahmati S. Removal of azo red-60 dye by advanced oxidation process O3/UV from textile wastewaters using Box-Behnken design. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109785] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
31
|
Hassan N, Shahat A, El-Deen I, El-Afify M, El-Bindary M. Synthesis and characterization of NH2-MIL-88(Fe) for efficient adsorption of dyes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132662] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
32
|
Lan D, Zhu H, Zhang J, Li S, Chen Q, Wang C, Wu T, Xu M. Adsorptive removal of organic dyes via porous materials for wastewater treatment in recent decades: A review on species, mechanisms and perspectives. CHEMOSPHERE 2022; 293:133464. [PMID: 34974043 DOI: 10.1016/j.chemosphere.2021.133464] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/04/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
Organic dyes, a type of high toxic and carcinogenic chemicals that present severe threats to human and aquatic life, are the most commonly seen organic pollutants in wastewater of industries such as textile, rubber, cosmetic industry etc. Various techniques for the removal of dyes are compared in this review. Adsorption has proven to be a facile and promising approach for the removal of dyes in wastewater. This work focuses on the latest development of various porous materials for the adsorption of organic dyes. The characteristics, functionalization and modification of different porous materials are also presented. Furthermore, adsorption behaviors and mechanism of these adsorbents in the adsorption of organic dyes are critically reviewed. Finally, challenges and opportunities for future research in the development of novel materials for the highly efficient removal of dyes are proposed.
Collapse
Affiliation(s)
- Dawei Lan
- New Materials Institute, The University of Nottingham Ningbo China, Ningbo, 315100, PR China; Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, The University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Huiwen Zhu
- New Materials Institute, The University of Nottingham Ningbo China, Ningbo, 315100, PR China; Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, The University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Jianwen Zhang
- New Materials Institute, The University of Nottingham Ningbo China, Ningbo, 315100, PR China; Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, The University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Shuai Li
- New Materials Institute, The University of Nottingham Ningbo China, Ningbo, 315100, PR China; Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, The University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Quhan Chen
- New Materials Institute, The University of Nottingham Ningbo China, Ningbo, 315100, PR China; Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, The University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Chenxi Wang
- New Materials Institute, The University of Nottingham Ningbo China, Ningbo, 315100, PR China; Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, The University of Nottingham Ningbo China, Ningbo, 315100, China
| | - Tao Wu
- New Materials Institute, The University of Nottingham Ningbo China, Ningbo, 315100, PR China; Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, The University of Nottingham Ningbo China, Ningbo, 315100, China.
| | - Mengxia Xu
- New Materials Institute, The University of Nottingham Ningbo China, Ningbo, 315100, PR China; Key Laboratory of Carbonaceous Wastes Processing and Process Intensification of Zhejiang Province, The University of Nottingham Ningbo China, Ningbo, 315100, China
| |
Collapse
|
33
|
Mozaffari Majd M, Kordzadeh-Kermani V, Ghalandari V, Askari A, Sillanpää M. Adsorption isotherm models: A comprehensive and systematic review (2010-2020). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:151334. [PMID: 34748826 DOI: 10.1016/j.scitotenv.2021.151334] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Among numerous methods developed in purification and separation industries, the adsorption process has received considerable attention due to its inexpensive, facile, and eco-friendly nature. The importance of the adsorption process causes extraordinary endeavors for modeling the adsorption isotherms during the years; thus, myriads of research have been conducted and many reviews have been published. In this paper, we have attempted to gather the most widely used adsorption isotherms and their related definitions, along with examples of correlated work of the recent decade. In the present review, 37 adsorption isotherms with about 400 references have been collected from the research published in the period of 2010-2020. The adsorption isotherms utilized are alphabetically organized for ease of access. The parameters of each isotherm, as well as the applicable definitions, are presented in the table, in addition to being discussed in the text. Another table is provided for the practical use of researchers, featuring the usage of the related isotherms in peer-reviewed studies.
Collapse
Affiliation(s)
- Mahdieh Mozaffari Majd
- Kerman Momtazan Cement Company, 32(nd) km Kerman-Tehran Highway, 7637158135, Kerman, Iran
| | - Vahid Kordzadeh-Kermani
- Department of Chemical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846-13114, Iran
| | - Vahab Ghalandari
- Kerman Momtazan Cement Company, 32(nd) km Kerman-Tehran Highway, 7637158135, Kerman, Iran
| | - Anis Askari
- Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Mika Sillanpää
- Faculty of Science and Technology, School of Applied Physics, University Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; School of Chemistry, Shoolini University, Solan, Himachal Pradesh 173229, India; Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, 8000 Aarhus C, Denmark.
| |
Collapse
|
34
|
|
35
|
Kiwaan HA, Sh. Mohamed F, El-Bindary AA, El-Ghamaz NA, Abo-Yassin HR, El-Bindary MA. Synthesis, identification and application of metal organic framework for removal of industrial cationic dyes. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117435] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
36
|
Niu C, Li S, Zhou G, Wang Y, Dong X, Cao X. Preparation and characterization of magnetic modified bone charcoal for removing Cu 2+ ions from industrial and mining wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113221. [PMID: 34293675 DOI: 10.1016/j.jenvman.2021.113221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/08/2021] [Accepted: 07/02/2021] [Indexed: 06/13/2023]
Abstract
Heavy metal water pollution is an urgent global problem to be addressed. Copper ions are common toxic heavy metal pollutants in wastewater. In order to remove the excessive copper ions in wastewater, in this study, chicken bone charcoal was modified by sodium dodecyl sulfonate and combined with magnetic nanoparticles prepared with ferric chloride hexahydrate and ferrous sulfate heptahydrate to produce a high efficiency adsorbent. The characterization of the magnetically modified bone charcoal was analyzed by scanning electron microscopy, surface and porosity analyses, FTIR and thermogravimetric analysis. The optimal adsorption conditions of magnetically modified bone charcoal for Cu2+ were obtained through batch experiments. The highest removal rate and adsorption capacity of Cu2+ was 99.98% and 15.057 mg/g, respectively, when the pH was 3.0, adsorbent dosage was 0.2 g, initial concentration of the Cu2+ solution was 50 mg/L, and temperature was 25 °C. The adsorption process fitted well with the Langmuir isotherm and the pseudo-second-order kinetic model. The regeneration experiment indicated that M-SDS-BC-500 maintained a high removal rate after five repetitions. The results suggest that the adsorbent has wide application prospects.
Collapse
Affiliation(s)
- Chenxi Niu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China
| | - Shuailong Li
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China
| | - Gang Zhou
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Yongmei Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xiaosu Dong
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xiaoqiang Cao
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; State Key Laboratory of Mining Disaster Prevention and Control Co-founded by Shandong Province and the Ministry of Science and Technology, Shandong University of Science and Technology, Qingdao 266590, China
| |
Collapse
|
37
|
Saratale RG, Sun Q, Munagapati VS, Saratale GD, Park J, Kim DS. The use of eggshell membrane for the treatment of dye-containing wastewater: Batch, kinetics and reusability studies. CHEMOSPHERE 2021; 281:130777. [PMID: 34020192 DOI: 10.1016/j.chemosphere.2021.130777] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/15/2021] [Accepted: 04/29/2021] [Indexed: 06/12/2023]
Abstract
The worldwide consumption of eggs is very high, leading to about 250,000 tons of eggshell membrane (ESM) waste annually. The present research thus investigated the potential use of ESM as an inexpensive and abundant adsorbent for Reactive Red 120 (RR120) in aqueous solutions, a widespread hydrophilic azo dye used in the textile industry. The chemical structure and morphology of ESM were characterized using various spectroscopic methods, including scanning electron microscopy, Fourier transform infrared spectroscopy, and elemental analysis. It was found that natural ESM has a porous structure and surface functional groups that are suitable for the adsorption of the target molecules. The impact of the operating conditions, including the variation in the pH and temperature, on the RR120 sorption capacity and mechanisms of ESM was also analyzed. The maximum monolayer adsorption ability of ESM for RR120 was found to be 191.5 mg/g at 318 K, and the sorption process was spontaneous and endothermic. The adsorption of RR120 onto ESM was significantly influenced by the solution pH and the use of NaOH as eluent, indicating that the driving force for this adsorption was electrostatic attraction. Subsequent desorption experiments using 0.1 M NaOH resulted in satisfactory recovery efficiency. Kinetic, isothermic, and thermodynamic analysis was also conducted to support the experimental findings. The experimental results for the adsorption kinetics of ESM were fitted by a pseudo-second-order model. In conclusion, ESM has the potential to be utilized as an eco-friendly and cost-effective adsorbent for the removal of RR120 from aqueous solutions.
Collapse
Affiliation(s)
- Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Qianzhe Sun
- Department of Environmental Science and Engineering, Ewha Womans University, 11-1 Daehyun-Dong, Seodaemun-Gu, Seoul, 120-750, South Korea
| | - Venkata Subbaiah Munagapati
- Department of Environmental Science and Engineering, Ewha Womans University, 11-1 Daehyun-Dong, Seodaemun-Gu, Seoul, 120-750, South Korea
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggi-do, 10326, Republic of Korea
| | - Jinhee Park
- Department of Environmental Science and Engineering, Ewha Womans University, 11-1 Daehyun-Dong, Seodaemun-Gu, Seoul, 120-750, South Korea
| | - Dong-Su Kim
- Department of Environmental Science and Engineering, Ewha Womans University, 11-1 Daehyun-Dong, Seodaemun-Gu, Seoul, 120-750, South Korea.
| |
Collapse
|
38
|
Waste polystyrene foam – Chitosan composite materials as high-efficient scavenger for the anionic dyes. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127155] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
39
|
Sabbagh N, Tahvildari K, Mehrdad Sharif AA. Application of chitosan-alginate bio composite for adsorption of malathion from wastewater: Characterization and response surface methodology. JOURNAL OF CONTAMINANT HYDROLOGY 2021; 242:103868. [PMID: 34508964 DOI: 10.1016/j.jconhyd.2021.103868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Agricultural effluents in aqueous media have caused serious threats due to adversely affect human health and the ecosystem. In this study, the low-cost easily accessible chitosan-alginate adsorbent was prepared for the removal of malathion from agricultural effluents using microemulsion method. The adsorbent was characterized using scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET), X-ray diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR). The optimum experimental conditions, including adsorbent dosage (0.05-0.25 g), contact time (5-25 min), and concentration of malathion (5-25 mg L-1) at five levels were studied using the composite central design (CCD) based on the response surface methodology (RSM). The highest removal percentage was obtained 82.35 with an adsorbent dosage of 0.18 g, contact time of 20 min, and initial concentration of 10 mg L-1. The analysis of variance (ANOVA) was applied to assess the significance and adequacy of the model. The results revealed that quadratic model was proper for the prediction removal of malathion. The adsorption kinetics and isotherms were examined under optimal conditions. The Langmuir with a coefficient of determination (R2) = 0.99 and pseudo-second-order with R2 = 0.99 were achieved as the best isotherm and kinetic models, respectively. The results showed that the chitosan-alginate biopolymer can be effective and affordable adsorbent for the removal of malathion from aqueous solution.
Collapse
Affiliation(s)
- Nazanin Sabbagh
- Department of Applied Chemistry, Faculty of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Kambiz Tahvildari
- Department of Applied Chemistry, Faculty of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran.
| | - Amir Abdolah Mehrdad Sharif
- Department of Analytical Chemistry, Faculty of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
40
|
Subbaiah Munagapati V, Wen HY, Wen JC, Gollakota AR, Shu CM, Mallikarjuna Reddy G. Characterization of protonated amine modified lotus (Nelumbo nucifera) stem powder and its application in the removal of textile (Reactive Red 120) dye from liquid phase. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
Jia Z, Yin P, Yang Z, Liu X, Xu Y, Sun W, Cai H, Xu Q. Triphosphonic acid modified multi-walled carbon nanotubes for gold ions adsorption. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2020.1818748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Zhihua Jia
- School of Chemistry and Materials Science, Ludong University, Yantai, P. R. China
| | - Ping Yin
- School of Chemistry and Materials Science, Ludong University, Yantai, P. R. China
| | - Zhenglong Yang
- School of Chemistry and Materials Science, Ludong University, Yantai, P. R. China
| | - Xiguang Liu
- School of Chemistry and Materials Science, Ludong University, Yantai, P. R. China
| | - Yanbin Xu
- School of Chemistry and Materials Science, Ludong University, Yantai, P. R. China
| | - Wenjun Sun
- School of Chemistry and Materials Science, Ludong University, Yantai, P. R. China
| | - Honglan Cai
- School of Chemistry and Materials Science, Ludong University, Yantai, P. R. China
| | - Qiang Xu
- School of Chemistry and Materials Science, Ludong University, Yantai, P. R. China
| |
Collapse
|
42
|
Sadeghi S, Zakeri HR, Saghi MH, Ghadiri SK, Talebi SS, Shams M, Dotto GL. Modified wheat straw-derived graphene for the removal of Eriochrome Black T: characterization, isotherm, and kinetic studies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:3556-3565. [PMID: 32918690 DOI: 10.1007/s11356-020-10647-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
A cost-effective and environment-benign adsorbent was prepared from an abundant agro-waste material. Wheat straw was reduced to graphene and then modified by crosslinking to epichlorohydrin. During the conversion process of wheat straw to graphene, the specific surface area increased more than 100 times (from 4 to 415 m2 g-1). The adsorption efficiency of raw wheat straw, graphene nanosheets, and modified graphene against Eriochrome Black T (EBT) were 8.0, 34.7, and 74.4%, respectively. The modified graphene was further investigated for the effect of environmental condition, i.e., pH (3 to 11), EBT concentration (25-100 mg L-1), adsorbent dosage (0.25-0.75 g L-1), contact time (5-60 min), and solution temperature (30-60 °C). The dye removal remained at a high level under a wide range of pH from 3 to 9. The EBT removal decreased from 87.3 to 54.5 by increasing dye concentration and increased from 38.2 to 85.4% by increasing adsorbent dose in the studied ranges. Dye removal also increased by mixing time from 5 to 30 min, whereas a slight drop was observed by continuing agitation up to 60 min. Conducting experiments at various temperatures revealed an endothermic process. Pseudo-first-order and pseudo-second-order models were adequate to represent the adsorption kinetics. Isotherm models suggest a multilayer adsorption of EBT molecules on heterogeneous modified graphene surface with a maximum adsorption capacity of 146.2 mg g-1. The present work demonstrated that the modified graphene obtained from available and low-cost agro-wastes could be used effectively as adsorbent against EBT from aqueous media.
Collapse
Affiliation(s)
- Shahram Sadeghi
- Environmental Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
- Spiritual Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Hamid Reza Zakeri
- Ferdows School of Paramedical and Health, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Hossien Saghi
- Non-Communicable Diseases Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Seid Kamal Ghadiri
- Department of Environmental Health Engineering, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Seyedeh Solmaz Talebi
- Department of Epidemiology, School of Public Health, Shahroud University of Medical Sciences, Shahroud, Iran.
| | - Mahmoud Shams
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Guilherme Luiz Dotto
- Chemical Engineering Department, Federal University of Santa Maria, Santa Maria, RS, Brazil.
| |
Collapse
|
43
|
Nayeri D, Mousavi SA. Dye removal from water and wastewater by nanosized metal oxides - modified activated carbon: a review on recent researches. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:1671-1689. [PMID: 33312670 PMCID: PMC7721786 DOI: 10.1007/s40201-020-00566-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Accepted: 10/08/2020] [Indexed: 05/25/2023]
Abstract
The conventional water and wastewater treatment methods are unable to provide up-to-data organized standards for drinking water and discharging effluents into natural ecosystems. Therefore, developing advanced and cost-effective methods to achieve published standards for water and wastewater and population needs are nowadays necessity. The important parts of this article are providing literature information about dyes and their effects on the environment and human health, adsorption properties and mechanism, adsorbent characteristics, and recent information on various aspects of modified activated carbons with nanosized metal oxides (AC- NMOs) in the removal of dyes. This review also summarized the effect of main environmental and operational parameters such as adsorbent dosage, pH, initial dye concentration, contact time, and temperature on the dye adsorption using AC-NMOs. Furthermore, the applied isotherm and kinetic models have been discussed.
Collapse
Affiliation(s)
- Danial Nayeri
- Department of Environmental Health Engineering, School of Public Health, and Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student research committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyyed Alireza Mousavi
- Department of Environmental Health Engineering, School of Public Health, and Research Center for Environmental Determinants of Health (RCEDH), Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Social Development and Health Promotion Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
44
|
Asgari E, Sheikhmohammadi A, Yeganeh J. Application of the Fe3O4-chitosan nano-adsorbent for the adsorption of metronidazole from wastewater: Optimization, kinetic, thermodynamic and equilibrium studies. Int J Biol Macromol 2020; 164:694-706. [DOI: 10.1016/j.ijbiomac.2020.07.188] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/12/2020] [Accepted: 07/17/2020] [Indexed: 12/31/2022]
|
45
|
Hassan N, Shahat A, El-Didamony A, El-Desouky M, El-Bindary A. Mesoporous iron oxide nano spheres for capturing organic dyes from water sources. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128361] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
46
|
Tanzifi M, Tavakkoli Yaraki M, Beiramzadeh Z, Heidarpoor Saremi L, Najafifard M, Moradi H, Mansouri M, Karami M, Bazgir H. Carboxymethyl cellulose improved adsorption capacity of polypyrrole/CMC composite nanoparticles for removal of reactive dyes: Experimental optimization and DFT calculation. CHEMOSPHERE 2020; 255:127052. [PMID: 32679636 DOI: 10.1016/j.chemosphere.2020.127052] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 05/07/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
In this study, polypyrrole/carboxymethyl cellulose nanocomposite particles (PPy/CMC NPs) were synthesized and applied for removal of reactive red 56 (RR56)and reactive blue 160 (RB160) as highly toxic dyes. The amount of CMC was found significantly effective on the surface adsorption efficiency. Different optimization methods including the genetic programming, response surface methodology, and artificial neural network (ANN) were used to optimize the effect of different parameters including pH, adsorption time, initial dye concentration and adsorbent dose. The maximum adsorption of RR56 and RB160 were found under the following optimum conditions: pH of 4 and 5, adsorption time of 55 min and 52 min for RR56 and RB160, respectively, initial dye concentration of 100 mg/L and adsorbent dose of 0.09 g for both dyes. were obtained for RR56 and RB160, respectively. Also, the results indicated that ANN method could predict the experimental adsorption data with higher accuracy than other methods. The analysis of ANN results indicated that the adsorbent dose is the main factor in RR56 removal, followed by time, pH and initial concentration, respectively. However, initial concentration mostly determines the RB160 removal process. The isotherm data for both dyes followed the Langmuir isotherm model with a maximum adsorption capacity of 104.9 mg/g and 120.7 mg/g for RR56 and RB160, respectively. In addition, thermodynamic studies indicated the endothermic adsorption process for both studied dyes. Moreover, DFT calculations were carried out to obtain more insight into the interactions between the dyes and adsorbent. The results showed that the hydrogen bondings and Van der Waals interactions are dominant forces between the two studied dyes and PPy/CMC composite. Furthermore, the interaction energies calculated by DFT confirmed the experimental adsorption data, where PPy/CMC resulted in higher removal of both dyes compared to PPy. The developed nanocomposite showed considerable reusability up to 3 cylces of the batch adsorption process.
Collapse
Affiliation(s)
- Marjan Tanzifi
- Department of Chemical Engineering, Ilam University, Ilam, 69315-516, Iran; Nanotechnology Research Institute, Babol Noshirvani University of Technology, Shariati Ave., Babol, Iran.
| | - Mohammad Tavakkoli Yaraki
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore, 117585, Singapore; Institute of Materials Research and Engineering (IMRE), The Agency for Science, Technology and Research (A∗STAR), 2 Fusionopolis Way, #08-03, Innovis, 138634, Singapore.
| | - Zahra Beiramzadeh
- Environmental Research Laboratory, School of Civil Engineering, Iran University of Science and Technology, Tehran, Iran
| | - Leily Heidarpoor Saremi
- Department of Chemistry, Faculty of Science, University of Sistan and Baluchestan, Zahedan, Iran
| | | | - Hojatollah Moradi
- Surface Phenomenon and Liquid-Liquid Extraction Research Lab, School of Chemical Engineering, University College of Engineering, University of Tehran, Iran
| | - Mohsen Mansouri
- Department of Chemical Engineering, Ilam University, Ilam, 69315-516, Iran
| | - Mojtaba Karami
- Department of Computer and Information Technology, Ilam University, Ilam, Iran
| | - Hossein Bazgir
- Department of Chemical Engineering, Ilam University, Ilam, 69315-516, Iran
| |
Collapse
|
47
|
Jawad AH, Abdulhameed AS, Reghioua A, Yaseen ZM. Zwitterion composite chitosan-epichlorohydrin/zeolite for adsorption of methylene blue and reactive red 120 dyes. Int J Biol Macromol 2020; 163:756-765. [PMID: 32634511 DOI: 10.1016/j.ijbiomac.2020.07.014] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/30/2020] [Accepted: 07/02/2020] [Indexed: 12/17/2022]
Abstract
In this research, an attempt to develop zwitterion composite adsorbent is conducted by modifying chitosan (CHS) with a covalent cross-linker (epichlorohydrin, ECH) and an aluminosilicate mineral (zeolite, ZL). The zwitterion composite adsorbent of chitosan-epichlorohydrin/zeolite (CHS-ECH/ZL) is performed multifunctional tasks by removing two structurally different cationic (methylene blue dye, MB), and anionic (reactive red 120 dye, RR120) dyes from aqueous solutions. The surface property, crystallinity, morphology, functionality, and charge of the CHS-ECH/ZL are analyzed using BET, XRD, SEM, FTIR, and pHpzc, analyses, respectively. The influence of pertinent parameters namely CHS-ECH/ZL dosage (0.02-0.5 g), solution pH (4-10), temperature (303-323K), initial dye concentration (30-400 mg/L), and contact time (0-600 min) on the MB and RR120 removal are tested. The research findings revealed that the adsorption isotherm at equilibrium well explained in according to the Freundlich isotherm model, and the recorded adsorption capacities of CHS-ECH/ZL are 156.1 and 284.2 mg/g for MB and RR120 respectively at 30 °C. The mechanism of MB and RR120 adsorption onto the CHS-ECH/ZL indicates various types of interactions namely, electrostatic interaction, hydrogen bonding, and Yoshida H-bonding in addition to n-π interaction. Overall, this research introduces CHS-ECH/ZL composite as an eco-friendly zwitterion adsorbent with good applicability towards the two structurally different cationic and anionic dyes from aqueous environment.
Collapse
Affiliation(s)
- Ali H Jawad
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia.
| | | | - Abdallah Reghioua
- Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia; Faculty of Technology, University of El Oued, 39000 El Oued, Algeria
| | - Zaher Mundher Yaseen
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Viet Nam
| |
Collapse
|
48
|
Hassan N, Shahat A, El-Didamony A, El-Desouky M, El-Bindary A. Synthesis and characterization of ZnO nanoparticles via zeolitic imidazolate framework-8 and its application for removal of dyes. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128029] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
49
|
Safie NN, Zahrim Yaser A, Hilal N. Ammonium ion removal using activated zeolite and chitosan. ASIA-PAC J CHEM ENG 2020. [DOI: 10.1002/apj.2448] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - Abu Zahrim Yaser
- Faculty of EngineeringUniversiti Malaysia Sabah Kota Kinabalu Malaysia
| | - Nidal Hilal
- Water Advanced Technologies and Environmental Research (CWATER), College of EngineeringSwansea University Swansea UK
- NYUAD Water Research CenterNew York University Abu Dhabi Abu Dhabi United Arab Emirates
| |
Collapse
|
50
|
Mahmodi G, Zarrintaj P, Taghizadeh A, Taghizadeh M, Manouchehri S, Dangwal S, Ronte A, Ganjali MR, Ramsey JD, Kim SJ, Saeb MR. From microporous to mesoporous mineral frameworks: An alliance between zeolite and chitosan. Carbohydr Res 2020; 489:107930. [PMID: 32044533 DOI: 10.1016/j.carres.2020.107930] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 12/29/2022]
Abstract
Microporous and mesoporous minerals are key elements of advanced technological cycles nowadays. Nature-driven microporous materials are known for biocompatibility and renewability. Zeolite is known as an eminent microporous hydrated aluminosilicate mineral containing alkali metals. It is commercially available as adsorbent and catalyst. However, the large quantity of water uptake occupies active sites of zeolite making it less efficient. The widely-used chitosan polysaccharide has also been used in miscellaneous applications, particularly in medicine. However, inferior mechanical properties hampered its usage. Chitosan-modified zeolite composites exhibit superior properties compared to parent materials for innumerable requests. The alliance between a microporous and a biocompatible material with the accompaniment of negative and positive charges, micro/nanopores and proper mechanical properties proposes promising platforms for different uses. In this review, chitosan-modified zeolite composites and their applications have been overviewed.
Collapse
Affiliation(s)
- Ghader Mahmodi
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, Ok, 74078, USA
| | - Payam Zarrintaj
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, Ok, 74078, USA
| | - Ali Taghizadeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Mohsen Taghizadeh
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran
| | - Saeed Manouchehri
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, Ok, 74078, USA
| | - Shailesh Dangwal
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, Ok, 74078, USA
| | - Anil Ronte
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, Ok, 74078, USA
| | - Mohammad Reza Ganjali
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran; Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Joshua D Ramsey
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, Ok, 74078, USA
| | - Seok-Jhin Kim
- School of Chemical Engineering, Oklahoma State University, 420 Engineering North, Stillwater, Ok, 74078, USA.
| | - Mohammad Reza Saeb
- Center of Excellence in Electrochemistry, School of Chemistry, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|